

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9443–9453 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.48

ZERO FORCING GRAPH ASSOCIATED TO THE TOTAL GRAPH OF \mathbb{Z}_n WITH RESPECT TO NIL IDEAL

ARIJIT MISHRA¹ AND KUNTALA PATRA

ABSTRACT. The total graph $T(\Gamma_N(\mathbb{Z}_n))$ of \mathbb{Z}_n with respect to its nil ideal $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 \equiv 0 \pmod{n}\}$ is a simple, undirected graph with vertex set \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$. In this paper, we introduce a new graph structure called a *Zero forcing graph* of $T(\Gamma_N(\mathbb{Z}_n))$, denoted by $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$, as a simple, undirected graph in which all the possible zero forcing sets of minimum cardinality of $T(\Gamma_N(\mathbb{Z}_n))$ are taken as vertices and any two distinct vertices S_1 and S_1 of this graph are adjacent if and only if $S_1 \cup S_2 = \mathbb{Z}_n$.

1. INTRODUCTION

The idea of the total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was first put forward by Anderson and Badawi [7] who defined it as a simple, undirected graph with vertex set R and any two distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$, where Z(R) denotes the set of all the zero-divisors of R.

In the year 2003, P. W. Chen [12] introduced a new class of a graph of a commutative ring R with vertex set R and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where N(R) denotes the set of all the nil elements of the ring R. This concept was further modified by Ai-Hua Li and

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C25, 05C69.

Key words and phrases. Total Graph, Nil Ideal, Zero Forcing Set, Zero Forcing Number.

Qi-Sheng Li [2] who defined it as an undirected, simple graph $\Gamma_N(R)$ having vertex set $Z_N(R)^* = \{x \in R^* \mid xy \in N(R) \text{ for some } y \in R^* = R - \{0\}\}$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$ or $yx \in N(R)$.

The total graph $T(\Gamma_N(\mathbb{Z}_n))$ of the non-reduced commutative ring \mathbb{Z}_n with respect to nil ideal, is a simple undirected graph with all the elements of \mathbb{Z}_n as vertices and two distinct vertices x and y are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$, where $N(\mathbb{Z}_n)$ denotes the set of all the nil elements of \mathbb{Z}_n , i.e. $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 = 0\}$.

The concept of a zero forcing set and a zero forcing number of a graph G, denoted by Z(G), was first introduced by the "AIM Minimum Rank- Special Graphs Work Group" in [1]. One can find extensive literature on zero forcing numbers in [1,4-6,8-11]. We shall briefly discuss the concept in the following section. In this paper, we introduce a new class of graphs called *zero forcing graphs* associated to $T(\Gamma_N(\mathbb{Z}_n))$ as a simple, undirected graph in which all the possible zero forcing sets of $T(\Gamma_N(\mathbb{Z}_n))$ are taken as vertices and any two distinct vertices S_1 and S_2 are adjacent if and only if $S_1 \cup S_2 = Z_n$. We denote this graph by $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$.

2. Preliminaries

The zero forcing process on a simple undirected graph G is defined as follows: Given a subset S of G such that each vertex in S is colored black while each vertex in $G \setminus S$ is colored white, a black vertex with exactly one white neighbor will force its white neighbor to become black. It is an iterative process that continues until all the vertices of G turn black. The set S is said to be a *zero forcing set* while the minimum number of vertices in such a zero forcing set is said to be the *zero forcing number* of the graph G and is denoted by Z(G).

A non-empty subset S of the set of all the vertices V of a graph G is said to be a *dominating set* if every vertex in V-S is adjacent to at least one vertex in S. The *domination number* γ of a graph G is defined to be the minimum cardinality of a dominating set in G and the corresponding dominating set is called a γ -set of G. A graph G is said to be *excellent* if for every vertex v of G, there exist a γ -set containing v. A set of vertices in a graph G is said to be *independent* if no two vertices in that set are adjacent. The maximum cardinality of an independent set of a graph G is called the *independence number* of the graph G and is denoted by

