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FUZZY CONJUNCTIVE GRAMMAR AND FUZZY SYNCHRONIZED
ALTERNATING PUSHDOWN AUTOMATA

R. PATHRAKUMAR1 AND M. RAJASEKAR

ABSTRACT. Inspired by synchronized alternating pushdown automata (SAPDA)
in crisp case, we study the fuzzy synchronized alternating pushdown automata
(FSAPDA), which accept the fuzzy conjunctive language (FCL) generated by
fuzzy conjunctive grammar (FCG).

1. INTRODUCTION

Conjunctive grammars (CG) was introduced by Okhotin [23]. Conjunctive
grammars can be naturally considered as an extension of context-free grammars
equipped with an explicit intersection operation. The generative capacity of con-
junctive grammars covers some important non context-free language constructs,
such as {anbncn/n ≥ 0}, {ambncmdn/m, n ≥ 0} and {wcw/w ∈ {a, b}∗},where
the latter is known to be not in the intersection closure of context-free lan-
guages [28]. The language of all computations of any given Turing machine is
also known to be conjunctive, which has certain implications on undecidability
and descriptional complexity [23].

Alternating automata models were first introduced by Chandra, et.al [7]. In
these models, computations alternate between existential and universal modes
of acceptance. Thus, for a word to be accepted it must meet both disjunctive
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and conjunctive conditions. In the case of alternating finite state automata and
alternating Turing machines, the alternating models have been shown to be
equivalent in expressive power to their non-alternating counterparts [7].

Alternating pushdown automata (APDA) were also considered in [7] and
were further explored in [17]. Like conjunctive grammars, APDA add the power
of intersection over context-free languages. Therefore, in contrast with finite
automata and Turing machines, here alternation increases the expressiveness of
the model. In fact, APDA accept exactly the exponential-time languages, [17],
and are thus too strong to be a counterpart for CG.

A synchronized version of alternating finite state automata was introduced
in [33] and further explored and refined in [13]. Synchronized alternating
pushdown automata (SAPDA) was introduced by Aizikowitz and Kaminski [1].
The correspondence between conjunctive grammars and synchronized alternat-
ing pushdown automata shown by Aizikowitz and Kaminski in [4].

The mathematical formulation of fuzzy automata was proposed by Wee in
1967 [31]. Thereafter, there were a considerable number of authors having
contributed to this field such as Mordeson, Malik [22], and others [6,14,19,21,
24–26,29,32,34]. Notably, fuzzy automata have been used to wast water treat-
ment, color sequence of eye detection, fire-flame detection, VHDL-framework
modeling [8,11,27,30]. In recent years their application have been further ex-
tended to include parallel processing, image generation and compression, type
theory for object-oriented languages, DNA computing, etc.

Fuzzy grammars and fuzzy languages were first discussed by Lee and Zadeh
[15]. Many researchers have then contributed in developing the fuzzy theory of
grammars from different angles [5, 9, 10, 19, 20]. Lee and Zadeh have proved
that the context sensitive fuzzy grammar is always recursive. They have also
obtained the Chomsky and the Greibach normal form for a given fuzzy context
free grammar. Gerla [9] established that, a fuzzy language is recursive if and
only if it is generated by a fuzzy grammar. Generalization of fuzzy grammar
namely L-grammars was studied mainly by Li and Pedrycz [18]. Lan and Zhi-
wen [16] have discussed a relationship between a fuzzy grammar and a fuzzy
finite automaton. Malik and Mordeson [16] have introduced a max-min fuzzy
language and find a fuzzy automaton that generates this language. Asveld [2,3]
generalized fuzzy context free grammar and used them to model grammatical
errors occurs in robust recognizing and parsing algorithm.
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The remainder of this paper is organized as follows: In Setion 2 we study
the fuzzy conjunctive grammars (FCG) and their languages. In Setion 3 we
study the fuzzy synchronized alternating pushdown automata (FSAPDA) and
their languages. In Setion 4 our main aim is to study the equivalence between
FSAPDA and FCG: theoretically we present this fact from FCG to FSAPDA and
from FSAPDA to FCG.

2. FUZZY CONJUNCTIVE GRAMMAR

Fuzzy conjunctive grammars can be naturally considered as an extension of
fuzzy context-free grammars equipped with an explicit intersection operation.

Definition 2.1. A fuzzy conjunctive grammar is a quadruple G = (V,Σ, P, S),
where

(1) V is a finite set of non-terminal symbol(Variables)
(2) Σ is a finite set of terminal symbols disjoint from V
(3) S ∈ V is the designated start symbols
(4) P is a finite set of production rules of the form

A
r−→ (α1/r1& . . .&αn/rn),

where A ∈ V , αi ∈ (V ∪ Σ)∗, for i = 1, 2, . . . , n and r = min{r1, . . . , rn},
r ∈ (0, 1] . If n = 1 we write it as A r→ α1 and call it an fuzzy context-free
grammar.

