ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9591–9597 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.63 Spec. Iss. on ICRTAMS-2020

SOMEWHAT PAIRWISE FUZZY δ -IRRESOLUTE CONTINUOUS MAPPINGS

M. SANKARI AND A. SWAMINATHAN¹

ABSTRACT. In the present article, the concepts of somewhat pairwise fuzzy δ -irresolute continuous mapping and somewhat pairwise fuzzy irresolute δ -open mapping have been introduced. Besides, some interesting properties of those mappings are discussed.

1. INTRODUCTION

The concepts of fuzzy sets were introduced by Zadeh [6]. Chang [1] studied the notion of fuzzy topology in 1968. Petricevic [2] introduced the concept of fuzzy δ -open sets and fuzzy δ -closed sets in fuzzy topological spaces. The notion of fuzzy δ -continuous functions fuzzy topological spaces was introduced by Supriti Saha [3]. The concepts of somewhat fuzzy δ -continuous functions and somewhat fuzzy δ -open functions are introduced and studied by Thangaraj and Dinakaran in [5] and consequently the concepts of somewhat fuzzy δ -irresolute continuous mappings and somewhat fuzzy irresolute δ -open mappings were introduced by Swaminathan and Balasubramaniyan in [4]. The purpose of this paper is to introduce and study the concepts of somewhat pairwise fuzzy δ irresolute continuous mappings and somewhat pairwise fuzzy irresolute δ -open mappings on a fuzzy bitopological spaces and study some of their properties.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. somewhat pairwise fuzzy δ -irresolute continuous mapping; somewhat pairwise fuzzy irresolute δ -open mapping.

2. Somewhat pairwise fuzzy δ -irresolute continuous mappings

In this section we introduce a somewhat pairwise fuzzy δ -irresolute continuous mapping.

Definition 2.1. Let $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ be a function from fts (X, γ_1, γ_2) to another fts (Y, η_1, η_2) . Then:

- (i) f is called pairwise fuzzy δ-continuous if f⁻¹(β) is a γ₁-fuzzy δ-open or γ₂-fuzzy δ-open set on (X, γ₁, γ₂) for any η₁-fuzzy open or η₂-fuzzy open set β on (Y, η₁, η₂).
- (ii) f is called pairwise fuzzy δ-irresolute continuous if f⁻¹(β) is a γ₁-fuzzy δ-open or γ₂-fuzzy δ-open set on (X, γ₁, γ₂) for any η₁-fuzzy δ-open or η₂-fuzzy δ-open set β on (Y, η₁, η₂).

Definition 2.2. Let $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ be a function from fts (X, γ_1, γ_2) to another fts (Y, η_1, η_2) . Then:

- (i) f is called somewhat pairwise fuzzy δ-continuous if there exists a γ₁-fuzzy δ-open or γ₂-fuzzy δ-open set α ≠ 0_X on (X, γ₁, γ₂) such that α ≤ f⁻¹(β) ≠ 0_X for any η₁-fuzzy open or η₂-fuzzy open set β ≠ 0_Y on (Y, η₁, η₂).
- (ii) f is called somewhat pairwise fuzzy δ -irresolute continuous if there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\alpha \neq 0_X$ on (X, γ_1, γ_2) such that $\alpha \leq f^{-1}(\beta) \neq 0_X$ for any η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set $\beta \neq 0_Y$ on (Y, η_1, η_2) .

From the definitions above, it is clear that every pairwise fuzzy δ -irresolute continuous mapping is a somewhat pairwise fuzzy δ -irresolute continuous mapping. And every somewhat pairwise fuzzy δ -irresolute continuous mapping is a pairwise fuzzy δ -continuous mapping. Also, every pairwise fuzzy δ -continuous mapping is a somewhat pairwise fuzzy δ -continuous mapping from the above definition. But the converses are not true in general as the following examples show.

