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ZERO FORCING GRAPH ASSOCIATED TO THE TOTAL GRAPH OF Zn

WITH RESPECT TO NIL IDEAL

ARIJIT MISHRA1 AND KUNTALA PATRA

ABSTRACT. The total graph T (ΓN (Zn)) of Zn with respect to its nil ideal N(Zn) =

{x ∈ Zn : x2 ≡ 0(mod n)} is a simple, undirected graph with vertex set Zn

and any two distinct vertices x and y of T (ΓN (Zn)) are adjacent if and only if
x + y ∈ N(Zn). In this paper, we introduce a new graph structure called a Zero
forcing graph of T (ΓN (Zn)), denoted by ZF(T (ΓN (Zn))), as a simple, undi-
rected graph in which all the possible zero forcing sets of minimum cardinality
of T (ΓN (Zn)) are taken as vertices and any two distinct vertices S1 and S1 of
this graph are adjacent if and only if S1 ∪ S2 = Zn.

1. INTRODUCTION

The idea of the total graph of a commutative ring R, denoted by T (Γ(R)),
was first put forward by Anderson and Badawi [7] who defined it as a simple,
undirected graph with vertex set R and any two distinct vertices x and y are
adjacent if and only if x + y ∈ Z(R), where Z(R) denotes the set of all the
zero-divisors of R.

In the year 2003, P. W. Chen [12] introduced a new class of a graph of a
commutative ring R with vertex set R and two distinct vertices x and y are
adjacent if and only if xy ∈ N(R), where N(R) denotes the set of all the nil
elements of the ring R. This concept was further modified by Ai-Hua Li and
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Qi-Sheng Li [2] who defined it as an undirected, simple graph ΓN(R) having
vertex set ZN(R)∗ = {x ∈ R∗ | xy ∈ N(R) for some y ∈ R∗ = R − {0}} and two
distinct vertices x and y are adjacent if and only if xy ∈ N(R) or yx ∈ N(R).

The total graph T (ΓN(Zn)) of the non-reduced commutative ring Zn with re-
spect to nil ideal, is a simple undirected graph with all the elements of Zn as ver-
tices and two distinct vertices x and y are adjacent if and only if x+ y ∈ N(Zn),
where N(Zn) denotes the set of all the nil elements of Zn, i.e. N(Zn) = {x ∈
Zn : x2 = 0}.

The concept of a zero forcing set and a zero forcing number of a graph G,
denoted by Z(G), was first introduced by the "AIM Minimum Rank- Special
Graphs Work Group" in [1]. One can find extensive literature on zero forcing
numbers in [1,4-6,8-11]. We shall briefly discuss the concept in the following
section. In this paper, we introduce a new class of graphs called zero forcing
graphs associated to T (ΓN(Zn)) as a simple, undirected graph in which all the
possible zero forcing sets of T (ΓN(Zn)) are taken as vertices and any two distinct
vertices S1 and S2 are adjacent if and only if S1 ∪S2 = Zn. We denote this graph
by ZF(T (ΓN(Zn))).

2. PRELIMINARIES

The zero forcing process on a simple undirected graph G is defined as follows:
Given a subset S of G such that each vertex in S is colored black while each
vertex in G \ S is colored white, a black vertex with exactly one white neighbor
will force its white neighbor to become black. It is an iterative process that
continues until all the vertices of G turn black. The set S is said to be a zero
forcing set while the minimum number of vertices in such a zero forcing set is
said to be the zero forcing number of the graph G and is denoted by Z(G).

A non-empty subset S of the set of all the vertices V of a graphG is said to be a
dominating set if every vertex in V −S is adjacent to at least one vertex in S. The
domination number γ of a graph G is defined to be the minimum cardinality of
a dominating set in G and the corresponding dominating set is called a γ−set of
G. A graph G is said to be excellent if for every vertex v of G, there exist a γ−set
containing v. A set of vertices in a graph G is said to be independent if no two
vertices in that set are adjacent. The maximum cardinality of an independent set
of a graph G is called the independence number of the graph G and is denoted by
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β0(G). The independence domination number, denoted by i(G), is the minimum
cardinality of an independent dominating set. A graph is said to be well-covered
if every maximal independent set has the same size. Equivalently, a graph G is
well-covered if β0(G) = i(G). The partition of the vertex set V(G) of a graph G
into dominating sets is called a domatic partition of G. The maximum number
of such partitions is called the domatic number of G and is denoted by d(G). A
graph G is said to be domatically full if d(G) = δ(G) + 1. For any graph G, the
diameter of G, denoted by diam(G) is given by diam(G) = sup{d(x, y) : where
x and y are distinct vertices of G} and d(x, y) is the length of the shortest path
joining x and y. The girth of the graph G, denoted by gr(G), is the length of
the shortest cycle in G. If G contains no cycles, then gr(G) = ∞. The graph G