Definition 2.2. Let {G=(V, Σ, P, S)} be a fuzzy conjunctive grammar. Then the
set

µ(L,G) = {(w, ρ)|w ∈ Σ∗, ρ = max{r|S r
=⇒ (w/r1& . . .&w/rn)}}

is called fuzzy conjunctive language generated by G with membership grade ρ,
where “max" is taken over all derivation chains of S to w and r ∈ (0, 1].

Example 1. The following fuzzy conjunctive grammar G = (V,Σ, P, S) generates
the fuzzy non context-free language {(anbncn, r)|n = 1, 2, . . . }, where

(1) V = {S,A,B,C,D},
(2) Σ = {a, b, c}, and
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(3) The production P defined as

S
0.4−→ (A/0.7&C/0.4),

A
0.1−→ aA,

A
0.2−→ B,

B
0.3−→ bBc,

B
0.4−→ ε,

C
0.5−→ Cc,

C
0.6−→ D,

D
0.7−→ aDb,

D
0.8−→ ε.

The word w = aabbcc is generated by FCG through the following chain of
derivations:

S
0.4

=⇒∗ (A/0.7&C/0.4)
0.1

=⇒∗ (aA/0.1&Cc/0.5)
0.1

=⇒∗ (aaA/0.1&Ccc/0.5)
0.2

=⇒∗ (aaB/0.2&Dcc/0.6)
0.3

=⇒∗ (aabBc/0.3&aDbcc/0.7)
0.3

=⇒∗ (aabbBcc/0.3&aaDbbcc/0.7)
0.4

=⇒∗ (aabbcc/0.4&aabbcc/0.8)

S
r=0.1
=⇒ aabbcc,

where r = min{0.4, 0.1, 0.1, 0.2, 0.3, 0.3, 0.4} = 0.1 and r ∈ (0, 1].
Hence, (aabbcc, 0.1) ∈ µ(L,G), it means that, the word aabbcc generated by G

with membership grade 0.1. Therefore, µ(L,G) = {(anbncn, 0.1)|n = 1, 2, . . . }.



FUZZY CONJUNCTIVE GRAMMAR AND FUZZY SYNCHRONIZED ALTERNATING AUTOMATA 9467

3. FUZZY SYNCHRONIZED ALTERNATING PUSHDOWN AUTOMATA

A fuzzy synchronized alternating pushdown automata can be naturally con-
sidered as an extension of fuzzy pushdown automata equipped with an explicit
intersection operation.

Definition 3.1. A fuzzy synchronized alternating pushdown automata is a septuple
M = (Q,Σ,Γ, δ, q0, Z0, F ), where

(1) Q is a finite set of states,
(2) Σ is a input alphabet,
(3) Γ is the stack alphabet,
(4) q0 ∈ Q is the initial state,
(5) Z0 ∈ Γ is the initial stack symbol,
(6) F ⊆ Q is a final state,
(7) δ is mapping from Q× (Σ ∪ {ε})× Γ to finite fuzzy subset of

((q1, α1)/r1 ∧ · · · ∧ (qn, αn)/rn)/r, where r = min{r1, . . . , rn} and r ∈
(0, 1];
If n = 1, then FSAPDA is called a standard FPDA.

Definition 3.2. Let M = (Q,Σ,Γ, δ, q0, Z0) be an FSAPDA. We define the relation

yields in one step on the configurations of M , denoted by
r

`, as follows.

(1) If δ(q, σ, Z) = (q1, γ1)/r, then (q, σω, Zγ)
r

`∗ (q1, ω, γ1γ),
(2) If δ(q, σ, Z) = ((q1, γ1)/r1 ∧ · · · ∧ (qn, γn)/rn)/r, then

(q, σω, Zγ)
r

`∗ (((q1, w, γ1)/r1 ∧ · · · ∧ (qn, ω, γn)/rn)γ), n ≥ 2, and

(3) (((q, ω, ε)/r1 ∧ · · · ∧ (q, w, ε)/rn)γ)
r

`∗ (q, ω, γ),

where σ ∈ Σ ∪ {ε}, γ ∈ Γ∗, r = min{r1, . . . , rn}, and r ∈ (0, 1].

Definition 3.3. Let M = (Q,Σ,Γ, δ, q0, X0, F ) be an FAPDA, then the language
accepted by M , by final state is defined as

µ(L,M) = {(w, ρ)|w ∈ Σ∗, ρ = max{r|(q0, w, Z0)
r

`∗ ((q, ε, γ1)/r1 ∧ . . .

∧(q, ε, γn)/rn), q ∈ F}},

and another way defined by empty stack as

µ(L,M) = {(w, ρ)|w ∈ Σ∗, ρ = max{r|(q0, w, Z0)
r

`∗ ((q, ε, ε)/r1 ∧ . . .

∧(q, ε, ε)/rn), q ∈ Q}},
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for any input string w ∈ Σ∗.

