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ON THE UNIQUENESS THEOREMS OF L-FUNCTIONS CONCERNING
WEIGHTED SHARING

NIRMAL KUMAR DATTA AND NINTU MANDAL1

ABSTRACT. We mainly study the properties of L-functions using Nevanlinna
value distribution theory in the extended selberg class. In this paper, we in-
vestigate the relationship between meromorphic functions and L-functions con-
cerning weighted sharing with the help of Nevanlinna value distribution theory.
We prove a uniqueness theorem of a meromorphic function and an L-function
when they share (0, 0) and (1, 1). We also get valuable information about the
counting of the zeros of L-functions. The results of this paper improve some
recent results of W. J. Hao and J. F. Chen [1].

1. INTRODUCTION

L-functions play very important role in the modern number theory. One com-
mon thing is that all the L-functions can be described by an Euler product.
So all the L-functions can be described as a product taken over prime num-
bers. Considering unique prime factorization of integers we can represent L-
functions as Dirichlet series. We may regard the famous Riemann zeta-function,
ζ(z) =

∑∞
n=1 1/nz =

∏
p (1− 1/pz)−1 where z = σ + it, σ > 1 and p denotes

prime number and the product is taken over all prime numbers, as the proto-
type. We can get valuable information on the algebraic structure from the value
distributions of the L-functions which is not obtainable by the elementary alge-
braic method. In particular, the distribution of zeros of L-functions is of special
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interest with respect to many problems in multiplicative number theory. One
such example is the Riemann hypothesis on the non-vanishing of the Riemann
zeta-function in the right half of the critical strip and its impact on the distri-
bution of prime numbers. Riemann hypothesis remains unsolved for more than
150 years though it is among the most famous conjectures of all time.

An L-function is defined by the Dirichlet series L(z) =
∑∞

n=1 a(n)/nz satisfying
the assumptions (i) Ramanujan conjecture: For every ε > 0, a(n) � nε, (ii) An-
alytic continuation: There exists a nonnegative integer k such that (z − 1)kL(z)

is an entire function of finite order, (iii) Every L-function satisfies the func-
tional equation λL(z) = ωλL(1− z), where λL(z) = L(z)Qz

∏k
i=1 Γ(λiz + νi)

with positive real numbers Q, λi and complex numbers νi, ω with Reνi ≥ 0

and | ω |= 1 and (iv) Euler product: L(z) satisfies L(z) =
∏

p Lp(z), where
Lp(z) = exp(

∑∞
k=1 b(p

k)/pkz) with coefficients b(pk) satisfying b(pk) � pkθ for
some θ < 1/2 and p denotes prime number.

In this paper, we study the uniqueness problems of L-functions and mero-
morphic functions using Nevanlinna’s value distribution theory. Throughout the
paper an L-function L means an L-function L with a(1) = 1 in the extended
Selberg class. Here we use the standard definitions and notations of the value
distribution theory [2].

2. PRELIMINARIES

Let ξ and ψ be two nonconstant meromorphic functions in the open complex
plane C. We denote by S(r, ξ) any function satisfying S(r, ξ) = o(T (r, ξ)) as
r −→ ∞ , outside a possible exceptional set of finite linear measure. If ξ − z0

and ψ − z0 have the same set of zeros with the same multiplicities, we say that
ξ and ψ share z0 CM (counting multiplicities) and we say that ξ and ψ share
z0 IM (ignoring multiplicities) if we do not consider the multiplicities where
z0 ∈ C ∪ {∞}.

The following gives an account of relevant theorems or definitions for the
paper.