is said to be Eulerian if and only if the degree of each of its vertices is even. A
graph is said to be planar if it can be drawn in a plane without any two edges
intersecting each other. The clique number of a graph G, denoted by ω(G), is
the size of the largest complete subgraph of G. The chromatic number of a graph
G, denoted by χ(G) is the least number of colors that can be assigned to the
vertices of G in such a way that no two adjacent vertices are assigned the same
color.

A ring R is said to be non-reduced if it contains at least one non-zero nil ele-
ment. Otherwise it is said to be reduced.

3. THE BASIC STRUCTURE OF T (ΓN(Zn))

For any non-reduced Zn, the total graph T (ΓN(Zn)) of Zn with respect to its
nil ideal N(Zn) = {x ∈ Zn : x2 ≡ 0 (mod n)} is a simple, undirected graph
having vertex set Zn and any two distinct vertices x and y of T (ΓN(Zn)) are
adjacent if and only if x+ y ∈ N(Zn).

Theorem 3.1. [3] Let Zn be non-reduced and let n1 be the smallest non-zero nil
element of Zn. Then the following conditions hold:

(1) If |Zn| is odd, then T (ΓN(Zn)) = K n
n1
∪ (n1−1

2
)K n

n1
, n
n1

.
(2) If |Zn| is even, then T (ΓN(Zn)) = 2K n

n1
∪ (n1

2
− 1)K n

n1
, n
n1

.
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4. ZERO FORCING SET OF ZF(T (ΓN(Zn)))

The zero forcing graph ZF(T (ΓN(Zn))) of the total graph T (ΓN(Zn)) is a
simple, undirected graph in which all the possible zero forcing sets of T (ΓN(Zn))

are taken as vertices and any two distinct vertices S1 and S2 are adjacent if and
only if S1 ∪ S2 = Zn.

Lemma 4.1. From the proof of Theorem 3.1 [3], it is easy to observe that for any
odd n, each zero forcing set of T (ΓN(Zn)) contains ( n

n1
− 1) elements of N(Zn),

( n
n1
− 1) elements of each of the cosets i+N(Zn) for i = 1, 2, ..., n1−1

2
and ( n

n1
− 1)

elements of each of the cosets (n−i)+N(Zn). Also for any even n, each zero forcing
set of T (ΓN(Zn)) contains ( n

n1
−1) elements of N(Zn), ( n

n1
−1) elements of the coset

n1

2
+N(Zn), ( n

n1
− 1) elements of each of the cosets i+N(Zn) for i = 1, 2, ..., n1

2
− 1

and ( n
n1
− 1) elements of each of the cosets (n− i) +N(Zn).

Throughout this paper, we denote |N(Zn)| interchangeably by α and n
n1

where
n1 is the smallest non-zero nil element of Zn. That is, |N(Zn)| = α = n

n1
. Also,

we use the notation β to denote the cardinality of the set Zn \N(Zn).

5. GRAPHICAL PROPERTIES OF ZF(T (ΓN(Zn)))

Theorem 5.1. For any non-reduced Zn with α > 2, Z(ZF(T (ΓN(Zn)))) = n(1−
1
α

).

Proof. Let us consider the following two cases:
Case 1: When n is odd.
For any odd n, since T (ΓN(Zn)) = Kα ∪ ( β

2α
)Kα,α, so the number of vertices in

a zero forcing set of T (ΓN(Zn)) of minimum cardinality = (α−1)+(2α−2).( β
2α

)

= α− 1 + β − β
α

= α− 1 + n− α− (n
α
− 1) = n(1− 1

α
).