Example 2. The FSAPDA M = (Q,Σ,Γ, δ, q0, Z0) defined below accepts the fuzzy
non-context free language {(|w|a = |w|b = |w|c, r)|w ∈ Σ}, where

(1) Q = {q0, q1, q2},
(2) Σ = {a, b, c},
(3) Γ = {a, b, c, Z0}, and
(4) δ is defined as

δ(q0, ε, Z0) = {((q1, Z0)/0.4 ∧ (q2, Z0)/0.7)/0.4},

δ(q1, σ, Z0) = (q1, σZ0)/0.1, σ ∈ {a, b}

δ(q2, σ, Z0) = (q2, σZ0)/0.2, σ ∈ {b, c}

δ(q1, σ, σ) = (q1, σσ)/0.3, σ ∈ {a, b}

δ(q2, σ, σ) = (q2, σσ)/0.4, σ ∈ {b, c}

δ(q1, σ
′, σ′′) = (q1, ε)/0.1, (σ′, σ′′) ∈ {(a, b), (b, a)}

δ(q2, σ
′, σ′′) = (q2, ε)/0.2, (σ′, σ′′) ∈ {(b, c), (c, b)}

δ(q1, c,X) = (q1, X)/0.5, X ∈ {Z0, a, b}

δ(q2, a,X) = (q2, X)/0.6, X ∈ {Z0, b, c}

δ(q1, ε, Z0) = (q0, ε)/0.7,

δ(q2, ε, Z0) = (q0, ε)/0.4.

The word abc is accepted by FSAPDA M through the following chain of
moves:

(q0, abc, Z0)
0.4

`∗ (q1, abc, Z0)/0.4 ∧ (q2, abc, Z0)/0.7
0.1

`∗ (q1, bc, aZ0)/0.1 ∧ (q2, bc, Z0)/0.6
0.1

`∗ (q1, c, Z0)/0.1 ∧ (q2, c, bZ0)/0.2
0.2

`∗ (q1, ε, Z0)/0.5 ∧ (q2, ε, Z0)/0.2
0.4

`∗ (q0, ε, ε)/0.7 ∧ (q0, ε, ε)/0.4
r=0.1

` (q0, ε, ε),
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where r = min{0.4, 0.1, 0.1, 0.2, 0.4} = 0.1. Hence, (abc, 0.1) ∈ µ(L,M), it means
that, the word abc accepted byM with membership grade 0.1. Therefore µ(L,M) =

{(|w|a = |w|b = |w|c, 0.1) | w ∈ Σ}.

4. EQUIVALENCE OF FUZZY CONJUNCTIVE GRAMMAR AND FUZZY

SYNCHRONIZED ALTERNATING PUSHDOWN AUTOMATA

Here, we study equivalence between FSAPDA and FCG: theoretically, we pre-
sent this fact from FCG to FSAPDA and from FSAPDA to FCG.

4.1. Construction. Let G = (V,Σ, P, S) be a FCG. Construct the single-state FS-
APDA M = ({q},Σ, V ∪ Σ, δ, q, S) that accepts µ(L,G) by empty stack, where
transition function δ is defined by three rules

(1) For each variable A,

δ(q, ε, A) = {(q, α)/r, if A r−→ α, is a production of P},

(2) For each variable A,

δ(q, ε, A) = {((q, α1)/r1 ∧ · · · ∧ (q, αn)/rn)/r, if A r−→ (α1/r1& . . .&αn/rn),

is a production of P}, n ≥ 2

(3) For each terminal σ,

δ(q, σ, σ) = (q, ε)/1,

where A ∈ V , q ∈ Q, σ ∈ Σ, and α, α1 . . . , αn ∈ (V ∪ Σ)∗, r = min{r1, . . . , rn},
r ∈ (0, 1].

Theorem 4.1. Let γ ∈ (V ∪ Σ)∗, w ∈ Σ∗, q ∈ Q. Then γ
r

=⇒∗ w, if, and only if,

(q, w, γ)
r

`∗ (q, ε, ε), where r ∈ (0, 1].

Proof. Proof of the “only if" part. The proof is by induction on the number of
proper conjunctive rules applied in the derivation.

Basis: Assume that no proper fuzzy conjunctive rule was applied in the

derivation γ
r

=⇒∗w. Let γ = Y1Y2 . . . Ym and let w = w1w2 . . . wm, where Yj
rj

=⇒∗

wj, j = 1, 2, . . . ,m. Then

(q, wj, Yj)
rj

`∗ (q, ε, ε), j = 1, 2, . . . ,m.(4.1)
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If Yj ∈ Σ and wj = Yj, then (4.1) follows by the transition δ(q, Yj, Yj) = (q, ε)/1.
Now, by (4.1),

(q, w, γ) = (q, w1w2 . . . wm, Y1Y2 . . . Ym)
r1
`∗ (q, w2w3 . . . wm, Y2Y3 . . . Ym)
r2
`∗ (q, w3w4 . . . wm, Y3Y4 . . . Ym)

...
rm−1

`∗ (q, wm, Ym)
rm
`∗ (q, ε, ε)

(q, w, γ)
r

` (q, ε, ε),

where r = min{r1, . . . , rm} and r ∈ (0, 1].