Definition 2.1. ( [8], Definition 1.3, 1.4) Let ξ be a meromorphic function defined
in the complex plane. Let n be a positive integer and α ∈ C∪{∞}. By N(r, α; ξ |≤
n) we denote the counting function of the α points of ξ with multiplicity ≤ n and by
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N(r, α; ξ |≤ n) the corresponding one for which we do not count the multiplicity.
Also by N(r, α; ξ |≥ n) we denote the counting function of the α points of ξ with
multiplicity ≥ n and by N(r, α; ξ |≥ n) the corresponding one for which we do not
count the multiplicity. We define

Nn(r, α; ξ) = N(r, α; ξ) +N(r, α; ξ |≥ 2) + · · ·+N(r, α; ξ |≥ n).

Considering CM sharing in 2007 Steuding [12] proved the following unique-
ness theorem of L-functions.

Theorem 2.1. ( [12], Theorem 7.11) Let L and G be two L-functions with a(1) =

1 and α 6=∞ be a complex number. If L and G share α CM, then L ≡ G.

Remark 2.1. [3] In 2016 Hu and Li taking L = 1 + 2/4s and G = 1 + 3/9s proved
that Theorem 2.1 is not true for α = 1.

In 2010 Li [9] study the uniqueness problems of meromorphic functions and
L-functions and proved the following theorem.

Theorem 2.2. ( [9], Theorem 1) Let F be a nonconstant meromorphic function
having finitely many poles and L be a nonconstant L-function. If F and L share α
CM and β IM then L ≡ F , where α and β are two distinct finite values.

Definition 2.2. ( [4], Definition 6, 7, [5], Definition 5) Let ξ and ψ be two mero-
morphic functions defined in the complex plane and n be an integer (≥ 0) or in-
finity. For α ∈ C ∪ {∞} we denote by En(α; ξ) the set of all zeros of ξ − α where
a zero of multiplicity k is counted k times if k ≤ n and n + 1 times if k > n. If
En(α; ξ) = En(α;ψ), we say that ξ, ψ share the value α with weight n.

We write ξ, ψ share (α, n) to mean that ξ, ψ share the value α with weight n.
Clearly if ξ , ψ share (α, n) then ξ, ψ share (α,m) for all integers m, 0 ≤ m < n.
Also we note that ξ, ψ share a value α IM or CM if and only if ξ, ψ share (α, 0)

or (α,∞) respectively.
In 2015, Wu and Hu [13] cosidering weighted sharing proved the following

uniqueness theorem of L-functions.

Theorem 2.3. ( [13], Theorem 1.5) Let L and G be two L-functions, and let α,
β ∈ C be two distinct values. Take two positive integers n1, n2 with n1n2 > 1. If
En1(α,L) = En1(α,G), and En2(β, L) = En2(β,G), then L ≡ G.
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In 2017, Liu, Li and Yi [10] proved the following uniqueness theorem of L-
functions.

Theorem 2.4. ( [10], Theorem 1.1) Let j ≥ 1 and k ≥ 1 be integers such that
j > 3k + 6. Also let L be an L-function and F be a nonconstant meromorphic
function. If {F j}(k) and {Lj}(k) share 1 CM then F ≡ dL for some constant d
satisfying dj = 1.

Considering weighted sharing in 2018 Hao and Chen [1] proved the following
theorem.

Theorem 2.5. ( [1], Theorem 1.7) Let L be an L-function and F be a meromorphic
function defined in the complex plane C with finitely many poles. Let α1, α2 ∈ C
be distinct and m1,m2 be positive integers such that m1m2 > 1. If Emj

(αj, F ) =

Emj
(αj, L), j = 1, 2, then L ≡ F.

Now the following question comes naturally.

Question 2.1. Can we reduce the weight of the sharing of values in the Theorem
2.5 ?

Definition 2.3. ( [4], Definition 4). Let two nonconstant meromorphic functions
ξ and ψ share a value α IM . We denote by N∗(r, α; ξ, ψ) the counting function of
those α-points of ξ whose multiplicities are not equal to the multiplicities of the
corresponding α-points of ψ, where each α-point is counted only once.