 $\beta_0(G)$. The independence domination number, denoted by i(G), is the minimum cardinality of an independent dominating set. A graph is said to be well-covered if every maximal independent set has the same size. Equivalently, a graph G is well-covered if $\beta_0(G) = i(G)$. The partition of the vertex set V(G) of a graph G into dominating sets is called a *domatic partition* of G. The maximum number of such partitions is called the *domatic number* of G and is denoted by d(G). A graph G is said to be *domatically full* if $d(G) = \delta(G) + 1$. For any graph G, the diameter of G, denoted by diam(G) is given by $diam(G) = sup\{d(x, y) : where$ x and y are distinct vertices of G and d(x, y) is the length of the shortest path joining x and y. The girth of the graph G, denoted by gr(G), is the length of the shortest cycle in G. If G contains no cycles, then $qr(G) = \infty$. The graph G is said to be *Eulerian* if and only if the degree of each of its vertices is even. A graph is said to be *planar* if it can be drawn in a plane without any two edges intersecting each other. The *clique number* of a graph G, denoted by ω (G), is the size of the largest complete subgraph of G. The chromatic number of a graph G, denoted by $\chi(G)$ is the least number of colors that can be assigned to the vertices of G in such a way that no two adjacent vertices are assigned the same color.

A ring R is said to be *non-reduced* if it contains at least one non-zero nil element. Otherwise it is said to be *reduced*.

3. The basic structure of $T(\Gamma_N(\mathbb{Z}_n))$

For any non-reduced \mathbb{Z}_n , the total graph $T(\Gamma_N(\mathbb{Z}_n))$ of \mathbb{Z}_n with respect to its nil ideal $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 \equiv 0 \pmod{n}\}$ is a simple, undirected graph having vertex set \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$.

Theorem 3.1. [3] Let \mathbb{Z}_n be non-reduced and let n_1 be the smallest non-zero nil element of \mathbb{Z}_n . Then the following conditions hold:

(1) If $|\mathbb{Z}_n|$ is odd, then $T(\Gamma_N(\mathbb{Z}_n)) = K_{\frac{n}{n_1}} \cup (\frac{n_1-1}{2}) K_{\frac{n}{n_1},\frac{n}{n_1}}$. (2) If $|\mathbb{Z}_n|$ is even, then $T(\Gamma_N(\mathbb{Z}_n)) = 2K_{\frac{n}{n_1}} \cup (\frac{n_1}{2} - 1) K_{\frac{n}{n_1},\frac{n}{n_1}}$.

4. Zero forcing set of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$

The zero forcing graph $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ of the total graph $T(\Gamma_N(\mathbb{Z}_n))$ is a simple, undirected graph in which all the possible zero forcing sets of $T(\Gamma_N(\mathbb{Z}_n))$ are taken as vertices and any two distinct vertices S_1 and S_2 are adjacent if and only if $S_1 \cup S_2 = \mathbb{Z}_n$.

Lemma 4.1. From the proof of Theorem 3.1 [3], it is easy to observe that for any odd n, each zero forcing set of $T(\Gamma_N(\mathbb{Z}_n))$ contains $(\frac{n}{n_1} - 1)$ elements of $N(\mathbb{Z}_n)$, $(\frac{n}{n_1} - 1)$ elements of each of the cosets $i + N(\mathbb{Z}_n)$ for $i = 1, 2, ..., \frac{n_1-1}{2}$ and $(\frac{n}{n_1} - 1)$ elements of each of the cosets $(n-i)+N(\mathbb{Z}_n)$. Also for any even n, each zero forcing set of $T(\Gamma_N(\mathbb{Z}_n))$ contains $(\frac{n}{n_1} - 1)$ elements of $N(\mathbb{Z}_n)$, $(\frac{n}{n_1} - 1)$ elements of the cosets $(n-i)+N(\mathbb{Z}_n)$. Also for any even n, each zero forcing set of $T(\Gamma_N(\mathbb{Z}_n))$ contains $(\frac{n}{n_1} - 1)$ elements of $N(\mathbb{Z}_n)$, $(\frac{n}{n_1} - 1)$ elements of the coset $(n-i)+N(\mathbb{Z}_n)$, $(\frac{n}{n_1} - 1)$ elements of each of the cosets $(n-i)+N(\mathbb{Z}_n)$ for $i = 1, 2, ..., \frac{n_1}{2} - 1$ and $(\frac{n}{n_1} - 1)$ elements of each of the cosets $(n-i) + N(\mathbb{Z}_n)$.

