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NUMERICAL ANALYSIS OF AN UNSTEADY MHD FREE CONVECTIVE
FLUID FLOW WITH UNCERTAIN PARAMETERS

JOYDEEP BORAH, G. C. HAZARIKA, AND PALASH DUTTA1

ABSTRACT. An axisymmetric unsteady MHD free convective fluid flow is con-
sidered in fuzzy environment and consequently the initial and boundary condi-
tions along with the parameters involved there are uncertain. Finite difference
method (FDM) is used to solve the fuzzy forms of the non-dimensional gov-
erning equations along with the fuzzified dimensionless boundary conditions.
The values of the uncertain parameters as well as the initial and the boundary
conditions are considered as triangular fuzzy number (TFN) and α−cut tech-
nique is applied to find the solutions by taking the value of α as 1, for which
solutions with membership grade 1 may be obtained. Computer programming
code has been developed in Python (an object oriented computer programming
language). Velocity, temperature and concentration profiles are observed under
the effects of various involved uncertain parameters.

1. INTRODUCTION

Combined heat and mass transfer in fluid saturated porous medium has a lot
of industrial applications [1]. Most of the research works dealing with porous
media have used the Darcy law. However, in case of fluid flows with high veloc-
ity, the Darcy law is not applicable, as it does not account for inertial effects in
the porous medium. The most relevant way to deal with high-velocity transport
in porous media is the Darcy-Forchheimer drag force model. This adds a drag

1corresponding author
2020 Mathematics Subject Classification. 35R13, 76M20.
Key words and phrases. axisymmetric flow, fuzzy environment, FDM, TFN, α−cut technique.

9565



9566 J. BORAH, G. C. HAZARIKA, AND P. DUTTA

force of second order to the momentum conservation equation. An influential
study on Forchheimer inertial effects in porous media convection is presented
by Vafai and Tien [3].

The real life phenomena are uncertain and imprecise. Uncertainty occurs in
the fluid flows also as various uncertain and vague conditions present there.
Consideration of exact values of the parameters as well as the initial and bound-
ary conditions in a fluid flow problem may cause errors in the solutions. Fuzzy
set theory (FST) may be used to overcome these uncertainties. With the help of
FST, we may find a region in which the solutions of the problems lie.

Kaleva [6] employed the concept of FST on differential equations, which helps
in great means in the study of the fuzzy initial value problem (FIVP)s and fuzzy
boundary value problem (FBVP)s. Seikkala [10] promoted the concept of FIVP.
Then, another several researchers have started to do works on FBVP [4, 5].
Nayak and Chakraverty [9] have calculated non-probabilistic solution of moving
plate problem having uncertain parameters.

2. MATHEMATICAL FORMULATION

An axisymmetric unsteady free convective boundary layer flow in a Darcy-
Forchheimer fluid saturated porous medium is considered. The flow past a ver-
tical cone with a transverse magnetic field with intensity B0. The model is con-
sidered in a cartesian (x′, y′) coordinate system with the following assumptions.

(i) At time t′ ≤ 0, the cone surface and the surrounding fluid which are
at rest possess the same temperature T ′∞ and concentration level C ′∞
everywhere in the fluid.

(ii) As time begins, heat supplied from the cone surface to the fluid and
concentration level near the cone surface are hiked at a rate of qw(x′) =
x′m and q∗w(x

′) = x′n respectively. They are managed at the same level.
(iii) The concentration C ′ of the diffusing species in the binary mixture is

very less in comparison to the other chemical species which are present
and hence the Soret and Dufour effects can be ignored.

(iv) As the viscosity and the thermal conductivity of the fluid are dependent
on temperature, they are taken as variable using [2,8].

(v) The semi vertical angle of the cone is α and r′ is the local radius of the
cone.
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(vi) The x′-direction is measured along the cone surface from the leading
edge O, and the y′-direction is normal to the cone generator. The cone
apex is located at the origin.

Following the above assumptions with the Boussinesq’s approximations, we have
the flow governing equations as follows.
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Following are the initial and boundary conditions at the surface and far from
the cone surface:

t′ ≤ 0 : u′ = 0, v′ = 0, T ′ = T ′∞, C
′ = C ′∞, ∀x′, y′

t′ > 0 :
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.

The above governing equations are highly coupled, parabolic and non-linear. An
analytical solution is intractable and in order to attain a numerical solution, the
model should be made dimensionless. For this, the following transformations
are introduced:
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where l is the reference length.
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Applying the above non-dimensional parameters, the equations are trans-
formed into the following forms:
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Corresponding non-dimensionalized initial and boundary conditions are-

t ≤ 0 : u = 0, v = 0, θ = 0, φ = 0, ∀x, y

t > 0 :
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.

3. FUZZIFICATION OF THE EQUATIONS

According to Dutta et al. [7], the fuzzy forms of the governing equations
along with the boundary conditions are identical with the crisp forms. Here we
use˜sign to characterize the fuzzified expressions. So, the fuzzified governing
equations are:
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ũ2(3.1)

P̃ r

(
∂θ̃

∂t
+ ũ
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Corresponding fuzzified initial and boundary conditions are-

t ≤ 0 : ũ = 0, ṽ = 0, θ̃ = 0, φ̃ = 0, ∀x, y

t > 0 :


y = 0 : ũ = 0, ṽ = 0, ∂θ̃
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y →∞ : ũ→ 0, θ̃ → 0, φ̃→ 0


.