Definition 2.4. ( [7], Definition 1.4) We denote by N0(r, 0; ξ(k)) (N0(r, 0; ξ(k)))

the counting function (reduced counting function) of those zeros of ξ(k) which are
not the zeros of the nonconstant meromorphic function ξ.

Definition 2.5. ( [7], Definition 1.5) We denote by N⊗(r, 0; ξ(k)) (N⊗(r, 0; ξ(k)))

the counting function (reduced counting function) of those zeros of ξ(k) which are
not the zeros of ξ(ξ − 1).

Definition 2.6. ( [7], Definition 1.6) We denote by N⊕(r, 0; ξ(k)) (N⊕(r, 0; ξ(k)))

the counting function (reduced counting function) of those zeros of ξ(k) which are
not the zeros of ξ − 1.

Throughout the paper we mean by ξ, ψ two nonconstant meromorphic func-
tions defined in the open complex plane C.
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3. MAIN RESULTS

Using weighted sharing we try to solve Question 2.1 and prove the following
theorem.

Theorem 3.1. Let f be a nonconstant meromorphic function and L be a non-
constant L-function. If E0(0, f) = E0(0, L), E1(1, f) = E1(1, L) and N(r, 0; f) +

N(r,∞; f) = S(r, f) then either L ≡ f or T (r, L) = N(r, 0;L |≤ 2) + S(r, L) and
T (r, f) = N(r, 0;L′ |≤ 1) + S(r, L).

Remark 3.1. In Theorem 2.5 the weights of the sharing are m1, m2 such that
m1m2 > 1. So in Theorem 3.1 the weights of the sharing reduced to 0 and 1.

3.1. Lemmas. In this subsection we present some necessary lemmas.
Henceforth we denote by Ψ the function defined by

Ψ = Ψξ,ψ = (
ξ′′

ξ′
− 2ξ′

ξ − 1
)− (

ψ′′

ψ′
− 2ψ′

ψ − 1
).

Lemma 3.1. ( [5], Lemma 1) If ξ and ψ share (1, 1) and Ψ 6≡ 0 then

(i) N(r, 1; ξ |≤ 1) ≤ N(r,∞; Ψ) + S(r, ξ) + S(r, ψ),

(ii) N(r, 1;ψ |≤ 1) ≤ N(r,∞; Ψ) + S(r, ξ) + S(r, ψ).

Lemma 3.2. ( [5], Lemma 3) Let ξ and ψ share (1, 0) and Ψ 6≡ 0. Then

N(r,Ψ) ≤ N(r,∞; ξ |≥ 2) +N(r.0; ξ |≥ 2) +N(r,∞;ψ |≥ 2) +N(r, 0;ψ |≥ 2)

+ N∗(r, 1; ξ, ψ) +N⊗(r, 0; ξ′) +N⊗(r, 0;ψ′).

Lemma 3.3. ( [6], Lemma). If k is a positive integer then

N0(r, 0; ξ(k)) ≤ kN(r,∞; ξ) +N(r, 0; ξ |< k) + kN(r, 0; ξ |≥ k) + S(r, ξ).

Lemma 3.4. ( [7], Lemma 2.4) If ξ and ψ share (1, 1) then

N0(r, 0;ψ′) +N(r, 1;ψ |≥ 2) +N∗(r, 1; ξ, ψ)

≤3N(r, 0;ψ) + 3N(r,∞;ψ) + S(r, ψ).

Lemma 3.5. ( [12], Theorem 7.9) Let L be an L-function with degree d. Then

T (r, L) =
d

π
r log r +O(r).

Lemma 3.6. ( [11], Lemma 4.6) Let L be an L-function. Then N(r,∞;L) =

S(r, L) = O(log r).
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Lemma 3.7. Let f be a nonconstant meromorphic function and L be an L-function.
If f and L share (0, 0) and (1, 1) such that N(r, 0; f) + N(r,∞; f) = S(r, f), then
S(r, f) = S(r, L) = O(log r).