Example 1. Let α_1 , α_2 and α_3 be fuzzy sets on $X = \{a_1, b_1, c_1\}$ and let β_1 , β_2 and β_3 be fuzzy sets on $Y = \{x_1, y_1, z_1\}$. Then $\alpha_1 = \frac{0.3}{a_1} + \frac{0.3}{b_1} + \frac{0.3}{c_1}$, $\alpha_2 = \frac{0.7}{a_1} + \frac{0.7}{b_1} + \frac{0.7}{c_1}$, $\alpha_3 = \frac{0.5}{a_1} + \frac{0.5}{c_1}$ and $\beta_1 = \frac{0.2}{x_1} + \frac{0.3}{y_1} + \frac{0.2}{z_1}$, $\beta_2 = \frac{0.8}{x_1} + \frac{0.7}{y_1} + \frac{0.8}{z_1}$, $\beta_3 = \frac{0.5}{x_1} + \frac{0.5}{y_1} + \frac{0.5}{z_1}$ are defined as follows: consider $\gamma_1 = \{0_X, a_1, 1_X\}$, $\gamma_2 = \{0_X, \alpha_1, \alpha_2, 1_X\}$, $\eta_1 = \{0_Y, \beta_1, 1_Y\}, \eta_2 = \{0_Y, \beta_1, \beta_2, \beta_3, 1_Y\}$. Then (X, γ_1, γ_2) and (Y, η_1, η_2) are fuzzy

9592

bitopologies and $f : (X, \gamma_1, \gamma_2) \rightarrow (Y, \eta_1, \eta_2)$ defined by $f(a_1) = y_1$, $f(b_1) = y_1$, $f(c_1) = y_1$. Then we have $f^{-1}(\beta_1) = \alpha_1$, $\alpha_1 \leq f^{-1}(\beta_2) = \alpha_2$ and $\alpha_1 \leq f^{-1}(\beta_3) = \alpha_3$. Since α_1 is a γ_1 -fuzzy δ -open set on (X, γ_1, γ_2) , f is somewhat pairwise fuzzy δ irresolute continuous. But $f^{-1}(\beta_3) = \alpha_3$ is not a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open sets on (X, γ_1, γ_2) . Hence f is not a pairwise fuzzy δ -irresolute continuous mapping.

Example 2. Let α_1 and α_2 be fuzzy sets on $X = \{a_1, b_1, c_1\}$ and let β_1 , β_2 and β_3 be fuzzy sets on $Y = \{x_1, y_1, z_1\}$. Then $\alpha_1 = \frac{0.4}{a_1} + \frac{0.4}{b_1} + \frac{0.4}{c_1}$, $\alpha_2 = \frac{0.5}{a_1} + \frac{0.5}{b_1} + \frac{0.5}{c_1}$ and $\beta_1 = \frac{0.4}{x_1} + \frac{0.0}{y_1} + \frac{0.4}{z_1}$, $\beta_2 = \frac{0.5}{x_1} + \frac{0.0}{y_1} + \frac{0.5}{z_1}$, $\beta_3 = \frac{0.5}{x_1} + \frac{0.5}{y_1} + \frac{0.5}{z_1}$ are defined as follows: Consider $\gamma_1 = \{0_X, \alpha_1, 1_X\}$, $\gamma_2 = \{0_X, \alpha_2, 1_X\}$ and $\eta_1 = \{0_Y, \beta_1, 1_Y\}$, $\eta_2 = \{0_Y, \beta_2, 1_Y\}$. Then (X, γ_1, γ_2) and (Y, η_1, η_2) are fuzzy bitopologies and $f : (X, \gamma_1, \gamma_2) \rightarrow (Y, \eta_1, \eta_2)$ defined by $f(a_1) = y_1$, $f(b_1) = y_1$, $f(c_1) = y_1$. Then we have $f^{-1}(\beta_1) = 0_X$, $f^{-1}(\beta_2) = 0_X$ and $f^{-1}(\beta_3) = \alpha_2$ are γ_2 -fuzzy δ -open sets on (X, γ_1, γ_2) , f is pairwise fuzzy δ -continuous. But for an η_1 -fuzzy δ -open set $\beta_2 \neq 0_Y$ on (Y, η_1, η_2) , $f^{-1}(\beta_2) = 0_X$. Hence f is not a somewhat pairwise fuzzy δ -irresolute continuous mapping.