Throughout this paper, we denote $|N(\mathbb{Z}_n)|$ interchangeably by α and $\frac{n}{n_1}$ where n_1 is the smallest non-zero nil element of \mathbb{Z}_n . That is, $|N(\mathbb{Z}_n)| = \alpha = \frac{n}{n_1}$. Also, we use the notation β to denote the cardinality of the set $\mathbb{Z}_n \setminus N(\mathbb{Z}_n)$.

5. Graphical properties of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$

Theorem 5.1. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $Z(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = n(1 - \frac{1}{\alpha})$.

Proof. Let us consider the following two cases:

Case 1: When n is odd.

For any odd *n*, since $T(\Gamma_N(\mathbb{Z}_n)) = K_\alpha \cup (\frac{\beta}{2\alpha})K_{\alpha,\alpha}$, so the number of vertices in a zero forcing set of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality $= (\alpha - 1) + (2\alpha - 2).(\frac{\beta}{2\alpha})$ $= \alpha - 1 + \beta - \frac{\beta}{\alpha} = \alpha - 1 + n - \alpha - (\frac{n}{\alpha} - 1) = n(1 - \frac{1}{\alpha}).$ **Case 2:** When *n* is even.

For any even *n*, since $T(\Gamma_N(\mathbb{Z}_n)) = 2K_\alpha \cup (\frac{\beta-\alpha}{2\alpha})K_{\alpha,\alpha}$, so the number of vertices in a zero forcing set of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality $= (\alpha - 1) + (\alpha - 1) + (2\alpha - 2) \cdot (\frac{\beta-\alpha}{2\alpha}) = 2(\alpha - 1) + (\alpha - 1) \cdot (\frac{n}{\alpha} - 2) = 2(\alpha - 1) + n - 2\alpha - \frac{n}{\alpha} + 2$ $= 2\alpha - 2 + n - 2\alpha - \frac{n}{\alpha} + 2 = n(1 - \frac{1}{\alpha}).$

In both the cases,
$$Z(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = n(1-\frac{1}{\alpha}).$$

Theorem 5.2. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, the number of zero forcing sets of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality = the total number of vertices of = $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = (\alpha)^{\frac{n}{\alpha}}$.

Proof. Here again, let us consider the following two possible cases: **Case 1:** When *n* is odd.

For any odd value of n, since $T(\Gamma_N(\mathbb{Z}_n)) = K_\alpha \cup (\frac{\beta}{2\alpha})K_{\alpha,\alpha}$, so the total number of zero forcing sets of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality $=^{\alpha} C_{\alpha-1} \times \underbrace{^{\alpha}C_{\alpha-1} \times ^{\alpha}C_{\alpha-1}}_{=\alpha(\alpha^2)^{\frac{\beta}{2\alpha}}} = (\alpha)^{\frac{n}{\alpha}}$.

Case 2: When n is even.

For any even value of *n*, since $T(\Gamma_N(\mathbb{Z}_n)) = 2K_\alpha \cup (\frac{\beta-\alpha}{2\alpha})K_{\alpha,\alpha}$, so the total number of zero forcing sets of $T(\Gamma_N(\mathbb{Z}_n))$ of minimum cardinality $=^{\alpha} C_{\alpha-1} \times^{\alpha} C_{\alpha-1} \times \underbrace{\alpha C_{\alpha-1} \times^{\alpha} C_{\alpha-1}}_{\frac{\beta-\alpha}{2\alpha}} = \alpha^2 (\alpha^2)^{\frac{\beta-\alpha}{2\alpha}} = (\alpha)^{\frac{n}{\alpha}}.$

In both the cases, the total number of vertices of $= \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = (\alpha)^{\frac{n}{\alpha}}$.

Theorem 5.3. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $deg(u) = (\alpha - 1)^{\frac{n}{\alpha}}, \forall u \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))).$

Proof. Let us consider the following two cases:

Case 1: When n is odd.

Let $u \in \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$. This vertex will be adjacent to all those vertices $v \in \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ that contain the elements of \mathbb{Z}_n excluded from u. The number of choices for such $v = (\alpha - 1) \times (\alpha - 1)^2 \times (\alpha - 1)^2 \times ... \times (\alpha - 1)^2$

number of choices for such $v = (\alpha - 1) \times (\alpha - 1)^2 \times (\alpha - 1)^2 \times ... \times (\alpha - 1)^2$ = $(\alpha - 1) \times \{(\alpha - 1)^2\}^{\frac{\beta}{2\alpha}} = (\alpha - 1) \times (\alpha - 1)^{\frac{\beta}{\alpha}} = (\alpha - 1)^{\frac{\alpha + \beta}{\alpha}} = (\alpha - 1)^{\frac{n}{\alpha}}.$ Case 2: When *n* is even.

