ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9599–9603 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.64 Spec. Iss. on ICRTAMS-2020

IRREGULAR COLORING OF SOME SPECIAL GRAPHS

R. AVUDAINAYAKI¹ AND D. YOKESH

ABSTRACT. For a graph G and a proper coloring $c: V(G) \rightarrow \{1, 2, 3, ..., k\}$ of the vertices of G for some positive integer k, the color code of a vertex v of G (with respect to c) is the ordered (k + 1)-tuple $code(v) = (a_0, a_1, a_2, ..., a_k)$ where a_0 is the color assigned to v and $1 \le i \le k$, a_i is the number of vertices of G adjacent to v that are colored i. The coloring c is irregular if distinct vertices have distinct color codes and the irregular chromatic number $\chi_{ir}(G)$ of G is the minimum positive integer k for which G has an irregular k-coloring. In this paper, we obtain the values of irregular coloring for SF(n, 1), friendship graph and splitting graph of star graph.

1. INTRODUCTION

Let G(V, E) be simple connected graph. A proper coloring of a graph G is a function $c: V(G) \to N$ having the property that $c(u) \neq c(v)$ for every pair u, v of adjacent vertices of G. A k-coloring of G uses k colors. The chromatic number $\chi(G)$ of G is the minimum integer k for which G admits a k-coloring. In a graph G, a proper coloring $c: V(G) \to \{1, 2, 3, \ldots, k\}$ of the vertices of G for some positive integer k, the color code of a vertex v of G (with respect to c) is the ordered (k+1)-tuple $code(v) = (a_0, a_1, a_2, \ldots, a_k)$, where a_0 is the color assigned to v and $1 \leq i \leq k$, a_i is the number of vertices of G adjacent to v that are colored i. The coloring c is irregular if distinct vertices have distinct color codes and the

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. irregular coloring, irregular chromatic number.

R. AVUDAINAYAKI AND D. YOKESH

irregular chromatic number $\chi_{ir}(G)$ of G is the minimum positive integer k for which G has an irregular k-coloring. Irregular coloring were introduced in [4] and studied further in [5] inspired by the problem in graph theory concerns finding means to distinguish all the vertices of a connected graph. Further some more results of irregular coloring of graphs are discussed in [1, 2, 6]. For graph theoretic terminology we refer to Harary [3]. In this paper, we find that the irregular coloring of SF(n, 1) graph, friendship graph and splitting graph of star graph.

2. MAIN RESULTS

Definition 2.1. An SF(n,m) is a graph consisting of a cycle C_n , $n \ge 3$ and n set of m independent vertices where each set joins each of the vertices of C_n .

Theorem 2.1. Let G = SF(n, 1), where $n \ge 3$. Then $2\binom{k-1}{2} + 1 \le n \le 2\binom{k}{2}$ if and only if $\chi_{ir}(G) = k$.

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\}$ and $E(G) = \{u_i v_i; 1 \le i \le n\} \cup \{u_i u_{i+1}; 1 \le i \le n-1\} \cup u_n u_1$. Assume that $\chi_{ir}(G) = k$. We have to prove that $2\binom{k-1}{2} + 1 \le n \le 2\binom{k}{2}$. Assume to the contrary that $n \ge 2\binom{k}{2} + 1$ or $n \le 2\binom{k-1}{2}$.

Case (i): $n \ge 2\binom{k}{2} + 1$

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}, A'_1, A'_2, \ldots, A'_{\binom{k}{2}}$ be the $2\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, \ldots, k\}$, where $A_l = (i, j)$ and $A'_l = (j, i), 1 \le i, j \le k; 1 \le l \le \binom{k}{2}$ and by our assumption $n \ge 2\binom{k}{2} + 1$, it follows that there exists two vertices $u_i, v_j \in V(G)$ such that $code(u_i) \ne code(v_j)$, which is a contradiction. Hence $n \le 2\binom{k}{2}$.