Case 2: When n is even.
For any even n, since T (ΓN(Zn)) = 2Kα∪(β−α

2α
)Kα,α, so the number of vertices

in a zero forcing set of T (ΓN(Zn)) of minimum cardinality = (α − 1) + (α −
1) + (2α − 2).(β−α

2α
) = 2(α − 1) + (α − 1).(n

α
− 2) = 2(α − 1) + n − 2α − n

α
+ 2

= 2α− 2 + n− 2α− n
α

+ 2 = n(1− 1
α

).
In both the cases, Z(ZF(T (ΓN(Zn)))) = n(1− 1

α
). �

Theorem 5.2. For any non-reduced Zn with α > 2, the number of zero forcing
sets of T (ΓN(Zn)) of minimum cardinality = the total number of vertices of =

ZF(T (ΓN(Zn))) = (α)
n
α .



ZERO FORCING GRAPH ASSOCIATED TO THE TOTAL GRAPH OF . . . 9447

Proof. Here again, let us consider the following two possible cases:
Case 1: When n is odd.
For any odd value of n, since T (ΓN(Zn)) = Kα ∪ ( β

2α
)Kα,α, so the total

number of zero forcing sets of T (ΓN(Zn)) of minimum cardinality =α Cα−1 ×
αCα−1 ×α Cα−1︸ ︷︷ ︸

β
2α

= α(α2)
β
2α = (α)

n
α .

Case 2: When n is even.
For any even value of n, since T (ΓN(Zn)) = 2Kα ∪ (β−α

2α
)Kα,α, so the total

number of zero forcing sets of T (ΓN(Zn)) of minimum cardinality =α Cα−1 ×α

Cα−1 × αCα−1 ×α Cα−1︸ ︷︷ ︸
β−α
2α

= α2(α2)
β−α
2α = (α)

n
α .

In both the cases, the total number of vertices of = ZF(T (ΓN(Zn))) = (α)
n
α .
�

Theorem 5.3. For any non-reduced Zn with α > 2, deg(u) = (α − 1)
n
α , ∀

u ∈ V (ZF(T (ΓN(Zn)))).

Proof. Let us consider the following two cases:
Case 1: When n is odd.
Let u ∈ ZF(T (ΓN(Zn))). This vertex will be adjacent to all those vertices

v ∈ ZF(T (ΓN(Zn))) that contain the elements of Zn excluded from u. The
number of choices for such v = (α − 1) × (α− 1)2 × (α− 1)2 × ...× (α− 1)2︸ ︷︷ ︸

β
2α

= (α− 1)× {(α− 1)2} β
2α = (α− 1)× (α− 1)

β
α = (α− 1)

α+β
α = (α− 1)

n
α .

Case 2: When n is even.
Here again, any vertex w of ZF(T (ΓN(Zn))), is adjacent to all those vertices

that contain the elements missing in w. The number of choices for such a vertex
= (α−1)×(α−1)×(α− 1)2 × (α− 1)2 × ...× (α− 1)2︸ ︷︷ ︸

β−α
2α

= (α−1)2×{(α−1)2}β−α2α =

(α− 1)2 × (α− 1)
β−α
α = (α− 1)2+β−α

α = (α− 1)
α+β
α = (α− 1)

n
α .

So in both cases, dim(u) = (α− 1)
n
α , ∀ u ∈ V (ZF(T (ΓN(Zn)))). �

Corollary 5.1. For any non-reduced Zn with α > 2, the total number of edges in
ZF(T (ΓN(Zn))) = (α)

n
α (α−1)

n
α

2
.
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The proof follows directly from theorem 5.2, theorem 5.3 and the Sum of
Degree theorem of graphs.

Theorem 5.4. For any non-reduced Zn with α > 2, let S1 and S2 be two vertices
of ZF(T (ΓN(Zn))) such that S2 = S1 + r, for some r(6= 0) ∈ N(Zn). Then S1 is
adjacent to S2.