Here again, any vertex w of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$, is adjacent to all those vertices that contain the elements missing in w. The number of choices for such a vertex $= (\alpha - 1) \times (\alpha - 1) \times (\alpha - 1)^2 \times (\alpha - 1)^2 \times ... \times (\alpha - 1)^2 = (\alpha - 1)^2 \times \{(\alpha - 1)^2\}^{\frac{\beta - \alpha}{2\alpha}} = (\alpha - 1)^2 \times (\alpha - 1)^{\frac{\beta - \alpha}{\alpha}} = (\alpha - 1)^{2 + \frac{\beta - \alpha}{\alpha}} = (\alpha - 1)^{\frac{\alpha + \beta}{\alpha}} = (\alpha - 1)^{\frac{n}{\alpha}}.$ So in both cases, $dim(u) = (\alpha - 1)^{\frac{n}{\alpha}}, \forall u \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))).$

Corollary 5.1. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, the total number of edges in $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = \frac{(\alpha)^{\frac{n}{\alpha}}(\alpha-1)^{\frac{n}{\alpha}}}{2}$.

The proof follows directly from theorem 5.2, theorem 5.3 and the Sum of Degree theorem of graphs.

Theorem 5.4. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, let S_1 and S_2 be two vertices of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ such that $S_2 = S_1 + r$, for some $r(\neq 0) \in N(\mathbb{Z}_n)$. Then S_1 is adjacent to S_2 .

Proof. Let $S_2 = S_1 + r$. Let $S_1 = \{x_1, x_2, ..., x_{\psi}\}$ and $S_2 = \{x_1 + r, x_2 + r, ..., x_{\psi} + r\}$, where $\psi = n(1 - \frac{1}{\alpha})$. Then $|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$ $\Rightarrow |S_1 \cup S_2| = n(1 - \frac{1}{\alpha}) + n(1 - \frac{1}{\alpha}) - n(1 - \frac{2}{\alpha})$ $\Rightarrow |S_1 \cup S_2| = 2n(1 - \frac{1}{\alpha}) - n(1 - \frac{1}{\alpha})$ $\Rightarrow |S_1 \cup S_2| = n.$ $\Rightarrow S_1 \cup S_2 = \mathbb{Z}_n$

and so by definition, S_1 and S_2 are adjacent.

Theorem 5.5. For any non-reduced \mathbb{Z}_n with $\alpha > 2$,

$$\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) > \gamma(T(\Gamma_N(\mathbb{Z}_n))).$$

Proof. By Theorem 4.1 [3], $\gamma(T(\Gamma_N(\mathbb{Z}_n))) = n_1 = \frac{n}{\alpha}$. If possible, let $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) \leq \gamma(T(\Gamma_N(\mathbb{Z}_n)))$. $\Rightarrow n(1 - \frac{1}{\alpha}) \leq \frac{n}{\alpha}$ $\Rightarrow 1 - \frac{1}{\alpha} \leq \frac{1}{\alpha}$ $\Rightarrow \alpha \leq 2$, a contradiction. Therefore $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) \geq \alpha(T(\Gamma_N(\mathbb{Z}_n)))$

Therefore $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) > \gamma(T(\Gamma_N(\mathbb{Z}_n))).$

Theorem 5.6. For any non-reduced \mathbb{Z}_n with $\alpha > 2$,

(i) ZF(T(Γ_N(Z_n))) is not a cycle.
(ii) ZF(T(Γ_N(Z_n))) is not a complete bipartite graph.

Proof.

(i) Let $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ be a cycle. Then $deg(S) = 2 \forall S \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$. But this is not possible for any value of n and α by theorem 5.3. Therefore $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is not a cycle.

(ii) By theorem 5.12 (ii) (towards the end of this paper), since $gr(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 3$ for $\alpha > 2$, so $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ can never be a complete bipartite graph.

9448

9449

Theorem 5.7. For any non-reduced \mathbb{Z}_n with $\alpha > 2$,

- (i) $\beta_0(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (\alpha)^{\frac{n}{\alpha}-1}.$
- (*ii*) $\gamma(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (\alpha)^{\frac{n}{\alpha}-1}.$
- (*iii*) The total number of γ -sets and maximum independent sets of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = \alpha$.
- (*iv*) $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is an excellent graph.