Case (ii): $n \leq 2\binom{k-1}{2}$ Let $A_1, A_2, \ldots, A_{\binom{k}{2}}, A'_1, A'_2, \ldots, A'_{\binom{k}{2}}$ be the $2\binom{k-1}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k-1\}$. We can define a coloring c of G by assigning the 2 distinct colors in A_l and A'_l to the n vertices of V(G), where $1 \leq l \leq \binom{k-1}{2}$. Since $n \leq 2\binom{k-1}{2}$. Hence c is an irregular coloring with at most k-1 colors. Thus $\chi_{ir}(G) \leq k-1$, this is a contradiction to our assumption. Hence $n \leq 2\binom{k-1}{2}+1$. From the above two cases, we get $2\binom{k-1}{2}+1 \leq n \leq 2\binom{k}{2}$.

Conversely, assume that $2\binom{k-1}{2} + 1 \le n \le 2\binom{k}{2}$ and to prove $\chi_{ir}(G) = k$.

9600

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}, A'_1, A'_2, \ldots, A'_{\binom{k}{2}}$ be the $2\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$. Since $n \leq 2\binom{k}{2}$, we can define a coloring c of G by assigning the 2 distinct colors in A_l and A'_l to the 2n vertices of V(G). By the argument used in Case (ii), this coloring is irregular and uses at most k colors. Thus $\chi_{ir}(G) \leq k$. On the other hand, since $n \geq 2\binom{k-1}{2} + 1$ and there are $2\binom{k-1}{2}$ distinct subsets in $\{1, 2, \ldots, k - 1\}$, the argument used in Case (i) shows that there is no irregular coloring of G using k - 1 or fewer colors. Thus $\chi_{ir}(G) \geq k$ and so $\chi_{ir}(G) = k$.

Definition 2.2. The friendship graph F_n is one-point union of n copies of cycle C_3 .

Theorem 2.2. Let $G = F_n$ be a friendship graph. Then $\binom{k-1}{2} + 1 \le n \le \binom{k}{2}$ if and only if $\chi_{ir}(G) = k + 1$.

Proof. Let $G = F_n$ be a friendship graph. Assume that $\chi_{ir}(G) = k + 1$. Let

$$V(G) = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\} \cup w$$

and

$$E(G) = \{u_i v_i; 1 \le i \le n\} \cup \{w u_i; 1 \le i \le n\} \cup \{w v_i; 1 \le i \le n\}$$

with deg(w) = 2n. Assign c(w) = k + 1. We have to prove that $\binom{k-1}{2} + 1 \le n \le \binom{k}{2}$. Assume to the contrary that $n \ge \binom{k}{2} + 1$ or $n \ge \binom{k-1}{2}$.

Case (i): $n \ge \binom{k}{2} + 1$

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}$ be the $\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$, where $A_l = (i, j) \ 1 \le i, j \le k; \ 1 \le l \le \binom{k}{2}$ and by our assumption $n \ge \binom{k}{2} + 1$, it follows that there exists two pair of vertices (u_l, v_l) and (u_m, v_m) such that $code(u_l) = code(u_m)$ and $code(v_l) = code(v_m)$, which is a contradiction. Hence $n \le \binom{k}{2}$.

Case (ii): $n \ge \binom{k-1}{2}$

Let $A_1, A_2, \ldots, A_{\binom{k-1}{2}}$ be the $\binom{k-1}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k-1\}$. We can define a coloring c of G by assigning the 2 distinct colors in A_l to the n vertices of V(G), where $1 \leq l \leq \binom{k-1}{2}$. Since $n \geq \binom{k-1}{2}$. Then c is an irregular coloring with at most k-1 colors and c(w) = 1. Thus $\chi_{ir}(G) \leq k$, which is a contradiction to our assumption. Hence $n \geq \binom{k-1}{2} + 1$. From the above two cases we get $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$.

Conversely, assume that $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$ and to prove $\chi_{ir}(G) = k + 1$. Let $A_1, A_2, \ldots, A_{\binom{k}{2}}$ be the $\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$.