Induction step : Assume the result is true for derivations with up to k appli-

cations of proper fuzzy conjunctive rules. Let γ
r

=⇒∗w be a derivation with k+1
applications of proper fuzzy conjunctive rules.
Let w = uvt, where u, v, t ∈ Σ∗. There is no proper fuzzy conjunctive rules was

applied in the derivation γ
ru

=⇒∗ uAα. That is, γ = γ′Aα, where γ′
ru

=⇒∗ u. Each

of the derivation αi

rvi
=⇒∗ v, i = 1, 2, . . . , n and α

rt
=⇒∗ t has at most k applications

of proper conjunctive rules. Therefore, the derivation is of the form

γ = γ′Aα
ru

=⇒∗ uAα
ru=⇒ u(α1/rv1& . . .&αn/rvn)α
rv

=⇒∗ u(v/rv1& . . .&v/rvn)α
rv=⇒ uvα, where rv = min{rv1 , . . . , rvn}
rt

=⇒∗ uvt

γ
r

=⇒ w,

where r = min{ru, rv, rt} and r ∈ (0, 1].

The derivation γ′
ru

=⇒∗ u implies that, (q, u, γ′)
ru
`∗ (q, ε, ε). Each of the derivation

αi

rvi
=⇒∗ v, i = 1, 2, . . . , n, has atmost k application of proper fuzzy conjunctive

rule. Thus, by induction hypothesis, (q, v, αi)
rvi
`∗ (q, ε, ε), i = 1, 2, . . . ,m. Sim-

ilarly, the derivation α
rt

=⇒∗ t implies that, (q, t, α)
rt
`∗ (q, ε, ε). Combining the
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above computations of M we obtain

(q, uvt, γ) = (q, uvt, γ′Aα)
ru
`∗ (q, vt, Aα)
ru
` ((q, vt, α1)/rv1 ∧ · · · ∧ (q, vt, αn)/rvn)α
rv
`∗ ((q, t, ε)/rv1 ∧ · · · ∧ (q, t, ε)/rvn)α
rv
` (q, t, α), where rv = min{rv1 , . . . , rvn}
rt
`∗ (q, ε, ε)

(q, uvt, γ)
r

` (q, ε, ε),

where r = min{ru, rv, rt} and r ∈ (0, 1].

Proof of the “if" part. The proof is by induction on the number of proper
conjunctive transitions applied in the computation.

Basis: Assume that no proper fuzzy conjunctive transition was applied in the

computation (q, w, γ)
r

`∗ (q, ε, ε). Let γ = Y1Y2 . . . Ym and let w = w1w2 . . . wm.
After reading wj, j = 1, 2, . . .m− 1 and Yj+1 is exposed as the top symbol in the
stack for the first time. It immediately follows from the definition of wj, that

(q, wj, Yj)
rj

`∗ (q, ε, ε), j = 1, 2, . . . ,m. Therefore,

Yj
rj

=⇒∗ wj, j = 1, 2, . . . ,m(4.2)

If Yj ∈ Σ, then by the definition of δ, wj = Yj and (4.2) is Yj
1

=⇒(0) Yj. Now, by
(4.2),

γ = Y1Y2 . . . Ym
r1

=⇒∗ w1Y2Y3 . . . Ym
r2

=⇒∗ w1w2Y3Y4 . . . Ym
...
rm

=⇒∗ w1w2 . . . wm.

γ
r

=⇒ w,

where r = min{r1, . . . , rm} and r ∈ (0, 1].

Induction step: Assume the result is true for computation with up to k proper

fuzzy conjunctive transition. Let (q, w, γ)
r

`∗ (q, ε, ε), be a computation with k+1

proper conjunctive transition.
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Let w = uvt, where u, v, t ∈ Σ∗. There is no proper fuzzy conjunctive transi-

tion was applied in the computation (q, w, γ) = (q, uvt, γ)
ru
`∗ (q, vt, Aα). That is,

γ = γ′Aα, where (q, u, γ′)
ru
`∗ (q, ε, ε). Each of the computations (q, v, αi)

rvi
`∗ (q, ε,

ε), i = 1, 2, . . . , n and (q, t, α)
rt
`∗ (q, ε, ε). Therefore, the computation is of the

form

(q, w, γ) = (q, uvt, γ) = (q, uvt, γ′Aα)
ru
`∗ (q, vt, Aα)
ru
` ((q, vt, α1)/rv1 ∧ · · · ∧ (q, vt, αn)/rvn)α
rv
`∗ ((q, t, ε)/rv1 ∧ · · · ∧ (q, t, ε)/rvn)α,

where rv = min{rv1 , . . . , rvn}
rv
` (q, t, α)
rt
`∗ (q, ε, ε)

(q, uvt, γ)
r

` (q, ε, ε),

where r = min{ru, rv, rt} and r = (0, 1].

