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ABSTRACT. The grasslands of Kaziranga National Park, Assam, India, have been
threatened by certain species of plants such as Mikenia, Mimosa, Simul (Bom-
bax ceiba) etc. These plants are found to be invasive and without efforts to
control their growth the grasslands along with their wildlife could face cata-
strophic situation. Controlled annual burning, manual weed removal, stubbing
are some of the control measures the park has been employing in this regard.
Taking the cumulative densities of all the invasive species of plants which affect
the grasslands as bad biomass and employing effort to control their growth for
healthy grassland density, this paper attempts to study the long term effect of
bad biomass on grassland biomass using non-linear mathematical model. For
this, the feasible equilibria of the model was obtained and their local stability
discussed. Through qualitative analysis it was observed that grassland density
could be maintained at equilibrium with proper effort. It was also observed that
reducing the effort could adversely affect the dynamics of the system. When
the effort was reduced beyond a certain value, Hopf bifurcation was observed.
These findings were validated through numerical simulation.
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1. INTRODUCTION

Kaziranga National Park (KNP) is located in the floodplains of the Brahmapu-
tra river within the Nagaon and Golaghat district of Assam, India. Conservation
of the park started in 1908 when it was declared as Reserve Forest. Today, this
park is a thriving site within the Indo-Burma biodiversity hotspot. It is famous
for the Greater one-horned rhinoceros (Rhinoceros unicornis) as it harbors 85%
of the world’s total population of this species. The rhino thrives in the grasslands
within the park. Apart from rhino, the grasslands have to support a significant
number of three other large herbivores — the Asian elephant, the wild Asian
water buffalo and the eastern swamp deer (Cervus duvauceli ranjitsinhi) and
other smaller herbivores like Hog Deer (Axis porcinus), Sambar (Cervus uni-
color), Barking Deer (Muntiacus muntjak),Wild Boar (Sus scrofa), Hog Badger
(Arctonyx collaris), Wild Buffalo (Bubalus bubalis) etc. (Source: PCCF Wildlife,
Assam). Thus, the grassland management is one of the prime objectives at the
park.

The grasslands of Kaziranga National Park have been threatened by some
proliferating species of weed like Mikenia, Mimosa and the tree species Simul
(Bombax ceiba). Mimosa is a straggling herb seen climbing to the top of sev-
eral meters high elephant grasses. The quick growing herb not only destroy the
grasses, it hampers the free movement of wild animals. Mimosin, a harmful
toxin released by Mimosa is known to affect herbivore population particularly
ruminants. The large and small tea gardens on the high ground beyond southern
boundary of the park have been using Mimosa for rehabilitating the degraded
soil and to curb grasses like Imperata cylindrica and other tenacious grasses
since late sixties. The runoff water from these gardens carry the seeds and flow
to the park through numerous channels and rivers. Kushwaha et al. [7] found
a considerable loss of short grasses in KNP. Lahkar et al. [8] marked the slow
and steady intrusion of invasive species such as Mimosa in grassland habitat as
one of the major threats which directly reduces flora for rhino and other her-
bivores. Medhi & Saha [9] observed considerable reduction of grassland areas
and small water bodies. In order to mitigate such invasion, the KNP authority
carries out management effort in the form of manual removal of weed, annual
controlled burning of grassland, uprooting of tree saplings, stubbing etc. which
are important tools for maintaining the seral stage of the grasslands.
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Studies have shown that invasive species decrease species diversity, cause eco-
nomic loss, and reduce forest health and productivity. These invasive plants will
not stop spreading unless controlled. However, longer the management is post-
poned, the more the invasive plants will spread and the more costly they will
be to eradicate. Using mathematical modelling as an essential tool a diverse
range of various ecological situations can be studied (Pathak [11]). Some math-
ematical models by Agarwal & Mishra [1]; Dubey & Narayanan [5]; Kumar &
Agarwal [6]; Patra et al. [12] and Sundar et al. [15] have tried to study the
effect of various factors such as pollution, deforestation, urbanization and in-
dustrialization on the forestry biomass . Agarwal et al. [2] studied the effect
of depletion of forestry biomass in a habitat due to pressure of industrializa-
tion on the survival of forestry biomass dependent wildlife species. They have
shown that, under some conditions, the forest biomass density decreases due
to an increase in industrialization pressure which leads to decrease in the den-
sity of wildlife species and it may even lead to extinction if the industrialization
continues without control. Ramdhani et al. [14] found that if the crowding by
industrialization increases, then biomass density of forestry resources decreases
and hence it is necessary to control industrialization to protect the forestry re-
sources stability. Anderson et al. [3] in their study found that, invasive plant
species have various negative impacts on the ecosystems they invade. Misra &
Lata [10] studied the effect of time delay on conservation of forestry biomass by
proposing a non-linear mathematical model. They found in their analysis that
the density of forestry biomass may be conserved if the technological effort is
applied within the appropriate time. Rai [13] presented a model for the wet-
land part of Keolado National Park which provides clear perspectives on future
management strategies and policy decisions.