Proof.

(i) Let $A_{\alpha-1}$ be the collection of all those vertices of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ that contain the same $(\alpha - 1)$ nil elements of \mathbb{Z}_n , leaving out the nil element x_1 , say. Then $|A_{\alpha-1}| = (\alpha)^{\frac{n}{\alpha}-1}$ and by definition, $A_{\alpha-1}$ is an independent set. Also, any vertex outside $A_{\alpha-1}$ containing x_1 is adjacent to at least one of the vertices in $A_{\alpha-1}$. Therefore A_{α} is the independent set of maximum cardinality and so $\beta_0(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (\alpha)^{\frac{n}{\alpha}-1}$.

(ii) Since the collection $A_{\alpha-1}$ of sets as seen in (i) is also a dominating set of minimum cardinality, so $\gamma(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (\alpha)^{\frac{n}{\alpha}-1}$.

(iii) From (i) and (ii), the total number of γ -sets and maximum independent sets of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = \frac{(\alpha)^{\frac{n}{\alpha}}}{(\alpha)^{\frac{n}{\alpha}-1}} = \alpha$.

The result (iv) is obvious since each and every vertex of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is a part of a γ -set of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$.

Theorem 5.8. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, the graph $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is never complete.

Proof. Let $\alpha > 2$. Then $(\alpha - 1)^{\frac{n}{\alpha}} - 1 < (\alpha)^{\frac{n}{\alpha}} \Rightarrow (\alpha - 1)^{\frac{n}{\alpha}} < (\alpha)^{\frac{n}{\alpha}} - 1 \Rightarrow deg(S) < |V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))| - 1, \forall S \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$. Therefore $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is not a complete graph.

Let $\alpha = 2$. Then $deg(S) = (\alpha - 1)^{\frac{n}{\alpha}} = 1 < 2^{\frac{n}{2}} - 1 = |V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))| - 1$. Therefore $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is not complete.

Theorem 5.9. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is Eulerian if and only if n is odd.

Proof. The graph $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is Eulerian if and only if the degree of each of its vertices is even $\Leftrightarrow (\alpha - 1)^{\frac{n}{\alpha}}$ is even $\Leftrightarrow \alpha$ is odd $\Leftrightarrow n$ is odd. \Box

Theorem 5.10. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $\omega(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \alpha$.

Proof. For any vertex $v \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$, the vertices $v + N(\mathbb{Z}_n)$ are all adjacent to each other. Since $|N(\mathbb{Z}_n)| = \alpha$, so these vertices form the complete subgraph $K_{\alpha} = A(\text{say})$. Let r_1 and r_2 be two non-zero nil elements of \mathbb{Z}_n . Let $S_1 = \{x_1, x_2, x_3..., x_{\psi}\} \in A$ and let $S_2 = \{x_1 + r_1, x_2 + r_1, x_3 + r_1, ..., x_{\frac{n}{\alpha}-1} + r_1, x_{\frac{n}{\alpha}}, ..., x_{\psi}\} \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) - A$, where $\psi = n(1 - \frac{1}{\alpha})$. Then \exists a vertex $S_3 = \{x_1 + (r_2 - r_1), x_2 + (r_2 - r_1), ..., x_{\frac{n}{\alpha}-1} + (r_2 - r_1), x_{\frac{n}{\alpha}} + r_2..., x_{\psi} + r_2\} \in A$ such that S_2 is adjacent to S_3 but not to S_1 . This means that no vertex outside the complete subgraph A is adjacent to all the vertices of A. Therefore K_{α} is the largest complete subgraph of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ and so $\omega(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \alpha$.

Theorem 5.11. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $\chi(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \alpha$.

Proof. Since the collection $A_{\alpha-1}$ of vertices given in theorem 5.7 (i) is a maximum independent set with $|A_{\alpha-1}| = (\alpha)^{\frac{n}{\alpha}-1}$ and since $A_{\alpha-1}$ is arbitrary, so $\chi(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) \leq \frac{|V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))|}{(\alpha)^{\frac{n}{\alpha}-1}} = \frac{(\alpha)^{\frac{n}{\alpha}}}{(\alpha)^{\frac{n}{\alpha}-1}} = \alpha$. Also since for any graph $X, \chi(X) \geq \omega(X)$, so from theorem 4.3.3, $\chi(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \alpha$.