The computation (q, u, γ′)
ru
`∗ (q, ε, ε) implies that γ′

ru
=⇒∗ u. Each of the com-

putations (q, v, αi)
rvi
`∗ (q, ε, ε), i = 1, 2, . . . , n has at most k applications of proper

fuzzy conjunctive transition. Thus, by induction hypothesis, αi

rvi
=⇒∗ v, i = 1, 2,

. . . , n. Similarly the computation (q, t, α)
rt
`∗ (q, ε, ε) implies that α

rt
=⇒∗ t. Com-

bining the above derivations of G we obtain

γ = γ′Aα
ru

=⇒∗ uAα
ru=⇒ u(α1/rv1& . . .&αn/rvn)α,
rv

=⇒∗ u(v& . . .&v)α, where rv = min{rv1 , . . . , rvn}
rv=⇒ uvα
rt

=⇒∗ uvt

γ
r

=⇒ w,

where r = min{ru, rv, rt} and r ∈ (0, 1]. The proof is complete. �

4.2. Construction. LetM = (Q,Σ,Γ, δ, q0, Z0) be an FSAPDA. Construct the FCG
G = (V,Σ, P, S), where

- V = Q× Γ×Q ∪ {S}, S /∈ Q× Γ×Q, and
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- P consists of the following rules:

(1) S 1−→ [q0, Z0, p], for all p ∈ Q,
(2) [q, Y, p]

r−→ σ[q1, Y1, q2] . . . [qm, Ym, p], for all σ ∈ Σ ∪ {ε}, all p ∈ Q, all or-
dinary transitions δ(q, σ, Y ) = (q1, Y1 . . . Ym)/r, and all choices of q2, . . . , qm
∈ Q and Y, Y1 . . . , Ym ∈ Γ,

(3) [q, Y, p]
r−→ ([q1, Y1, p]/r1& . . .&[qn, Yn, p]/rn), for all p ∈ Q and all proper

conjunctive transitions δ(q, ε, Y ) = ((q1, Y1)/r1 ∧ · · · ∧ (qn, Yn)/rn)/r,
where r = min{r1, . . . , rn} and r ∈ (0, 1].

Lemma 4.1. Let m ≥ 1, p, q, q1, . . . , qm ∈ Q, Y, Y1, . . . , Ym ∈ Γ∗, and u ∈ Σ∗.

If, [q, Y, p]
ru

=⇒∗ u[q1, Y1, q2] . . . [qm, Ym, p], then

(q, u, Y )
ru

`∗ (q1, ε, Y1 . . . Ym), where ru ∈ (0, 1].

Lemma 4.2. Let m ≥ 1, q, q1 ∈ Q, Y, Y1, . . . , Ym ∈ Γ∗, u ∈ Σ∗.

If (q, u, Y )
ru

`∗ (q1, ε, Y1 . . . Ym),

then for all p, q1, q2, q3, . . . , qm ∈ Q,

[q, Y, p]
ru

=⇒∗ u[q1, Y1, q2] . . . [qm, Ym, p], where ru ∈ (0, 1].

Theorem 4.2. Let p, q ∈ Q, Y ∈ Γ∗, and w ∈ Σ∗, then

[q, Y, p]
r

=⇒∗ w(4.3)

if and only if

(q, w, Y )
r

`∗ (p, ε, ε), where r ∈ (0, 1].(4.4)

Proof. Proof of the “only if”part. The proof is by induction on the number of
proper fuzzy conjunctive rules applied in the derivation.

Basis: If no proper fuzzy conjunctive rule was applied in the derivation (4.3),
then (4.4) is by the “only if”part of Theorem 4.1 [12].

Induction Step: Assume the implication holds for derivations with up to k

applications of proper fuzzy conjunctive rules. Let [q, Y, p]
r

=⇒∗w be a derivation
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with k + 1 applications of proper fuzzy conjunctive rule. Let w = uvt1t2 . . . tm,
where u, v, t1, . . . , tm ∈ Σ∗. Each of the derivations

[pi, Xi, q1]
rvi

=⇒∗ v, for each i = 1, 2, . . . , n;

[qj, Yj, qj+1]
rtj

=⇒∗ tj, for each j = 1, 2, . . . ,m− 1;

and [qm, Ym, p]
rtm

=⇒∗tm,

has at most k applications of proper conjunctive rules. Hence, the derivation is
of the form

[q, Y, p]
ru

=⇒∗ u[q′, X, q1][q1, Y1, q2] . . . [qm, Ym, p]
ru=⇒ u([p1, X1, q1]/rv1& . . .&[pn, Xn, q1]/rvn)[q1, Y1, q2] . . . [qm, Ym, p]
rv

=⇒∗ u(v& . . .&v)[q1, Y1, q2] . . . [qm, Ym, p],

where rv = min{rv1 , rv2 , . . . , rvn}
rv=⇒ uv[q1, Y1, q2] . . . [qm, Ym, p]
rt1

=⇒∗ uvt1[q2, Y2, q3] . . . [qm, Ym, p]

...
rt

=⇒∗ uvt1 . . . tm, where rt = min{rt1 , rt2 , . . . , rtm}
r

=⇒∗ w,

where r = min{ru, rv, rt} and r ∈ (0, 1].
There is no proper fuzzy conjunctive rule was applied in the derivation

[q, Y, p]
ru

=⇒∗ u[q′, X, q1][q1, Y1, q2] . . . [qm, Ym, p].