Given this brief literature survey, this paper proposes a mathematical model
on depletion of grassland incorporating the effect of management effort. The
paper is organized as follows: In section 2 the mathematical model is proposed
and the boundedness of its solutions is proved. Section 3 is devoted to study the
existence of equilibrium points and the nature of their local stability is discussed
in section 4. In section 5, existence of Hopf bifurcation around the interior
equilibrium point is analyzed. In section 6, numerical simulation of the system
is discussed to illustrate the theoretical results. Finally conclusion is drawn in
section 7.
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2. MATHEMATICAL MODELLING

Some assumptions and factors of importance for the proposed model are listed
below:

(1) Bad biomass is the cumulative densities of Mikenia, Mimosa, Bombax
Ceiba and Eichhornia that depletes the grassland biomass.

(2) Densities of grassland biomass and bad biomass are governed by logistic
type equations.

(3) Effect of invasive species is catastrophic as invasive plants will not stop
spreading unless controlled. It can lead to decline of grassland and even-
tually the whole wildlife grazing population.

(4) There exists inter-specific competition between bad biomass and grass-
land biomass for abiotic factors such as soil, water, light etc.

(5) The effort to control increases proportionally with the density of the
existing bad biomass.

Based on these assumptions and in conformity with the reality in KNP, the
system of non-linear differential equations that governs the dynamics of the
problem is given below:

dG

dt
= r1G

(
1− G

K

)
− c1GB − c2G2B

dB

dt
= r2B

(
1− B

L

)
− eBE − aGB

dE

dt
= δ1B − δ2E,

(2.1)

with initial conditions G(0) ≥ 0, B(0) ≥ 0, E(0) ≥ 0, 0 ≤ δ1, δ2 ≤ 1, where, G is
the density of grassland biomass, B is the density of bad biomass and E is the
measure of effort applied for conservation of grassland biomass. The constants
r1 and K are intrinsic growth rate and carrying capacity of grassland biomass.
r2 and L are intrinsic growth rate and carrying capacity of bad biomass respec-
tively. The constants c1 and c2 are the depletion rate coefficients of intrinsic
growth rate and carrying capacity of grassland biomass respectively, due to bad
biomass [10]. The constants e and a are effort coefficient needed to control the
bad biomass and interspecific interference coefficient of bad biomass and grass-
land biomass respectively. δ1 and δ2 respectively correspond to the growth rate
and depletion rate coefficients of effort.
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Boundedness:

Theorem 2.1. The set Ω = {(G, B, E)εR+
3 : 0 < W = G+B+E ≤ ν

η
} is a region

of attraction for all solutions initiating in the interior of the positive orthant, where
η is a constant such that 0 < η < δ2, ν = K(r1+η)2

4r1
+ L(r2+δ1+η)2

4r2
.

Proof. Let us consider a time dependent function W (t) = G(t) + B(t) + E(t)

and η > 0 be a constant. Then

dW

dt
+ ηW =(r1 + η)G− r1G

2

K
+ (r2 + δ1 + η)B − r2B

2

L

− (c1 + a)GB − c2G2B − eBE − (δ2 − η)E.
(2.2)

Now we choose η such that 0 < η < δ2 Then, the equation (2.2) can be written
as

dW

dt
+ ηW ≤ (r1 + η)G− r1G

2

K
+ (r2 + δ1 + η)B − r2B

2

L

=
K(r1 + η)2

4r1
+
L(r2 + δ1 + η)2

4r2
= ν.