Proof. Let S2 = S1 +r. Let S1 = {x1, x2, ..., xψ} and S2 = {x1 +r, x2 +r, ..., xψ+r},
where ψ = n(1− 1

α
). Then

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|
⇒ |S1 ∪ S2| = n(1− 1

α
) + n(1− 1

α
)− n(1− 2

α
)

⇒ |S1 ∪ S2| = 2n(1− 1
α

)− n(1− 1
α

)

⇒ |S1 ∪ S2| = n.
⇒ S1 ∪ S2 = Zn

and so by definition, S1 and S2 are adjacent. �

Theorem 5.5. For any non-reduced Zn with α > 2,

ZF(T (ΓN(Zn))) > γ(T (ΓN(Zn))).

Proof. By Theorem 4.1 [3], γ(T (ΓN(Zn))) = n1 = n
α
.

If possible, let ZF(T (ΓN(Zn))) ≤ γ(T (ΓN(Zn))).
⇒ n(1− 1

α
) ≤ n

α

⇒ 1− 1
α
≤ 1

α

⇒ α ≤ 2, a contradiction.
Therefore ZF(T (ΓN(Zn))) > γ(T (ΓN(Zn))). �

Theorem 5.6. For any non-reduced Zn with α > 2,
(i) ZF(T (ΓN(Zn))) is not a cycle.
(ii) ZF(T (ΓN(Zn))) is not a complete bipartite graph.

Proof.
(i) LetZF(T (ΓN(Zn))) be a cycle. Then deg(S) = 2 ∀ S ∈ V (ZF(T (ΓN(Zn)))).

But this is not possible for any value of n and α by theorem 5.3. Therefore
ZF(T (ΓN(Zn))) is not a cycle.

(ii) By theorem 5.12 (ii) (towards the end of this paper), since
gr(ZF(T (ΓN(Zn)))) = 3 for α > 2, so ZF(T (ΓN(Zn))) can never be a com-
plete bipartite graph. �
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Theorem 5.7. For any non-reduced Zn with α > 2,

(i) β0(ZF(T (ΓN(Zn)))) = (α)
n
α
−1.

(ii) γ(ZF(T (ΓN(Zn)))) = (α)
n
α
−1.

(iii) The total number of γ−sets and maximum independent sets of
ZF(T (ΓN(Zn))) = α.

(iv) ZF(T (ΓN(Zn))) is an excellent graph.

Proof.
(i) Let Aα−1 be the collection of all those vertices of ZF(T (ΓN(Zn))) that

contain the same (α − 1) nil elements of Zn, leaving out the nil element x1,
say. Then |Aα−1| = (α)

n
α
−1 and by definition, Aα−1 is an independent set. Also,

any vertex outside Aα−1 containing x1 is adjacent to at least one of the vertices
in Aα−1. Therefore Aα is the independent set of maximum cardinality and so
β0(ZF(T (ΓN(Zn)))) = (α)

n
α
−1.

(ii) Since the collection Aα−1 of sets as seen in (i) is also a dominating set of
minimum cardinality, so γ(ZF(T (ΓN(Zn)))) = (α)

n
α
−1.

(iii) From (i) and (ii), the total number of γ−sets and maximum independent
sets of ZF(T (ΓN(Zn))) = (α)

n
α

(α)
n
α−1 = α.

The result (iv) is obvious since each and every vertex of ZF(T (ΓN(Zn))) is a
part of a γ−set of ZF(T (ΓN(Zn))). �

Theorem 5.8. For any non-reduced Zn with α > 2, the graph ZF(T (ΓN(Zn))) is
never complete.

Proof. Let α > 2. Then (α− 1)
n
α − 1 < (α)

n
α ⇒ (α− 1)

n
α < (α)

n
α − 1⇒ deg(S) <

|V (ZF(T (ΓN(Zn))))|−1, ∀ S ∈ V (ZF(T (ΓN(Zn)))). Therefore ZF(T (ΓN(Zn)))

is not a complete graph.
Let α = 2. Then deg(S) = (α − 1)

n
α = 1 < 2

n
2 − 1 = |V (ZF(T (ΓN(Zn))))| − 1.

Therefore ZF(T (ΓN(Zn))) is not complete. �

Theorem 5.9. For any non-reduced Zn with α > 2, ZF(T (ΓN(Zn))) is Eulerian if
and only if n is odd.