Example 3. In Example 1, for an η_2 -fuzzy δ -open sets on (Y, η_1, η_2) , $f^{-1}(\beta_1) = \alpha_1$, $\alpha_1 \leq f^{-1}(\beta_2) = \alpha_2$ and $\alpha_1 \leq f^{-1}(\beta_3) = \alpha_3$. Since α_1 is a γ_1 -fuzzy δ -open set on (X, γ_1, γ_2) , f is somewhat pairwise fuzzy δ -continuous. But $f^{-1}(\sigma_3) = \alpha_3$ is not a γ_1 -fuzzy or γ_2 -fuzzy δ -open set on (X, γ_1, γ_2) . Hence f is not a pairwise fuzzy δ -continuous mapping.

Definition 2.3. A fuzzy set α on a fuzzy bitopological space (X, γ_1, γ_2) is called pairwise δ -dense fuzzy set if there exists no γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set β in (X, γ_1, γ_2) such that $\alpha < \beta < 1$.

Theorem 2.1. Let $f : (X, \gamma_1, \gamma_2) \rightarrow (Y, \eta_1, \eta_2)$ be a mapping. Then the following are equivalent:

- (1) *f* is somewhat pairwise fuzzy δ -irresolute continuous.
- (2) If β is an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set of (Y, η_1, η_2) such that $f^{-1}(\beta) \neq 1_X$, then there exists a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set $\alpha \neq 1_X$ of (X, γ_1, γ_2) such that $f^{-1}(\beta) \leq \alpha$.
- (3) If α is a pairwise δ -dense fuzzy set on (X, γ_1, γ_2) , then $f(\alpha)$ is a pairwise δ -dense fuzzy set on (Y, η_1, η_2) .

Proof.

(1) \Rightarrow (2): Let β be an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set on (Y, η_1, η_2) such that $f^{-1}(\beta) \neq 1_X$. Then β^c is an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set

M. SANKARI AND A. SWAMINATHAN

on (Y, η_1, η_2) and $f^{-1}(\beta^c) = (f^{-1}(\beta))^c \neq 0_X$. Since f is somewhat pairwise fuzzy δ -irresolute continuous, there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\lambda \neq 0_X$ on (X, γ_1, γ_2) such that $\lambda \leq f^{-1}(\beta^c)$. Let $\alpha = \lambda^c$. Then $\alpha \neq 1_X$ is a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set such that $f^{-1}(\beta) = 1 - f^{-1}(\beta^c) \leq 1 - \lambda = \lambda^c = \alpha$.

(2) \Rightarrow (3): Let α be a pairwise δ -dense fuzzy set on (X, γ_1, γ_2) and suppose $f(\alpha)$ is not pairwise δ -dense fuzzy set on (Y, η_1, η_2) . Then there exists an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set β on (Y, η_1, η_2) such that $f(\alpha) < \beta < 1$. Since $\beta < 1$ and $f^{-1}(\beta) \neq 1_X$, there exists a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set $\delta \neq 1_X$ such that $\alpha \leq f^{-1}(f(\alpha)) < f^{-1}(\beta) \leq \delta$. This contradicts the assumption that α is a pairwise δ -dense fuzzy set on (X, γ_1, γ_2) . Hence $f(\alpha)$ is a pairwise δ -dense fuzzy set on (Y, η_1, η_2) .

(3) \Rightarrow (1): Let $\beta \neq 0_Y$ be an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set on (Y, η_1, η_2) and let $f^{-1}(\beta) \neq 0_X$. Suppose that there exists no γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\alpha \neq 0_X$ on (X, γ_1, γ_2) such that $\alpha \leq f^{-1}(\beta)$. Then $(f^{-1}(\beta))^c$ is a γ_1 -fuzzy set or γ_2 -fuzzy set on (X, γ_1, γ_2) such that there is no γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set δ on (X, γ_1, γ_2) with $(f^{-1}(\beta))^c < \delta < 1$. In fact, if there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set δ^c such that $\delta^c \leq f^{-1}(\beta)$, then it is a contradiction. So $(f^{-1}(\beta))^c$ is a pairwise δ -dense fuzzy set on (X, γ_1, γ_2) . Then $f((f^{-1}(\beta))^c)$ is a pairwise δ -dense fuzzy set on (Y, η_1, η_2) . But $f((f^{-1}(\beta))^c) = f(f^{-1}(\beta^c)) \neq \beta^c < 1$. This is a contradiction to the fact that $f((f^{-1}(\beta))^c)$ is pairwise δ -dense fuzzy set on (Y, η_1, η_2) . Hence there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\alpha \neq 0_X$ on (X, γ_1, γ_2) such that $\alpha \leq f^{-1}(\beta)$. Consequently, f is somewhat pairwise fuzzy δ -irresolute continuous.