By using differential inequality ([4]), we obtain 0 < W (G(t), B(t), E(t)) ≤
ν
η
(1− e−ηt) + (G(0), B(0), E(0))e−ηt which gives 0 < W (t) ≤ ν

η
as t→∞. �

3. EQUILIBRIUM ANALYSIS

Equating the system (2.1) the following equilibrium points are obtained.

i. P0(0, 0, 0),
ii. P1(K, 0, 0)

iii. P2(Ḡ, B̄, 0)

iv. P3(G
∗, B∗, E∗)

Here, the trivial equilibrium point P0 and the axial equilibrium point P1 always
exist. The existence of P2 i.e. in the absence of effort to control the bad biomass
and the coexisting equilibrium P3(G

∗, B∗, E∗) is discussed below.

3.1. Existence of P2(Ḡ, B̄, 0). In the absence of control effort E, Ḡ and B̄ can
be obtained by solving the following equations:

r1
(
1− G

K

)
− c1B − c2GB = 0(3.1)

r2
(
1− B

L

)
− aG = 0.(3.2)
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Equation (3.2) gives,

(3.3) B =
L

r2
(r2 − aG),

which upon substitution in equation (3.1) yields a quadratic equation in G given
as,

(3.4) B1G
2 +B2G+B3 = 0

where,

B1 =
aLc2
r2

B2 =
ac1L

r2
− r1
K
− c2L

B3 =r1 − Lc1.

Now, solving for the roots of the equation (3.4) gives Ḡ =
−B2+
√
B2

2−4B1B3

2B1
, which

is a positive real root if the following condition holds

r1 < Lc1.

Knowing the value of Ḡ , the value of B̄ is evaluated from equation (3.3). It
may be noted that for B̄ to be positive, the following must hold:

r2 > aḠ.

3.2. Existence of P3(G∗, B∗, E∗). To see the existence of P3(G
∗, B∗, E∗) , we

note that G∗, B∗ and E∗ are the positive solutions of the following equations.

r1

(
1− G

K

)
− c1B − c2B = 0(3.5)

r2

(
1− B

L

)
− eE − aG = 0(3.6)

δ1B − δ2E = 0.(3.7)

Equation (3.6) implies

(3.8) B =
L

r2

(
r2 − eE − aG

)
using this in equations (3.5) & (3.7 ), we get

(3.9) f(G, E) = r1

(
1− G

K

)
− c1L

r2

(
r2− eE− aG

)
− c2GL

r2

(
r2− eE− aG

)
= 0



EXISTENCE OF HOPF-BIFURCATION IN A MATHEMATICAL. . . 9407

and

(3.10) g(G, E) =
δ1L

r2

(
r2 − eE − aG

)
− δ2E = 0.

From equation (3.10) we note the following:

i. If G = 0, then E = δ1r2
eδ1+

r2δ2
L

= E1 where E1 is a solution of g(0, E) = 0.

ii. If E = 0, then G = r2
a

= G1 where G1 is a solution of g(G, 0) = 0.
iii. dG

dE
= − ∂g

∂E

/
∂g
∂G

< 0, as

∂G

∂E
= −eδ1L

r2
− δ2 < 0 and

∂g

∂G
= −aδ1L

r2
< 0.

Equation (3.9) implies that,

i. If G = 0, then E = r2(Lc1−r1)
ec1L

= E2 where E2 is a solution of f(0, E) = 0.
Here, if Lc1 > r1, then E > 0.

ii. If E = 0, we get G = G2 (say), where G2 is the positive root of f(G, 0) =

0 which yields B1G
2 +B2G+B3 = 0, where

B1 =
Lc2a

r2

B2 =
ac1L

r2
− r1
K
− Lc2

B3 =r1 − c1L.

Thus, G2 is positive if r1 < c1L.
iii. From equation (3.9),

∂f

∂E
=
Le(c1 + c2G)

r2
> 0,

∂f

∂G
= − r1

K
+
ac1L

r2
− c2L

r2

(
r2 − eE − aG

)
+
ac2GL

r2
and

dG

dE
= − ∂f

∂E

/ ∂f

∂G
> 0 if

∂f

∂E
and

∂f

∂G
have opposite signs .

