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IRREGULAR COLORING OF SOME SPECIAL GRAPHS

R. AVUDAINAYAKI1 AND D. YOKESH

ABSTRACT. For a graph G and a proper coloring c : V (G) → {1, 2, 3, . . . , k} of
the vertices of G for some positive integer k, the color code of a vertex v of
G (with respect to c) is the ordered (k + 1)-tuple code(v) = (a0, a1, a2, . . . , ak)

where a0 is the color assigned to v and 1 ≤ i ≤ k, ai is the number of vertices of
G adjacent to v that are colored i. The coloring c is irregular if distinct vertices
have distinct color codes and the irregular chromatic number χir(G) of G is
the minimum positive integer k for which G has an irregular k-coloring. In this
paper, we obtain the values of irregular coloring for SF (n, 1), friendship graph
and splitting graph of star graph.

1. INTRODUCTION

Let G(V,E) be simple connected graph. A proper coloring of a graph G is a
function c : V (G)→ N having the property that c(u) 6= c(v) for every pair u, v of
adjacent vertices of G. A k-coloring of G uses k colors. The chromatic number
χ(G) of G is the minimum integer k for which G admits a k-coloring. In a graph
G, a proper coloring c : V (G) → {1, 2, 3, . . . , k} of the vertices of G for some
positive integer k, the color code of a vertex v of G (with respect to c) is the
ordered (k+1)-tuple code(v) = (a0, a1, a2, . . . , ak), where a0 is the color assigned
to v and 1 ≤ i ≤ k, ai is the number of vertices ofG adjacent to v that are colored
i. The coloring c is irregular if distinct vertices have distinct color codes and the
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irregular chromatic number χir(G) of G is the minimum positive integer k for
which G has an irregular k-coloring. Irregular coloring were introduced in [4]
and studied further in [5] inspired by the problem in graph theory concerns
finding means to distinguish all the vertices of a connected graph. Further some
more results of irregular coloring of graphs are discussed in [1,2,6]. For graph
theoretic terminology we refer to Harary [3]. In this paper, we find that the
irregular coloring of SF (n, 1) graph, friendship graph and splitting graph of star
graph.

2. MAIN RESULTS

Definition 2.1. An SF (n,m) is a graph consisting of a cycle Cn, n ≥ 3 and n set
of m independent vertices where each set joins each of the vertices of Cn.

Theorem 2.1. Let G = SF (n, 1), where n ≥ 3. Then 2
(
k−1
2

)
+ 1 ≤ n ≤ 2

(
k
2

)
if

and only if χir(G) = k.

Proof. Let V (G) = {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and E(G) = {uivi; 1 ≤ i ≤
n} ∪ {uiui+1; 1 ≤ i ≤ n − 1} ∪ unu1. Assume that χir(G) = k. We have to prove
that 2

(
k−1
2

)
+ 1 ≤ n ≤ 2

(
k
2

)
. Assume to the contrary that n ≥ 2

(
k
2

)
+ 1 or

n ≤ 2
(
k−1
2

)
.

Case (i): n ≥ 2
(
k
2

)
+ 1

Let A1, A2, . . . , A( k
2 )
, A′1, A

′
2, . . . , A

′
( k
2 )

be the 2
(
k
2

)
distinct 2 element subsets of

the set {1, 2, . . . , k}, where Al = (i, j) and A′l = (j, i), 1 ≤ i, j ≤ k; 1 ≤ l ≤
(
k
2

)
and by our assumption n ≥ 2

(
k
2

)
+ 1, it follows that there exists two vertices

ui, vj ∈ V (G) such that code(ui) 6= code(vj), which is a contradiction. Hence
n ≤ 2

(
k
2

)
.

Case (ii): n ≤ 2
(
k−1
2

)
Let A1, A2, . . . , A( k

2 )
, A′1, A

′
2, . . . , A

′
( k
2 )

be the 2
(
k−1
2

)
distinct 2 element subsets

of the set {1, 2, 3, . . . , k − 1}. We can define a coloring c of G by assigning the 2
distinct colors in Al and A′l to the n vertices of V (G), where 1 ≤ l ≤

(
k−1
2

)
. Since

n ≤ 2
(
k−1
2

)
. Hence c is an irregular coloring with at most k − 1 colors. Thus

χir(G) ≤ k− 1, this is a contradiction to our assumption. Hence n ≤ 2
(
k−1
2

)
+1.

From the above two cases, we get 2
(
k−1
2

)
+ 1 ≤ n ≤ 2

(
k
2

)
.

Conversely, assume that 2
(
k−1
2

)
+ 1 ≤ n ≤ 2

(
k
2

)
and to prove χir(G) = k.
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Let A1, A2, . . . , A( k
2 )
, A′1, A

′
2, . . . , A

′
( k
2 )

be the 2
(
k
2

)
distinct 2 element subsets of

the set {1, 2, 3, . . . , k}. Since n ≤ 2
(
k
2

)
, we can define a coloring c of G by

assigning the 2 distinct colors in Al and A′l to the 2n vertices of V (G). By the
argument used in Case (ii), this coloring is irregular and uses at most k colors.
Thus χir(G) ≤ k. On the other hand, since n ≥ 2

(
k−1
2

)
+1 and there are 2

(
k−1
2

)
distinct subsets in {1, 2, . . . , k − 1}, the argument used in Case (i) shows that
there is no irregular coloring of G using k − 1 or fewer colors. Thus χir(G) ≥ k

and so χir(G) = k. �

Definition 2.2. The friendship graph Fn is one-point union of n copies of cycle C3.