Proof. Since f and L share (1, 1) therefore we have by the second fundamental
theorem

T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) + S(r, f)

= N(r, 1;L) + S(r, f)

≤ T (r, L) + S(r, f).

This shows that every S(r, f) is replaceable by S(r, L). Since f and L share (0, 0)

and (1, 1) and every S(r, f) is replaceable by S(r, L), therefore we have by the
second fundamental theorem

T (r, L) ≤ N(r, 0;L) +N(r, 1;L) +N(r,∞;L) + S(r, L)

= N(r, 0; f) +N(r, 1; f) + S(r, L)

= T (r, f) + S(r, L).

This shows that every S(r, L) is replaceable by S(r, f). Hence by Lemma 3.6 we
have S(r, f) = S(r, L) = O(log r). This completes the proof. �

3.2. Proof of the main result. Here we give the proof of the Theorem 3.1.

Proof. Let Φ = ΨL,f . We have to consider the following two cases.
Case I. Let Φ ≡ 0. Integrating we have

(3.1) L− 1 ≡ f − 1

P −Q(f − 1)
,

where P ( 6= 0) and Q are constants.
If Q = 0 then from (3.1) we get

(3.2) L− 1 ≡ d(f − 1),

where d = 1
P

is a nonzero constant.
Since L and f share (0, 0), therefore from (3.2) we have d = 1. Hence from

(3.2) we have L ≡ f .
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Let Q 6= 0. If P +Q 6= 0 then from (3.1) and lemma 3.7 we get by the second
fundamental theorem

T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r,
P +Q

Q
; f) + S(r, f)

= N(r,∞;L) + S(r, f)

≤ S(r, L) + S(r, f)

= S(r, f),

which is a contradiction. Therefore P +Q = 0 and so from (3.1) we get

(L− Q− 1

Q
)f ≡ 1

Q
.

If we put c = Q−1
Q

then c 6= 1 and from above we get (L − c)f ≡ 1 − c, which
contradicts that f and L share (0, 0).

Case II. Let Φ 6≡ 0.
Let Ω = L−1

f−1
. Since f , g share (1, 1) we get by Lemma 3.4, Lemma 3.6 and

Lemma 3.7

N(r, 0; Ω) ≤ N∗(r, 1;L, f) +N(r,∞; f)

≤ 3N(r, 0; f) + 4N(r,∞; f) + S(r, f)

= S(r, f)

= S(r, L).

and

N(r,∞; Ω) ≤ N∗(r, 1;L, f) +N(r,∞;L)

≤ 3N(r, 0; f) + 3N(r,∞; f) +N(r,∞;L) + S(r, f)

= N(r,∞;L) + S(r, f)

= N(r,∞;L) + S(r, L)

= S(r, L).

Since L′ = Ω(f − 1)(Ω′

Ω
+ f ′

f−1
), we see that possible zeros of L′ occur from the

following sources:

(i) zeros of Ω, (ii) zeros of f − 1, and (iii) zeros of Ω′

Ω
+ f ′

f−1
.
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Let z1 be a simple zero of f − 1. Since L and f share (1, 1), z1 is neither a zero
nor a pole of Ω. On the other hand z1 is a simple pole of Ω′

Ω
+ f ′

f−1
. Hence z1 is

not a zero of L′.
Therefore by Lemma 3.4, Lemma 3.6 and Lemma 3.7 we get

N(r, 0;L′) ≤ N(r, 0; Ω) +N(r, 1; f |≥ 2) + T (r,
Ω′

Ω
+

f ′

f − 1
)

≤ 3N(r, 0; f) + 3N(r,∞; f) +N(r,
Ω′

Ω
) +N(r,

f ′

f − 1
) + S(r, L)

≤ N(r, 0; Ω) +N(r,∞; Ω) +N(r, 1; f) +N(r,∞; f) + S(r, L)