Therefore, by Lemma 4.1 ,

(q, u, Y )
ru

`∗ (q′, ε,XY1 . . . Ym).(4.5)

Since, by

ru=⇒ u([p1, X1, q1]/rv1& . . .&[pn, Xn, q1]/rvn)[q1, Y1, q2] . . . [qm, Ym, p],

thus

[q′, X, q1]
rv−→ ([p1, X1, q1]/rv1& . . .&[pn, Xn, q1]/rvn) ∈ P,
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by the Construction 4.1 ,

δ(q′, ε,X) = ((p1, X1)/rv1 ∧ · · · ∧ (pn, Xn)/rvn)/rv,(4.6)

Therefore, by the induction hypothesis, for each of the derivations

[pi, Xi, q1]
rvi

=⇒∗ v, implies that

(pi, v,Xi)
rvi

`∗ (q1, ε, ε), for each i = 1, 2, . . . , n.(4.7)

Similarly, [qj, Yj, qj+1]
rtj

=⇒∗ tj, implies that

(qj, tj, Yj)
rtj

`∗ (qj+1, ε, ε), for each j = 1, 2, . . . ,m− 1;(4.8)

and [qm, Ym, p]
rtm

=⇒∗ tm, implies that

(qm, tm, Ym)
rtm

`∗ (p, ε, ε).(4.9)

Therefore, the computation is of the form

(q, w, Y ) = (q, uvt1 . . . tm, Y )
ru

`∗(q′, vt1 . . . tm, XY1 . . . Ym), since (4.5)
ru
`((p1, vt1 . . . tm, X1)/rv1 ∧ . . .

∧(pn, vt1 . . . tm, Xn)/rvn)(Y1 . . . Ym), since (4.6)
rv

`∗((q1, t1 . . . tm, ε)/rv1 ∧ . . .

∧(q1, t1 . . . tm, ε)/rvn)(Y1 . . . Ym), since (4.7)
rv
`(q1, t1 . . . tm, Y1 . . . Ym), where rv = min{rv1 , rv2 , . . . , rvn},
rt1

`∗(q2, t2 . . . tm, Y2 . . . Ym), since (4.8)

...
rtm−1

`∗ (qm, tm, Ym), since (4.8)
rtm

`∗ (p, ε, ε), since (4.9)
rt
`(p, ε, ε), where rt = min{rt1 , rt2 , . . . , rtm}

(q, w, Y )
r

`∗(p, ε, ε),

r = min{ru, rv, rt} and r ∈ (0, 1].
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Proof of the “if”part of proposition. The proof is by induction on the number
of proper fuzzy conjunctive transitions applied in the computation.

Basis: If no proper fuzzy conjunctive transition was applied in the computa-

tion (q, w, Y )
r

`∗ (p, ε, ε), then (4.3) is by the “if”part of Theorem 4.1 [12].

Induction step: Assume the implication holds for computations up to k proper

fuzzy conjunctive transitions. Let (q, w, Y )
r

`∗ (p, ε, ε) be a computation with
k + 1 proper fuzzy conjunctive transitions. Let w = uvt1t2 . . . tm, where u, v, t1,
t2, . . . , tm ∈ Σ∗. Each of the computations

(pi, v,Xi)
rvi

`∗ (q1, ε, ε), for each i = 1, 2, . . . , n;

(qj, tj, Yj)
rtj

`∗ (qj+1, ε, ε), for each j = 1, 2, . . . ,m− 1, and

(qm, tm, Ym)
rtm
`∗ (p, ε, ε),

has at most k applications of proper conjunctive transitions. Hence, the compu-
tation is of the form

(q, w, Y ) = (q, uvt1 . . . tm, Y )
ru

`∗(q′, vt1 . . . tm, XY1 . . . Ym)
ru
`((p1, vt1 . . . tm, X1)/rv1 ∧ . . .

∧(pn, vt1 . . . tm, Xn)/rvn)(Y1 . . . Ym)
rv

`∗((q1, t1 . . . tm, ε)/rv1 ∧ . . .

∧(q1, t1 . . . tm, ε)/rvn)(Y1 . . . Ym)
rv
`(q1, t1 . . . tm, Y1 . . . Ym), where rv = min{rv1 , rv2 , . . . , rvn}
rt1

`∗(q2, t2 . . . tm, Y2 . . . Ym)

...
rtm−1

`∗ (qm, tm, Ym)
rtm

`∗ (p, ε, ε)
rt
`(p, ε, ε), where rt = min{rt1 , rt2 , . . . , rtm}

(q, w, Y )
r

`∗(p, ε, ε)
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r = min{ru, rv, rt} and r ∈ (0, 1].
There is no proper fuzzy conjunctive rule was applied in the computation

(q, uvt1 . . . tm, Y )
ru

`∗ (q′, vt1t2 . . . tm, XY1 . . . Ym).