If we also assume that , G2 > G1, then the two isoclines (3.9) and (3.10) inter-
sect at a unique point (G∗, E∗), and B∗ can be calculated from equation (3.8).
It may be noted that B∗ is positive if the following inequality holds:

r2 > eE∗ + aG∗.
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4. STABILITY ANALYSIS

In this section the local stability of the proposed system is analyzed. Evaluat-
ing the Jacobian at each equilibrium point and using the eigenvalue method &
Routh Hurwitz criteria the following results are obtained.

i. P0 is unstable.
ii. P1 is stable if aK < r2 otherwise unstable.

iii. P2 is locally asymptotically stable iff

r1r2ḠB̄

KL
+
r2c2
L
ḠB̄2 + ac2Ḡ2B̄ > aB̄c1Ḡ

otherwise unstable.
iv. To study the stability of P3(G

∗, B∗, E∗) it is noted that the characteristic
equation of the Jacobian matrix evaluated at P3 is

(4.1) λ3 + C1λ
2 + C2λ+ C3 = 0

where,

C1 =δ2 +
r2B

∗

L
+
G∗r1
K

+ c2G
∗B∗

C2 =
δ2r2B

∗

L
+ eδ1B

∗ +
(
δ2 +

r2B
∗

L

)(G∗r1
K

+ c2G
∗B∗

)
+ aB∗(c1G

∗ − c2G∗2)

C3 =
(G∗r1
K

+ c2G
∗B∗

)(δ2r2B∗
L

+ eδ1B
∗
)

+ δ2aB
∗(c1G

∗ − c2G∗2).

By Routh Hurwitz criteria it implies that, all the solutions of (4.1) have
negative real parts iff,

Ci > 0, i = 1, 3 and C1C2 > C3.

Clearly, C1 > 0, C3 > 0 iff G∗ < c1
c2

. It is also easy to to verify that
C1C2 > C3 holds true for G∗ < c1

c2
.

Thus, we state the following theorem.

Theorem 4.1. The positive equilibrium point is locally asymptotically sta-
ble if and only if

G∗ <
c1
c2
.
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5. EXISTENCE OF HOPF-BIFURCATION

The aim of this section is to investigate the Hopf-bifurcation of (2.1) around
the interior equilibrium point P3.

Choosing the depreciation rate of effort δ2 as the bifurcation parameter, the
necessary and sufficient conditions for Hopf-bifurcation to occur at δ2 = δ∗2 (crit-
ical value) are found to be:

1. C1(δ
∗
2) > 0 and C3(δ

∗
2) > 0

2. f(δ∗2) ≡ C1(δ
∗
2)C2(δ

∗
2)− C3(δ

∗
2) = 0

3. Re
[dλj
dδ2

]
δ2=δ∗2

6= 0, j = 1, 2, 3,

(5.1)

where λj is the eigenvalue of the variational matrix associated with P3(G
∗, B∗, E∗).

At the critical value δ2 = δ∗2, the characteristic equation (4.1) can be written
as

(λ2 + C2)(λ+ C1) = 0.

This has three roots i.e. λ1,2 = ±iω, λ3 = µ where

µ = −C1

= −
{
δ2 +

r2B
∗

L
+
G∗r1
K

+ c2G
∗B∗

}
ω =

√
C2 =

√{δ2r2B∗
L

+ eδ1B
∗ +

(
δ2 +

r2B
∗

L

)(G∗r1
K

+ c2G
∗B∗

)
+ aB∗(c1G

∗ − c2G∗2)
}
.

Thus at δ2 = δ∗2, the characteristic equation (4.1) has purely imaginary roots
while the third root is negative. To show the transversality condition, let at any
point δ2 in ε−neighborhood of δ∗2, λ1,2 = b1(δ2)± ib2(δ2).

Substituting this in characteristic equation (4.1) and operating real and imag-
inary parts, and taking its derivative, we have,

R(δ2)b
′
1(δ2)− S(δ2)b

′
2(δ2) + L(δ2) = 0

S(δ2)b
′
1(δ2) +R(δ2)b

′
2(δ2) +N(δ2) = 0
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where

R(δ2) =3{b21(δ2)− b22(δ2)}+ 2C1b1(δ2) + C2

S(δ2) =6b1(δ2)b2(δ2) + 2C1b2(δ2)

L(δ2) =C ′1(b
2
1(δ2)− b22(δ2) + C ′2b1(δ2) + C ′3

N(δ2) =2C ′1b1(δ2)b2(δ2) + C ′2b2(δ2).

Hence, Re
[
dλj
dδ2

]
δ2=δ∗2

= −
[
LR+SN
R2+S2

]
δ2=δ∗2

6= 0.