4. METHOD OF SOLUTION

Here, to solve the fuzzy forms of the governing equations along with the initial
and boundary conditions, we have applied the FDM. By dropping the˜sign from
Eq.(3.1)- Eq.(3.3) and applying the finite difference scheme there, the following
expressions are obtained:
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φ(i, j, k) =
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Corresponding boundary conditions are

t ≤ 0 : u(0, j, k) = 0, v(0, j, k) = 0, θ(0, j, k) = 0, φ(0, j, k) = 0,∀x, y

t > 0 :



y = 0 : u(i, j, 0) = 0, v(i, j, 0) = 0,

θ(i, j, 1) = θ(i, j, 0) +4y · e−m log(x),

φ(i, j, 1) = φ(i, j, 0) +4y · e−n log(x)

x = 0 : u(i, 0, k) = 0, θ(i, 0, k) = 0, φ(i, 0, k) = 0

y →∞ : u(i, j, N)→ 0, θ(i, j, N)→ 0, φ(i, j, N)→ 0


.(4.4)

∀i, j and N is the total number of sub-divisions in the interval [0,∞).
In the computer programming code developed for solving the model, α−cut

technique is also used. The distribution of the velocity, temperature and species
concentration against the various involved parameters are investigated by taking
α = 1 as it gives the solutions with membership grade 1 and they are shown
graphically.

5. RESULTS AND DISCUSSION

The system of the fuzzified algebraic Eqs. (4.1), (4.2) and (4.3) along with
Eq. (4.4) is solved numerically using an iterative scheme based on Gauss Sei-
dal iterative method. The parameter values are taken as θr = [4, 5, 6], θc =

[4, 5, 6],M = [0.1, 0.2, 0.3], Nc = [1, 2, 3], Gr = [1.5, 2, 2.5], Da = [0.1, 0.2, 0.3],
Fs = [0.1, 0.2, 0.3], Pr = [6, 7, 8], Sc = [0.20, 0.22, 0.24], ξ = [0.1, 0.15, 0.2],
m = [0.4, 0.5, 0.6] and n = [0.4, 0.5, 0.6], unless otherwise stated. A lot of nu-
merical results have been achieved throughout the study, but in order to get a
physical acumen into the problem, a representative set is presented graphically
in Figures 1-6.
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Figure 1 and Figure 2 indicate the effect of the variable viscosity parameter θr
on velocity u and species concentration φ respectively. It is observed that θr has
inverse effect on u. As the values of θr rises, the resistance force between differ-
ent layers of the fluid also rises and as a result velocity of the fluid diminishes.
Concentration of the species φ also decreases with the increasing values of θr.

FIGURE 1. Effects of
θr on u

FIGURE 2. Effects of
θr on φ

The variation of the temperature of the fluid θ is directly proportional to the
variable thermal conductivity parameter θc (Figure 3). It is expected that the
temperature within the fluid rises as a result of increase of thermal conductivity.
So, θ enhances with θc.

FIGURE 3. Effects of
θc on θ

FIGURE 4. Effects of
Da on u

Figure 4 shows the effect of Darcy number Da on u. Increasing Da enhances
the permeability and simultaneously depreciates the Darcian resistance as less
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FIGURE 5. Effects of
Fs on u

FIGURE 6. Effects of
Sc on φ

solid fibers are present in the region. The flow is therefore accelerated for higher
Da. The Forchheimer drag force is a second-order retarding force. Increasing
Forchheimer number Fs results a strong increase in Forchheimer drag force
which decelerates the flow, that is, lowers velocities (Figure 5).

Schmidt number Sc and chemical reaction parameter ξ has inverse effects on
φ. As Sc advances, the thickness of the concentration boundary layer decreases
due to which the concentration gradient steps up. As a result φ diminishes
(Figure 6).

6. CONCLUSION

An unsteady free convection boundary layer flow past a vertical cone which is
driven by buoyancy force has been investigated numerically using fuzzy concept.
The following conclusions are drawn from the investigation.

(i) The effects of the various uncertain parameters involved in a fluid flow
model are distinct.

(ii) Variable viscosity parameter has adverse effect on both the velocity and
the species concentration distribution. On the other hand, temperature
enhances with the variable thermal conductivity parameter.

(iii) Velocity is inversely proportional to Forchheimer number whereas di-
rectly proportional to Darcy number.

(iv) Species concentration diminishes for increasing values of Schmidt num-
ber.
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TABLE 1. Nomenclature

u′/v′
velocity components along

the x and y directions
µ dynamic viscosity

ρ density ν = µ
ρ

kinematic viscosity

σ electrical conductivity K permeability of porous medium

g gravitational acceleration β coefficient of thermal expansion

β∗ coefficient of volumetric expansion T ′ temperature

b Forchheimer geometrical constant λ thermal conductivity

Cp specific heat at constant pressure D molecular diffusivity

Ch coefficiet of chemical reaction θr variable viscosity parameter

θc variable thermal conductivity parameter M =
σB2

0 l
2

µ∞
Gr−

1
2 magnetic field parameter

Nc =
β∗(C′w−C

′
∞)

β(T ′w−T ′∞)
Buoyancy ratio parameter Da = K

l2
Darcy number

Fs = b
l

Forchheimer number Pr =
ν∞ρCp

λ∞
Prandtl number

Sc = ν
D

Schmidt number ξ = Chl2

ν∞Gr
1
2

chemical reaction parameter
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