Theorem 2.2. Let $(X_1, \gamma_1, \gamma_2), (X_2, \omega_1, \omega_2), (Y_1, \eta_1, \eta_2), (Y_2, \sigma_1, \sigma_2)$ be fuzzy bitopological spaces. Let $(X_1, \gamma_1, \gamma_2)$ be product related to $(X_2, \omega_1, \omega_2)$ and let (Y_1, η_1, η_2) be product related to $(Y_2, \sigma_1, \sigma_2)$. If $f_1 : (X_1, \gamma_1, \gamma_2) \rightarrow (Y_1, \eta_1, \eta_2)$ and $f_2 : (X_2, \omega_1, \omega_2) \rightarrow (Y_2, \sigma_1, \sigma_2)$ is a somewhat pairwise fuzzy δ -irresolute continuous mappings, then the product $f_1 \times f_2 : (X_1, \gamma_1, \gamma_2) \times (X_2, \omega_1, \omega_2) \rightarrow (Y_1, \eta_1, \eta_2) \times (Y_2, \sigma_1, \sigma_2)$ is also somewhat pairwise fuzzy δ -irresolute continuous.

Proof. Let $\lambda = \bigvee_{i,j} (\alpha_i \times \beta_j)$ be η_i -fuzzy δ -open or σ_j -fuzzy δ -open set on $(Y_1, \eta_1, \eta_2) \times (Y_2, \sigma_1, \sigma_2)$ where $\alpha_i \neq 0_{Y_1}$ is η_i -fuzzy δ -open set and $\beta_j \neq 0_{Y_2}$ is σ_j -fuzzy δ -open set on (Y_1, η_1, η_2) and $(Y_2, \sigma_1, \sigma_2)$ respectively. Then $(f_1 \times f_2)^{-1}(\lambda) = \bigvee_{i,j} (f_1^{-1}(\alpha_i) \times f_2^{-1}(\beta_j))$.

9594

Since f_1 is somewhat pairwise fuzzy δ -irresolute continuous, there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\delta_i \neq 0_{X_1}$ such that $\delta_i \leq f_1^{-1}(\alpha_i) \neq 0_{X_1}$. And, since f_2 is somewhat pairwise fuzzy δ -irresolute continuous, there exists a ω_1 -fuzzy δ -open or ω_2 -fuzzy δ -open set $\alpha_j \neq 0_{X_2}$ such that $\alpha_j \leq f_2^{-1}(\beta_j) \neq 0_{X_2}$. Now $\delta_i \times \alpha_j \leq f_1^{-1}(\alpha_i) \times f_2^{-1}(\beta_j) = (f_1 \times f_2)^{-1}(\alpha_i \times \beta_j)$ and $\delta_i \times \alpha_j \neq 0_{X_1 \times X_2}$ is a δ_i -fuzzy δ -open or β_j -fuzzy δ -open set on $(X_1, \gamma_1, \gamma_2) \times (X_2, \omega_1, \omega_2)$. Hence $\bigvee_{i,j} (\delta_i \times \alpha_j) \neq 0_{X_1 \times X_2}$ is a γ_i -fuzzy δ -open or ω_j -fuzzy δ -open set on $(X_1, \gamma_1, \gamma_2) \times (X_2, \omega_1, \omega_2)$ such that $\bigvee_{i,j} (\delta_i \times \alpha_j) \leq \bigvee_{i,j} (f_1^{-1}(\alpha_i) \times f_2^{-1}(\beta_j)) = (f_1 \times f_2)^{-1} (\bigvee_{i,j} (\alpha_i \times \beta_j)) = (f_1 \times f_2)^{-1} (\lambda) \neq 0_{X_1 \times X_2}$. Therefore, $f_1 \times f_2$ is somewhat pairwise fuzzy δ -irresolute continuous.

Theorem 2.3. Let $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ be a mapping. If the graph $g : (X, \gamma_1, \gamma_2) \to (X, \gamma_1, \gamma_2) \times (Y, \eta_1, \eta_2)$ of f is a somewhat pairwise fuzzy δ -irresolute continuous mapping, then f is also somewhat pairwise fuzzy δ -irresolute continuous.