R. AVUDAINAYAKI AND D. YOKESH

Since $n \leq {\binom{k}{2}}$, we can define a coloring of G by assigning the 2 distinct colors in A_l to the n vertices of V(G). By the argument used in Case (ii), this coloring is irregular and uses at most k colors. Assign c(w) = k + 1. Thus $\chi_{ir}(G) \leq k + 1$. On the other hand, Since $n \geq {\binom{k-1}{2}} + 1$ and there are ${\binom{k-1}{2}} + 1$ distinct subsets in $\{1, 2, \ldots, k-1\}$, the argument used in case (i) shows that there is no irregular coloring of G using k-1 or fewer colors. Assign c(w) = k+1. Thus $\chi_{ir}(G) \geq k+1$ and hence $\chi_{ir}(G) = k + 1$.

Definition 2.3. A tree containing exactly one vertex which is not a pendent vertex is called a star graph $K_{1,n}$. For a graph G, the splitting graph Spl(G) of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

Theorem 2.3. If G is a splitting graph of $K_{1,n}$ then $\chi_{ir}(S(K_{1,n})) = n + 1$.

Proof. Let G be a splitting graph of $K_{1,n}$ with vertices $V(G) = \{v, v_1, v_2, \ldots, v_n, v', v'_1, v'_2, \ldots, v'_n\}$ and $E(G) = \{vv_i; 1 \le i \le n\} \cup \{v_iv'; 1 \le i \le n\} \cup \{v'v'_i; 1 \le i \le n\} \cup \{v'v'_i; 1 \le i \le n\}$. First to prove that $\chi_{ir}(S(K_{1,n})) \ge n + 1$. In G, $N(v'_i) = N(v'_j)$ for all $1 \le i, j \le n$. Therefore, we need n distinct colors for the vertices set $\{v_i\}$ and $\{v'_i\}$, where $1 \le i \le n$, since $N(v_i) \ne N(v'_i)$. But v' is adjacent to all the vertices of $v'_i, 1 \le i \le n$. Hence assign the color n + 1 to v'. Thus $\chi_{ir}(S(K_{1,n})) \ge n + 1$. Next to prove that $\chi_{ir}(S(K_{1,n})) \le n + 1$. The following n + 1 coloring for $S(K_{1,n})$ is irregular. For $1 \le i \le n$, assign the color i for v_i and $v'_i, i + 1$ for v and v'. Since $deg(v_i) \ne deg(v'_i)$ and $deg(v) \ne deg(v')$. It follows that $code(v_i) \ne code(v'_i)$ and $code(v) \ne code(v')$. Hence $\chi_{ir}(S(K_{1,n})) \ne n + 1$. Thus, we get $\chi_{ir}(S(K_{1,n})) = n + 1$.

REFERENCES

- A. ROHINI, M. VENKATACHALAM: On irregular colorings of double wheel graph families, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 68(1) (2019), 944–949.
- [2] A. ROHINI, M. VENKATACHALAM: On irregular colorings of fan graph families, IOP Conf. Ser. J. Phys., 1139(1-6) (2018), 1–6.
- [3] F. HARARY: Graph theory, Addison-Wesley Publ. Comp., Reading, Massachusettes, 1969.
- [4] M. RADCLIFFE, P. ZHANG: Irregular colorings of graphs, Bull. Inst. Combin. Appl., 49(2007), 41–59.
- [5] M. RADCLIFFE, P. ZHANG: On irregular colorings of graphs, AKCE J. Graphs. Combin., 3(2) (2006), 175–191.

9602

[6] R. AVUDAINAYAKI, B. SELVAM, K. THIRUSANGU: Irregular Coloring Of Some Classes Of Graphs, International Journal of Pure and Applied Mathematics, 109(10) (2016), 119– 127.

DEPARTMENT OF MATHEMATICS SRI SAIRAM INSTITUTE OF TECHNOLOGY CHENNAI-44, INDIA Email address: avuramesh2004@gmail.com

DEPARTMENT OF MATHEMATICS SMK FOMRA INSTITUTE OF TECHNOLOGY CHENNAI-03, INDIA *Email address*: yokeshzabin@yahoo.com