Corollary 5.2. For any non-reduced \mathbb{Z}_n with $\alpha > 2$,

$$\omega(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \chi(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))).$$

Theorem 5.12. For any non-reduced \mathbb{Z}_n with $\alpha > 2$,

(i) $diam(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 2$. Equivalently $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is connected. (ii) $gr(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 3$.

Proof.

(i) Let $S_1, S_2 \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$. If $S_1 \cup S_2 = \mathbb{Z}_n$, then S_1 is adjacent to S_2 and so $d(S_1, S_2) = 1$. Let $S_1 = \{x_1, x_2, ..., x_{\psi}\}$ and $S_2 = \{x_1+r_1, x_2, ..., x_{\psi}\}$, where $\psi = n(1 - \frac{1}{\alpha})$ and $r_1 \neq 0 \in N(\mathbb{Z}_n)$. Since $|S_1 \cup S_2| = 2n(1 - \frac{1}{\alpha}) - \{n(1 - \frac{1}{\alpha}) - 1\}$ $= n - \frac{n}{\alpha} + 1 < n$ for any $\alpha > 2$, so S_1 is not adjacent to S_2 . But there exists a vertex $S_3 = \{x_1 + (r_2 - r_1), x_2 + r_2, ..., r_{\psi} + r_2\} \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$ for some $r_2(\neq 0) \in N(\mathbb{Z}_n)$ such that $S_1 - -S_3 - -S_2$ is a 2-path in $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$. Therefore $diam(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 2$.

(ii) By theorem 5.10, for any $\alpha > 2$, since $\omega(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \alpha > 2$, so the graph $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ contains a triangle $\forall \alpha > 2$ and therefore $gr(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 3.$

A corollary of Euler's polyhedron formula tells us that a planar graph G with vertex set V(G) can have at most 3|V(G)| - 6 edges.

We shall use the contrapositive statement of this corollary to prove our next result.

Theorem 5.13. For any non-reduced \mathbb{Z}_n with $\alpha > 2$, $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is not a planar graph.

Proof. From corollary 5.1, the number of edges of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) = \frac{(\alpha)^{\frac{n}{\alpha}}(\alpha-1)^{\frac{n}{\alpha}}}{2}$. We have

 $3|V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))| - 6 - \frac{(\alpha)^{\frac{n}{\alpha}}(\alpha-1)^{\frac{n}{\alpha}}}{2} = \frac{(\alpha)^{\frac{n}{\alpha}}[6-36-(\alpha)^{\frac{n}{\alpha}}(\alpha-1)^{\frac{n}{\alpha}}]}{2} = \frac{-(\alpha)^{\frac{n}{\alpha}}[30+(\alpha-1)^{\frac{n}{\alpha}}]}{2} < 0$

 $\Rightarrow 3|V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))| - 6 < \text{total number of edges of } \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))). \text{ So by}$ the corollary of Euler's polyhedron formula, $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is not planar. \Box

Theorem 5.14. For any non-reduced \mathbb{Z}_n , if $\alpha = 2$, then $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is the disjoint union of $(2)^{\frac{n}{2}-1}$ copies of K_2 's.

Proof. It follows from theorem 5.3 that for $\alpha = 2$, the degree of each vertex of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is one. So for each vertex $u \in \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$, \exists a unique vertex $v \in \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ such that u is adjacent to v. Consequently $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is the disjoint union of $\frac{|V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))|}{2}$, *i.e.* $(2)^{\frac{n}{2}-1} K_2$'s. \Box

Corollary 5.3. For any non-reduced \mathbb{Z}_n , if $\alpha = 2$, then $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is a forest.

Example 1. Figure 1 represents the zero forcing graph associated to the total graph of \mathbb{Z}_8 (where $\alpha = 2$) with respect to its nil ideal $\{0, 4\}$.

The following results follow directly from theorem 5.16.

Corollary 5.4. For any non-reduced \mathbb{Z}_n with $\alpha = 2$,

(i) $deg(S) = 1 \forall S \in \mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))).$ (ii) $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is never Eulerian. (iii) $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is always planar. (iv) $\gamma(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = Z(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 2^{\frac{n}{2}-1}.$ (v) $d(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 2.$ (vi) $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is domatically full. (vii) $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ is excellent. (viii) $diam(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 1.$ (ix) $gr(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \infty$.