Proof. The graph ZF(T (ΓN(Zn))) is Eulerian if and only if the degree of each of
its vertices is even⇔ (α− 1)

n
α is even⇔ α is odd⇔ n is odd. �

Theorem 5.10. For any non-reduced Zn with α > 2, ω(ZF(T (ΓN(Zn)))) = α.
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Proof. For any vertex v ∈ V (ZF(T (ΓN(Zn)))), the vertices v + N(Zn) are all
adjacent to each other. Since |N(Zn)| = α, so these vertices form the complete
subgraph Kα = A(say). Let r1 and r2 be two non-zero nil elements of Zn. Let
S1 = {x1, x2, x3..., xψ} ∈ A and let S2 = {x1 + r1, x2 + r1, x3 + r1, ..., xn

α
−1 +

r1, xn
α
, ..., xψ} ∈ V (ZF(T (ΓN(Zn)))) − A, where ψ = n(1 − 1

α
). Then ∃ a vertex

S3 = {x1 + (r2 − r1), x2 + (r2 − r1), ..., xn
α
−1 + (r2 − r1), xn

α
+ r2..., xψ + r2} ∈ A

such that S2 is adjacent to S3 but not to S1. This means that no vertex outside
the complete subgraph A is adjacent to all the vertices of A. Therefore Kα is
the largest complete subgraph of ZF(T (ΓN(Zn))) and so ω(ZF(T (ΓN(Zn)))) =

α. �

Theorem 5.11. For any non-reduced Zn with α > 2, χ(ZF(T (ΓN(Zn)))) = α.

Proof. Since the collection Aα−1 of vertices given in theorem 5.7 (i) is a max-
imum independent set with |Aα−1| = (α)

n
α
−1 and since Aα−1 is arbitrary, so

χ(ZF(T (ΓN(Zn)))) ≤ |V (ZF(T (ΓN (Zn))))|
(α)

n
α−1 = (α)

n
α

(α)
n
α−1 = α. Also since for any graph

X, χ(X) ≥ ω(X), so from theorem 4.3.3, χ(ZF(T (ΓN(Zn)))) = α. �

Corollary 5.2. For any non-reduced Zn with α > 2,

ω(ZF(T (ΓN(Zn)))) = χ(ZF(T (ΓN(Zn)))).

Theorem 5.12. For any non-reduced Zn with α > 2,
(i) diam(ZF(T (ΓN(Zn)))) = 2. Equivalently ZF(T (ΓN(Zn))) is connected.
(ii) gr(ZF(T (ΓN(Zn)))) = 3.

Proof.
(i) Let S1, S2 ∈ V (ZF(T (ΓN(Zn)))). If S1 ∪ S2 = Zn, then S1 is adjacent to S2

and so d(S1, S2) = 1. Let S1 = {x1, x2, ..., xψ} and S2 = {x1+r1, x2, ..., xψ}, where
ψ = n(1− 1

α
) and r1(6= 0) ∈ N(Zn). Since |S1 ∪ S2| = 2n(1− 1

α
)−{n(1− 1

α
)− 1}

= n − n
α

+ 1 < n for any α > 2, so S1 is not adjacent to S2. But there exists a
vertex S3 = {x1 + (r2 − r1), x2 + r2, ..., rψ + r2} ∈ V (ZF(T (ΓN(Zn)))) for some
r2( 6= 0) ∈ N(Zn) such that S1 − −S3 − −S2 is a 2-path in ZF(T (ΓN(Zn))).
Therefore diam(ZF(T (ΓN(Zn)))) = 2.

(ii) By theorem 5.10, for any α > 2, since ω(ZF(T (ΓN(Zn)))) = α > 2, so the
graph ZF(T (ΓN(Zn))) contains a triangle ∀ α > 2 and therefore
gr(ZF(T (ΓN(Zn)))) = 3. �
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A corollary of Euler’s polyhedron formula tells us that a planar graph G with
vertex set V (G) can have at most 3|V (G)| − 6 edges.

We shall use the contrapositive statement of this corollary to prove our next
result.

Theorem 5.13. For any non-reduced Zn with α > 2, ZF(T (ΓN(Zn))) is not a
planar graph.