Proof. Let β be an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set on (Y, η_1, η_2) . Then $f^{-1}(\beta) = 1 \wedge f^{-1}(\beta) = g^{-1}(1 \times \beta)$. Since g is somewhat pairwise fuzzy δ -irresolute continuous and $1 \times \beta$ is a γ_i -fuzzy δ -open or η_j -fuzzy δ -open set on $(X, \gamma_1, \gamma_2) \times (Y, \eta_1, \eta_2)$, there exists a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\alpha \neq 0_X$ on (X, γ_1, γ_2) such that $\alpha \leq g^{-1}(1 \times \beta) = f^{-1}(\beta) \neq 0_X$. Therefore, f is somewhat pairwise fuzzy δ -irresolute continuous.

3. Somewhat pairwise fuzzy irresolute δ -open mappings

In this section, we introduce a somewhat pairwise fuzzy irresolute δ -open mapping and we characterize a somewhat pairwise fuzzy irresolute δ -open mapping.

Definition 3.1. A mapping $f : (X, \gamma_1, \gamma_2) \rightarrow (Y, \eta_1, \eta_2)$ is called pairwise fuzzy δ -open if $f(\alpha)$ is an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set on (Y, η_1, η_2) for any γ_1 -fuzzy open or γ_2 -fuzzy open set α on (X, γ_1, γ_2) .

Definition 3.2. A mapping $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ is called somewhat pairwise fuzzy δ -open if there exists an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set $\beta \neq 0_Y$ on (Y, η_1, η_2) such that $\beta \leq f(\alpha) \neq 0_Y$ for any γ_1 -fuzzy open or γ_2 -fuzzy open set α on (X, γ_1, γ_2) . **Definition 3.3.** A mapping $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ is called somewhat pairwise fuzzy irresolute δ -open if there exists an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set $\beta \neq 0_Y$ on (Y, η_1, η_2) such that $\beta \leq f(\alpha) \neq 0_Y$ for any γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set $\alpha \neq 0_X$ on (X, γ_1, γ_2) .

Theorem 3.1. Let $f : (X, \gamma_1, \gamma_2) \to (Y, \eta_1, \eta_2)$ be a bijection. Then the following are equivalent:

- (1) f is somewhat pairwise fuzzy irresolute δ -open.
- (2) If α is a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set on (X, γ_1, γ_2) such that $f(\alpha) \neq 1_Y$, then there exists an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set $\beta \neq 1_Y$ on (Y, η_1, η_2) such that $f(\alpha) < \beta$.

Proof.

(1) \Rightarrow (2): Let α be a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set on (X, γ_1, γ_2) such that $f(\alpha) \neq 1_Y$. Since f is bijective and α^c is a γ_1 -fuzzy δ -open or γ_2 fuzzy δ -open set on (X, γ_1, γ_2) , $f(\alpha^c) = (f(\alpha))^c \neq 0_Y$. And, since f is somewhat pairwise fuzzy irresolute δ -open mapping, there exists an η_1 -fuzzy δ -open or η_2 fuzzy δ -open set $\delta \neq 0_Y$ on (Y, η_1, η_2) such that $\delta < f(\alpha^c) = (f(\alpha))^c$. Consequently, $f(\alpha) < \delta^c = \beta \neq 1_Y$ and β is an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set on (Y, η_1, η_2) .

(2) \Rightarrow (1): Let α be a γ_1 -fuzzy δ -open or γ_2 -fuzzy δ -open set on (X, γ_1, γ_2) such that $f(\alpha) \neq 0_Y$. Then α^c is a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set on (X, γ_1, γ_2) and $f(\alpha^c) \neq 1_Y$. Hence there exists an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set $\beta \neq 1_Y$ on (Y, η_1, η_2) such that $f(\alpha^c) < \beta$. Since f is bijective, $f(\alpha^c) = (f(\alpha))^c < \beta$. Hence $\beta^c < f(\alpha)$ and $\beta^c \neq 0_X$ is an η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set on (Y, η_1, η_2) . Therefore, f is somewhat pairwise fuzzy irresolute δ -open.