Therefore, by Lemma 4.2,

[q, Y, p]
ru

=⇒∗ u[q′, X, q1][q1, Y1, q2] . . . [qm, Ym, p].(4.10)

Since, by

((p1, vt1 . . . tm, X1)/rv1 ∧ · · · ∧ (pn, vt1 . . . tm, Xn)/rvn)(Y1 . . . Ym),

thus

δ(q′, ε,X) = ((p1, X1)/rv1 ∧ · · · ∧ (pn, Xn)/rvn)/rv,

by the Construction 4.2,

[q′, X, q1]
rv−→ ([p1, X1, q1]/rv1& . . .&[pn, Xn, q1]/rvn) ∈ P(4.11)

Therefore, by the basis of induction, for each of the computations

(pi, v,Xi)
rvi

`∗ (q1, ε, ε), implies that

[pi, Xi, q1]
rvi

=⇒∗ v, for each i = 1, 2, . . . , n(4.12)

Similarly, (qj, tj, Yj)
rtj

`∗ (qj+1, ε, ε), implies that

[qj, Yj, qj+1]
rtj

=⇒∗ tj, for each j = 1, 2, . . . ,m− 1(4.13)

and (qm, tm, Ym)
rtm
`∗ (p, ε, ε), implies that

[qm, Ym, p]
rtm

=⇒∗ tm.(4.14)
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Therefore, the derivation is of the form

[q, Y, p]
ru

=⇒∗ u[q′, X, q1][q1, Y1, q2] . . . [qm, Ym, p], since (4.10)
ru=⇒ u([p1, X1, q1]/rv1& . . .&[pn, Xn, q1]/rvn)

[q1, Y1, q2] . . . [qm, Ym, p], since (4.11)
rv

=⇒∗ u(v& . . .&v)[q1, Y1, q2] . . . [qm, Ym, p], since (4.12),
rv=⇒ uv[q1, Y1, q2] . . . [qm, Ym, p]

...
rtm−1

=⇒∗ uvt1 . . . tm−1[qm, Ym, p], since (4.13)
rt

=⇒∗ uvt1 . . . tm, since (4.14),
r

=⇒ w, since w = uvt1 . . . tm,

where r = min{ru, rv, rt} and r ∈ (0, 1]. And the proof is complete. �

Theorem 4.3. A language is accepted by an FSAPDA if and only if it is generated
by a FCG.

Proof.
If. Let G be a FCG and let M be the FSAPDA as above. Let (w, r) ∈ µ(L,G),

i.e., S
r

=⇒∗ w. By Theorem (4.1) with γ being S, this is if and only if (q0, w, S)
r

`∗

(q, ε, ε), i.e., (w, r) ∈ µ(L,M). Therefore, µ(L,G) = µ(L,M).
Only if. LetM be an FSAPDA and letG be the FCG as above. Let (w, r) ∈ µ(L,M),

i.e., (q0, w, Z0)
r

`∗ (p, ε, ε). By Theorem (4.2), this is if and only if [q0, Z0, p]
r

=⇒∗ w.

Therefore, by the Construction of G, S
r

=⇒∗ w, implying µ(w, r) ∈ µ(L,M), and
vice versa. It follows that µ(L,M) = µ(L,G). �

REFERENCES

[1] A. M. KAMINSKI: Conjunctive grammars and alternating pushdown automata, In: Hodges,
W., de Queiroz, R. (Eds.) The 15th Workshop on Logic, Language, Information and
Computation-WoLLIC’2008, Volume 5110 of Lecture Notes in Artificial Intelligence,
Springer, Berlin/Heidelberg (2008), 30-41.

[2] P. R. J. ASVELD: Fuzzy context-free languages-Part 1: Generalized fuzzy context-free gram-
mars, Theoretical Computer Science, 347 (2005), 167-190.



FUZZY CONJUNCTIVE GRAMMAR AND FUZZY SYNCHRONIZED ALTERNATING AUTOMATA 9479

[3] P. R. J. ASVELD: Fuzzy Context-free Languages-Part 2: Recognition and parsing algorithms,
Theoretical Computer Science, 347 (2005), 191-213.

[4] T. AIZIKOWITZ, M. KAMINSKI: Conjunctive grammars and alternating pushdown au-
tomata, Acta Informatica, 50 (2013), 175-197.

[5] I. BUCURESCU, A. PASCU: On the Languages Generated by Context-Sensitive Fuzzy Gram-
mars, Intern. J. Computer Math., 9 (1981), 277-285.

[6] R. BELOHLAVEK: Determinism and fuzzy automata, Information Science, 143(2002), 205-
209.

[7] CHANDRA, ET.AL, : Alternation, J. ACM 28(1), (1981), 114-133.
[8] O. CHUNG-MING, W. YU-HUI: On The Color Sequence Fuzzy Automata of Eye Detection,

Proceedings of the Seventh International Conference on Machine Learning and Cybernet-
ics, Kunming, 12-15 July (2008), 3586-3590.

[9] G. GERLA: Fuzzy Grammars and Recursively Enumerable Fuzzy Languages, Information
sciences, 60 (1992), 137-143.