Therefore the transversality condition holds and Hopf-bifurcation occurs at
δ2 = δ∗2 around the interior equilibrium P3(G

∗, B∗, E∗). Thus we can write the
following theorem:

Theorem 5.1. There is a simple Hopf-bifurcation at equilibrium point P3 under
conditions (5.1), at some critical value of the parameter δ2, given by the equation
f(δ∗2) = 0.

6. NUMERICAL SIMULATION

The units of the parameters are given in Table (1)

TABLE 1. Parameters and their unit

Parameter Unit
G, K ton

B, E, L m−2

r1, r2, δ1, δ2 year−1

c1, e m−2year−1

c2 ton−1m−2year−1

a ton−1year−1

Here, the ecologically healthy situation will be defined first. The depreciation
rate in the effort is the key parameter that influences the dynamics of the system
and eventually the ecological health of the park. The park is said to be ecolog-
ically healthy if it maintains higher density of the grassland biomass compared
to the bad biomass and vice versa.
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FIGURE 1. Graph trajectory of G, B, E showing ecologically un-
healthy situation of the park for (a) δ2 = 0.14 (b) δ2 = 0.2

Ecologically unhealthy situation of the park: Consider the following set of
value of parameters.

r1 = 2, K = 100, c1 = 0.07, c2 = 0.02, r2 = 3,

L = 1000, e = 0.4, a = 0.01, δ1 = 0.1

with initial conditions (1, 1, 1).
For the above set of values of parameters, we observe in Fig. (1) that, as the

depreciation rate δ2 increases the bad biomass also increases w.r.t. t and settles
at higher equilibrium level than that of grassland biomass and hence it shows
an ecologically unhealthy situation of the park.

Hopf Bifurcation: For the choice of the following values of parameters:

r1 = 2, K = 100, c1 = 0.07, c2 = 0.02, r2 = 3,

L = 1000, e = 0.4, a = 0.01, δ1 = 0.1,

Occurence of Hopf Oscillations has been investigated. The critical value of de-
preciation parameter δ2 (i.e.δ∗2 = 0.105 ) at which stability loss occurs has been
calculated and existence of limit cycle is observed.
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FIGURE 2. (a) Hopf Oscillations for δ2 = 0.105, (b) limit cycle

Local stability of the interior equilibrium point and stable limit cycle: For
the following set of values of parameters

r1 = 2, K = 100, c1 = 0.07, c2 = 0.02, r2 = 3,

L = 1000, e = 0.4, a = 0.01, δ1 = 0.291, δ2 = 0.2

with initial conditions (1, 1, 1). There exist an unique equilibrium point P3(G
∗,

B∗, E∗) where G∗ = 14.0850, B∗ = 4.8884 and E∗ = 7.1112. It may further be
observed that the condition of local stability of the Theorem (4.1) is satisfied.
Also, the stable limit cycle (Fig. 3(b)) around the interior equilibrium point
P3(14.0850, 4.8884, 7.1112) is observed.

Ecologically healthy situation of the park: For the same set of value of param-
eters taking different values of δ2, the behavior of the grassland biomass and the
bad biomass w.r.t time t is shown in Fig. (4(a)-(b)). It is observed that when the
growth rate of effort, δ1, is greater than the depreciation rate coefficient, δ2, the
grassland biomass settles at higher equilibrium level than that of bad biomass,
and hence it is showing an ecologically healthy situation of the park.
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FIGURE 3. (a) Local stability of the interior equilibrium (b) 3D
plot of the system (2.1)
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FIGURE 4. Behavior of grassland biomass, bad biomass and effort
for (a) δ2 = 0.24 (b) δ2 = 0.29
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7. CONCLUSION

In this paper a mathematical model of KNP for the depletion of grassland
biomass under the catastrophic effect of invasive species was proposed and an-
alyzed. It explains the effect of bad biomass growth on the growth of grassland
biomass using logistic growth model for both the biomasses. Eigenvalue method
and Routh Hurwitz criteria were applied to analyze the existence of equilibrium
points and local stability. It was observed that the management effort could
play a vital role in controlling the undesirable growth of bad biomass. Also, it
was found that the bad biomass increases and grassland decreases if the effort
applied fell below a critical value. The results were verified through numerical
simulation. This model suggest that the control of bad biomass in an efficient
manner is important to maintain the grassland biomass of the park in healthy
seral stage.
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