≤ N(r, 1; f |≤ 1) +N(r, 1; f |≥ 2) + S(r, L)

≤ N(r, 1; f |≤ 1) + 3N(r, 0; f) + 3N(r,∞; f) + S(r, L)

= N(r, 1; f |≤ 1) + S(r, L).(3.3)

Again since L and f share (1, 1), by Lemma 3.1, Lemma 3.2, Lemma 3.3 and
lemma 3.6 we get

N(r, 1; f |≤ 1) ≤ N(r, 0;L |≥ 2) +N(r, 0; f |≥ 2) +N(r, 1; f |≥ 2)

+ N⊗(r, 0;L′) +N⊗(r, 0; f ′) +N(r,∞;L |≥ 2)

+ N(r,∞; f |≥ 2)

≤ N(r, 0;L |≥ 2) +N(r, 1;L |≥ 2) +N⊗(r, 0;L′)

+ N0(r, 0; f ′) + S(r, f)

≤ N(r, 0;L′) + S(r, L).(3.4)

By the second fundamental theorem and Lemma 3.3 we get

T (r, f) ≤ N(r, 1; f) +N(r, 0; f) +N(r,∞; f) + S(r, f)

≤ N(r, 1; f |≤ 1) +N0(r, 0; f ′) + S(r, f)

≤ N(r, 1; f |≤ 1) +N(r, 0; f) +N(r,∞; f) + S(r, f)

= N(r, 1; f |≤ 1) + S(r, f).

so that

N(r, 1; f |≤ 1) = T (r, f) + S(r, f) = T (r, f) + S(r, L).(3.5)
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Since L and f share (1, 1) by Lemma 3.3 and lemma 3.7 we get

N(r, 1;L |≥ 2) = N(r, 1; f |≥ 2)

≤ N0(r, 0; f ′)

≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

= S(r, f)

= S(r, L).

Now by lemma 3.6, lemma 3.7, (3.4) and the second fundamental theorem
we get

T (r, L) ≤ N(r,∞;L) +N(r, 0;L) +N(r, 1;L)−N⊕(r, 0;L′) + S(r, L)

= N(r, 0;L) +N(r, 1; f |≤ 1)−N⊕(r, 0;L′) + S(r, L)

≤ N(r, 0;L) +N(r, 0;L′)−N⊕(r, 0;L′) + S(r, L)

= N(r, 0;L) +N⊕(r, 0;L′)−N⊕(r, 0;L′) +N(r, 1;L |≥ 2) + S(r, L)

= N(r, 0;L) +N⊕(r, 0;L′)−N⊕(r, 0;L′) + S(r, L)

≤ N(r, 0;L) + S(r, L)

≤ T (r, L) + S(r, L).

Hence

(3.6) T (r, L) = N(r, 0;L) + S(r, L)

and

(3.7) N⊕(r, 0;L′)−N⊕(r, 0;L′) = S(r, L).

From (3.7) we get

N(r, 0;L |≥ 3) ≤ 3{N⊕(r, 0;L′)−N⊕(r, 0;L′)} = S(r, L).

Hence from (3.6) we get

T (r, L) = N(r, 0;L |≤ 2) + S(r, L).

Again from (3.7) we get by Lemma 3.4

N(r, 0;L′ |≥ 2) ≤ N(r, 1;L |≥ 3) + 2{N⊕(r, 0;L′)−N⊕(r, 0;L′)}

≤ N(r, 1;L |≥ 2) + S(r, L)

= S(r, L).
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So, from (3.3), (3.4) and (3.5) we obtain

(3.8) N(r, 0;L′ |≤ 1) ≤ T (r, f) + S(r, L).

and

(3.9) T (r, f) ≤ N(r, 0;L′ |≤ 1) + S(r, L).

From (3.8) and (3.9) we have

T (r, f) = N(r, 0;L′ |≤ 1) + S(r, L).

This proves the theorem. �
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