Proof. From corollary 5.1, the number of edges of ZF(T (ΓN(Zn))) = (α)
n
α (α−1)

n
α

2
.

We have
3|V (ZF(T (ΓN(Zn))))|−6− (α)

n
α (α−1)

n
α

2
= (α)

n
α [6−36−(α)

n
α (α−1)

n
α ]

2
= −(α)

n
α [30+(α−1)

n
α ]

2
<

0

⇒ 3|V (ZF(T (ΓN(Zn))))| − 6 <total number of edges of ZF(T (ΓN(Zn))). So by
the corollary of Euler’s polyhedron formula, ZF(T (ΓN(Zn))) is not planar. �

Theorem 5.14. For any non-reduced Zn, if α = 2, then ZF(T (ΓN(Zn))) is the
disjoint union of (2)

n
2
−1 copies of K2’s.

Proof. It follows from theorem 5.3 that for α = 2, the degree of each ver-
tex of ZF(T (ΓN(Zn))) is one. So for each vertex u ∈ ZF(T (ΓN(Zn))), ∃ a
unique vertex v ∈ ZF(T (ΓN(Zn))) such that u is adjacent to v. Consequently
ZF(T (ΓN(Zn))) is the disjoint union of |V (ZF(T (ΓN (Zn))))|

2
, i.e. (2)

n
2
−1 K2’s. �

Corollary 5.3. For any non-reduced Zn, if α = 2, then ZF(T (ΓN(Zn))) is a forest.

Example 1. Figure 1 represents the zero forcing graph associated to the total graph
of Z8 (where α = 2) with respect to its nil ideal {0, 4}.

FIGURE 1. ZF(T (ΓN(Z8)))
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The following results follow directly from theorem 5.16.

Corollary 5.4. For any non-reduced Zn with α = 2,
(i) deg(S) = 1 ∀ S ∈ ZF(T (ΓN(Zn))).
(ii) ZF(T (ΓN(Zn))) is never Eulerian.
(iii) ZF(T (ΓN(Zn))) is always planar.
(iv) γ(ZF(T (ΓN(Zn)))) = Z(ZF(T (ΓN(Zn)))) = 2

n
2
−1.

(v) d(ZF(T (ΓN(Zn)))) = 2.
(vi) ZF(T (ΓN(Zn))) is domatically full.
(vii) ZF(T (ΓN(Zn))) is excellent.
(viii) diam(ZF(T (ΓN(Zn)))) = 1.
(ix) gr(ZF(T (ΓN(Zn)))) =∞.

Proof.
(iii) follows from corollary 5.3 since every forest is a planar graph.
(iv) For any non-reduced Zn with α = 2, since ZF(T (ΓN(Zn))) =

K2 ∪K2 ∪ ... ∪K2︸ ︷︷ ︸
(2)

n
2 −1

, so any γ−set of ZF(T (ΓN(Zn))) has cardinality

1 + 1 + · · · ,+1︸ ︷︷ ︸
(2)

n
2 −1

= (2)
n
2
−1.

Therefore γ(ZF(T (ΓN(Zn)))) = (2)
n
2
−1. Since the same set is also a zero

forcing set, so Z(ZF(T (ΓN(Zn)))) = (2)
n
2
−1.

(v) d(ZF(T (ΓN(Zn)))) = |V (ZF(T (ΓN (Zn))))|
γ(ZF(T (ΓN (Zn))))

= 2.
(vi) Since δ(ZF(T (ΓN(Zn)))) = 1 and d(ZF(T (ΓN(Zn)))) = 2 =

δ(ZF(T (ΓN(Zn)))) + 1, the result is obvious.
The proofs of (vii), (viii) and (ix) are trivial. �

Theorem 5.15. For any non-reduced Zn with α = 2, let S ∈ V (ZF(T (ΓN(Zn)))).
Then S is a zero forcing set of minimum cardinality if and only if xi +N(Zn) form
distinct cosets of Zn

N(Zn)
for each xi ∈ S.

Proof. By Corollary 5.4 (iv), since the minimum zero forcing sets of
ZF(T (ΓN(Zn))) are also γ−sets of ZF(T (ΓN(Zn))), the result follows from the-
orem 4.3 [3]. �
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