Theorem 2.2. Let G = Fn be a friendship graph. Then
(
k−1
2

)
+ 1 ≤ n ≤

(
k
2

)
if

and only if χir(G) = k + 1.

Proof. Let G = Fn be a friendship graph. Assume that χir(G) = k + 1. Let

V (G) = {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} ∪ w

and
E(G) = {uivi; 1 ≤ i ≤ n} ∪ {wui; 1 ≤ i ≤ n} ∪ {wvi; 1 ≤ i ≤ n}

with deg(w) = 2n. Assign c(w) = k + 1. We have to prove that
(
k−1
2

)
+ 1 ≤ n ≤(

k
2

)
. Assume to the contrary that n ≥

(
k
2

)
+ 1 or n ≥

(
k−1
2

)
.

Case (i): n ≥
(
k
2

)
+ 1

LetA1, A2, . . . , A( k
2 )

be the
(
k
2

)
distinct 2 element subsets of the set {1, 2, 3, . . . , k},

where Al = (i, j) 1 ≤ i, j ≤ k; 1 ≤ l ≤
(
k
2

)
and by our assumption n ≥

(
k
2

)
+ 1,

it follows that there exists two pair of vertices (ul, vl) and (um, vm) such that
code(ul) = code(um) and code(vl) = code(vm) , which is a contradiction. Hence
n ≤

(
k
2

)
.

Case (ii): n ≥
(
k−1
2

)
Let A1, A2, . . . , A( k−1

2 ) be the
(
k−1
2

)
distinct 2 element subsets of the set

{1, 2, 3, . . . , k − 1}. We can define a coloring c of G by assigning the 2 distinct
colors in Al to the n vertices of V (G), where 1 ≤ l ≤

(
k−1
2

)
. Since n ≥

(
k−1
2

)
.

Then c is an irregular coloring with at most k − 1 colors and c(w) = 1. Thus
χir(G) ≤ k, which is a contradiction to our assumption. Hence n ≥

(
k−1
2

)
+ 1.

From the above two cases we get
(
k−1
2

)
+ 1 ≤ n ≤

(
k
2

)
.

Conversely, assume that
(
k−1
2

)
+1 ≤ n ≤

(
k
2

)
and to prove χir(G) = k+1. Let

A1, A2, . . . , A( k
2 )

be the
(
k
2

)
distinct 2 element subsets of the set {1, 2, 3, . . . , k}.
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Since n ≤
(
k
2

)
, we can define a coloring of G by assigning the 2 distinct colors

in Al to the n vertices of V (G). By the argument used in Case (ii), this coloring
is irregular and uses at most k colors. Assign c(w) = k+ 1. Thus χir(G) ≤ k+ 1.
On the other hand, Since n ≥

(
k−1
2

)
+ 1 and there are

(
k−1
2

)
+ 1 distinct subsets

in {1, 2, . . . , k−1}, the argument used in case (i) shows that there is no irregular
coloring ofG using k−1 or fewer colors. Assign c(w) = k+1. Thus χir(G) ≥ k+1

and hence χir(G) = k + 1. �

Definition 2.3. A tree containing exactly one vertex which is not a pendent vertex
is called a star graph K1,n. For a graph G, the splitting graph Spl(G) of a graph
G is obtained by adding a new vertex v′ corresponding to each vertex v of G such
that N(v) = N(v′).

Theorem 2.3. If G is a splitting graph of K1,n then χir(S(K1,n)) = n+ 1.

Proof. Let G be a splitting graph of K1,n with vertices V (G) = {v, v1, v2, . . . , vn,
v′, v′1, v

′
2, . . . , v

′
n} and E(G) = {vvi; 1 ≤ i ≤ n} ∪ {viv′; 1 ≤ i ≤ n} ∪ {v′v′i; 1 ≤

i ≤ n}. First to prove that χir(S(K1,n)) ≥ n + 1. In G, N(v′i) = N(v′j) for all
1 ≤ i, j ≤ n. Therefore, we need n distinct colors for the vertices set {vi} and
{v′i}, where 1 ≤ i ≤ n, since N(vi) 6= N(v′i). But v′ is adjacent to all the vertices
of v′i, 1 ≤ i ≤ n. Hence assign the color n+ 1 to v′. Thus χir(S(K1,n)) ≥ n+ 1.
Next to prove that χir(S(K1,n)) ≤ n+1. The following n+1 coloring for S(K1,n)

is irregular. For 1 ≤ i ≤ n, assign the color i for vi and v′i, i+1 for v and v′.Since
deg(vi) 6= deg(v′i) and deg(v) 6= deg(v′). It follows that code(vi) 6= code(v′i) and
code(v) 6= code(v′). Hence χir(S(K1,n)) 6= n + 1. Thus, we get χir(S(K1,n)) =

n+ 1. �
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