Proof.

(iii) follows from corollary 5.3 since every forest is a planar graph.

(iv) For any non-reduced \mathbb{Z}_n with $\alpha = 2$, since $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))) =$ so any γ -set of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ has cardinality $\underbrace{K_2\cup K_2\cup\ldots\cup K_2}_{(2)^{\frac{n}{2}-1}},$ $\underbrace{1+1+\cdots,+1}_{(2)^{\frac{n}{2}-1}} = (2)^{\frac{n}{2}-1}.$

Therefore $\gamma(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (2)^{\frac{n}{2}-1}$. Since the same set is also a zero

forcing set, so $Z(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = (2)^{\frac{n}{2}-1}$. (v) $d(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = \frac{|V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))|}{\gamma(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))} = 2$. (vi) Since $\delta(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 1$ and $d(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) = 2$ $\delta(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))) + 1$, the result is obvious.

The proofs of (vii), (viii) and (ix) are trivial.

Theorem 5.15. For any non-reduced \mathbb{Z}_n with $\alpha = 2$, let $S \in V(\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n))))$. Then S is a zero forcing set of minimum cardinality if and only if $x_i + N(\mathbb{Z}_n)$ form distinct cosets of $\frac{\mathbb{Z}_n}{N(\mathbb{Z}_n)}$ for each $x_i \in S$.

Proof. By Corollary 5.4 (iv), since the minimum zero forcing sets of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$ are also γ -sets of $\mathcal{ZF}(T(\Gamma_N(\mathbb{Z}_n)))$, the result follows from theorem 4.3 [3].

References

- [1] F. BARIOLI, W. BARRETT, S. BUTLER, S. M. CIOABA, D. CVETKOVIC, S. M. FAL-LAT, C. GODSIL, W. HAEMERS, L. HOGBEN, R. MIKKELSON, S. NARAYAN, O. PRY-POROVA, I. SCIRIHA, W. SO., D. STEVANOVIC, H. VAN DER HOLST, K. VANDER MEULEN, A. W. WEHE, AIM MINIMUM RANK- SPECIAL GRAPHS WORK GROUP: Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl., 428 (2008), 1628-1648.
- [2] A.-H. LI, Q.-S. LI: A kind of Graph Structure on Von-Neumann Regular Rings, International Journal of Algebra, 4(6) (2010), 291-302.
- [3] A. MISHRA, K. PATRA: Domination and Independence Parameters in the Total Graph of Zn with respect to Nil Ideal, IAENG International journal of Applied Mathematics, **50**(3) (2020), 707-712.
- [4] C. X. KANG, E. YI: Probabilistic zero forcing in graphs, Bull. Inst. Combin. Appl., 67 (2013), 9-16.
- [5] E. YI: *On Zero Forcing Number of Permutation Graphs*, Combinatorial Optimization and Applications, **7402**
- [6] D. D. ROW: A technique for computing the zero forcing number of a graph with a cut-vertex, Linear Algebra Appl., **436** (2012), 4423-4432.
- [7] D. F. ANDERSON, A. BADAWI: The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706-2719.
- [8] D. F. ANDERSON, A. BADAWI: *The Generalized Total Graph of a Commutative Ring*, Journal of Algebra and Its Applications **12**(5) (2013), art.no. 1250212.
- [9] F. BARIOLI, W. BARRETT, S. M. FALLAT, H. T. HALL, L. HOGBEN, B. SHADER, P. VAN DEN DRIESSCHE, H. VAN DER HOLST: *Parameters related to tree-width, zero forcing, and maximum nullity of a graph*, J. Graph Theory, **72**(2) (2013), 146-177.
- [10] F. BARIOLI, W. BARRETT, S. M. FALLAT, H. T. HALL, L. HOGBEN, B. SHADER, P. VAN DEN DRIESSCHE, H. VAN DER HOLST: Zero forcing parameters and minimum rank problems, Linear Algebra Appl., 433 (2010), 401-411.
- [11] G. CHARTRAND, P. ZHANG: Chromatic Graph Theory, CRC Press, 2009.
- [12] P. W. CHEN: A kind of graph structure of rings, Algebra Colloq., 10(2) (2003), 229-238.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GAUHATI Email address: mishraarijit1012@gmail.com

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GAUHATI Email address: kuntalapatra@gmail.com