Theorem 3.2. Let $f : (X, \gamma_1, \gamma_2) \rightarrow (Y, \eta_1, \eta_2)$ be a surjection. Then the following are equivalent:

- (1) f is somewhat pairwise fuzzy irresolute δ -open.
- (2) If β is a pairwise δ -dense fuzzy set on (Y, η_1, η_2) , then $f^{-1}(\beta)$ is a pairwise δ -dense fuzzy set on (X, γ_1, γ_2) .

Proof. (1) \Rightarrow (2): Let β be a pairwise δ -dense fuzzy set on (Y, η_1, η_2) . Suppose $f^{-1}(\beta)$ is not pairwise δ -dense fuzzy set on (X, γ_1, γ_2) . Then there exists a γ_1 -fuzzy δ -closed or γ_2 -fuzzy δ -closed set α on (X, γ_1, γ_2) such that $f^{-1}(\beta) < \alpha < 1$. Since f is somewhat pairwise fuzzy irresolute δ -open and α^c is a γ_1 -fuzzy δ -open or

9596

 γ_2 -fuzzy δ -open set on (X, γ_1, γ_2) , there exists an η_1 -fuzzy δ -open or η_2 -fuzzy δ open set $\delta \neq 0_Y$ on (Y, η_1, η_2) such that $\delta \leq f(Int\alpha^c) \leq f(\alpha^c)$. Since f is surjective, $\delta \leq f(\alpha^c) < f(f^{-1}(\beta^c)) = \beta^c$. Thus there exists an η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set δ^c on (Y, η_1, η_2) such that $\beta < \delta^c < 1$. This is a contradiction. Hence $f^{-1}(\beta)$ is pairwise δ -dense fuzzy set on (X, γ_1, γ_2) .

(2) \Rightarrow (1): Let α be a γ_1 -fuzzy open or γ_2 -fuzzy open set on (X, γ_1, γ_2) and $f(\alpha) \neq 0_Y$. Suppose there exists no η_1 -fuzzy δ -open or η_2 -fuzzy δ -open set $\beta \neq 0_Y$ on (Y, η_1, η_2) such that $\beta \leq f(\alpha)$. Then $(f(\alpha))^c$ is an η_1 -fuzzy set or η_2 -fuzzy set δ on (Y, η_1, η_2) such that there exists no η_1 -fuzzy δ -closed or η_2 -fuzzy δ -closed set δ on (Y, η_1, η_2) with $(f(\alpha))^c < \delta < 1$. This means that $(f(\alpha))^c$ is pairwise δ -dense fuzzy set on (X, γ_1, γ_2) . But $f^{-1}((f(\alpha))^c) = (f^{-1}(f(\alpha)))^c \leq \alpha^c < 1$. This is a contradiction to the fact that $f^{-1}(f(\beta))^c$ is pairwise δ -dense fuzzy set on (X, γ_1, γ_2) . Hence there exists an η_1 -fuzzy δ -open or η_1 -fuzzy δ -open set $\beta \neq 0_Y$ on (Y, η_1, η_2) such that $\beta \leq f(\alpha)$. Therefore, f is somewhat pairwise fuzzy irresolute δ -open.

REFERENCES

- [1] C. L. CHANG: Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [2] Z. PETRICEVIC: On fuzzy semi-regularization, separation properties and mappings, Indian J. Pure Appl. Math., **22**(12) (1991), 971–982.
- [3] S. SAHA: Fuzzy δ-continuous mappings, J. Math. Anal. Appl., **126**(1987), 130–142.
- [4] A. SWAMINATHAN, K. BALASUBRAMANIYAN: Somewhat fuzzy δ-irresolute continuous mappings, Ann. Fuzzy Math. Inform., 12(1) (2016), 121–126.
- [5] G. THANGARAJ, K. DINAKARAN: On somewhat fuzzy δ-continuous functions, Ann. Fuzzy Math. Inform., 10(3) (2015), 433–446.
- [6] L. A. ZADEH: Fuzzy sets, Information and control, 8(1965), 338–353.

DEPARTMENT OF MATHEMATICS LEKSHMIPURAM COLLEGE OF ARTS AND SCIENCE NEYYOOR, KANYAKUMARI, TAMIL NADU-629 802, INDIA. *Email address*: sankarisaravanan1968@gmail.com

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS) KUMBAKONAM, TAMIL NADU-612 002, INDIA. *Email address*: asnathanway@gmail.com