[10] H. HENG KIM, ET.AL, : L-Fuzzy Grammars, Information sciences, 8 (1975), 123-140.
[11] S. J. HAM, ET.AL, : Fire-Flame Detection based on Fuzzy Finite Automation, 2010 Interna-

tional Conference on Pattern Recognition, (2010), 3919-3922.
[12] H. XING: Fuzzy pushdown automata, Fuzzy Sets and Systems, 158 (2007) 1437-1449.
[13] O. KUPFERMAN, SH. ZUHOVITZKY: An improved algorithm for the membership problem

for extended regular expressions, In: Diks, K., Rytter,W. (Eds.) Mathematical Foundations of
Computer Science, 2420 (2002), 446-458.

[14] H. V. KUMBHOJKAR, S. R. CHAUDHARI: On covering of products of fuzzy finite state
machines, Fuzzy Sets and Systems, 125 (2002), 215-222.

[15] E. T. LEE, L. A. ZADEH: Note on Fuzzy Languages, Information Sciences, 1(4) (1969),
421-434.

[16] S. LAN, M. ZHIWEN: Closure of finite-state automaton languages, Fuzzy Sets and Systems,
75 ( 1995), 393-397.

[17] R. E. LADNER, R. J. LIPTON: Alternating pushdown and stack automata, SIAM J. Com-
put., 13(1) (1984), 135-155.

[18] Y. LI, W. PEDRYCZ: Minimization of lattice finite automata and its application to the
decomposition of lattice languages, Fuzzy Sets and Systems, 158 (2007), 1423-1436.

[19] M. MIZUMOTO, ET.AL, : Some Considerations on Fuzzy Automata, Journal of Computer
and System Sciences, 3 (1969), 409-422.

[20] M. MIZUMOTO, ET.AL, : N-Fold Fuzzy Grammars, Information Sciences, 5 (1973), 25-43.
[21] D. S. MALIK, ET.AL, : On subsystems of a fuzzy finite state machine, Fuzzy Sets and

Systems, 68 (1994), 83-92.
[22] J. N. MORDESION, D. S. MALIK: Fuzzy Automata and Languages Theory and Applica-

tions, Chapman & Hall/CRC Press (2002).
[23] A. OKHOTIN: Conjunctive Grammars, Journal of Automata, Languages and Combina-

torics, 6(4) (2001), 519-535.



9480 R. PATHRAKUMAR AND M. RAJASEKAR

[24] A. PAZ: Fuzzy Star Functions, Probabilistic Automata and Their Approximation by Nonprob-
abilistic Automata, Journal of Computer and System Sciences, 1 (1967), 371-390.

[25] D. QIU: Characterizations of fuzzy finite automata, Fuzzy Sets and Systems, 141 (2004),
391-414.

[26] E. SANTOS: Fuzzy Automata and Languages, Information Sciences, 10 (1976), 193-197.
[27] D. TODINCA, D. BUTOIANU: VHDL framework for modeling fuzzy automata, 14th Interna-

tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing, (2012),
171-178.

[28] D. WOTSCHKE: The Boolean Closures of Deterministic and Nondeterministic Context-free
Languages, Lecture Notes in Computer Science, Vol. 1, Springer, Berlin, (1973), 113-121.

[29] J. WANG, M. YIN, W. GU: Fuzzy multiset finite automata and their languages, Soft.
Comput., 17 (2013), 381-390.

[30] J. WAISSMAN, ET.AL, : Wastewater Treatment Process Supervision by Means of a Fuzzy
Automaton Model, Proceedings of the 15th IEEE international Symposium on Intelligent
Control (ISIC 2000) Rio. Patias. GREECE, 17-19 July (2000), 163-168.

[31] W. G. WEE: On generalizations of adaptive algorithm and application of the fuzzy sets
concept to pattern classification, Ph.D. Thesis, Purdue University, 1967.

[32] Y. CAO, Y. EZAWA: Nondeterministic fuzzy automata, Information Sciences, 191 (2012),
86-97.

[33] H. YAMAMOTO: An automata based recognition algorithm for semi-extended regular expres-
sions, In: Nielsen, M., Rovan, B. (Eds.) Mathematical Foundations of Computer Science-
MFCS 2000, 25th International Symposium, Volume 1893 of Lecture Notes in Computer
Science, Springer, Berlin/Heidelberg (2000), 699-708.

[34] L. A. ZADEH: Fuzzy Languages and their relation to Human and Machine Intelligence,
This is the text of a paper presented at the Conference on Man and Computer, Bordeaux,
France, (Organized by Institut de la Vie, Paris), June (1970), 22-26.

DEPARTMENT OF MATHEMATICS

ANNAMALAI UNIVERSITY

CHIDAMBARAM, TAMILNADU, INDIA

Email address: mahapathra87@gmail.com

DEPARTMENT OF MATHEMATICS

FACULTY OF ENGINEERING AND TECHNOLOGY

ANNAMALAI UNIVERSITY

CHIDAMBARAM, TAMILNADU, INDIA

Email address: mdivraj1962@gmail.com


