ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9605–9610 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.65 Spec. Iss. on ICRTAMS-2020

EDGE ODD GRACEFUL LABELING OF SOME CYCLE RELATED GRAPHS

B. AMBIKA¹ AND G. BALASUBRAMANIAN

ABSTRACT. A labeling of a graph G with α vertices and β edges is called an edge odd graceful labeling if there is an edge labeling with odd numbers to all edges such that each vertex is assigned a label which is the sum $\mod (2\gamma)$ of labels of edge incident on it, where $\gamma = max\{\alpha, \beta\}$ and the induced vertex labels are distinct.

1. INTRODUCTION

For graph theoretical terminology and notation, we in general follow [1]. In this paper we assume that the graph G is simple, connected, finite and undirected. Rosa [5] introduced a labeling of G called β - valuation, later on Soloman W. Golomb [4] called as "graceful labeling" which is an injection f from the set of vertices V(G) to the set $\{0, 1, 2, \ldots, \beta\}$ such that when each edge e = stis assigned the label |f(s) - f(t)|, the resulting edge labels are distinct. A graph which admits a graceful labeling is called a graceful graph. In 1991, Gnanajothi [3] introduced a labeling of G called odd graceful labeling which is an injection f from the set of vertices V(G) to the set $\{0, 1, 2, \ldots, 2\beta - 1\}$ such that when each edge e = st is assigned the label |f(s) - f(t)|, the resulting edge labels are $\{1, 3, \ldots, 2\beta - 1\}$. A graph which admits an odd graceful labeling is called an odd graceful graph.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C15, 05C22.

Key words and phrases. graceful labeling, edge odd graceful labeling.

In 2009, Solairaju and Chitra [6] introduced a labeling of G called edge odd graceful labeling of G, which is a bijection f from the set of edges E(G) to the set $\{1, 3, \ldots, 2\beta - 1\}$ such that the induced map f^* from the set of vertices V(G) to $\{0, 1, 2, \ldots, 2\beta - 1\}$ given by $f^*(s) = \sum_{st \in E(G)} f(st) \pmod{2\beta}$ is a bijection. A graph which admits edge odd graceful labeling is called an edge odd graceful graph.

Recently, Daoud [2] has established that for $n \ge 3$ the friendship graphs $Fr_n^{(3)}$, $Fr_n^{(4)}$, $\overline{F}r_n^{(3)}$, the wheel graph $W_n = K_1 + C_n$, helm graph H_n , web graph Wb_n , double wheel graph $W_{n,n}$, fan graph $F_n = K_1 + P_n$, gear graph G_n , half gear graph HG_n , double fan graph and polar grid $P_{m,n}$ are edge odd graceful graphs. In this paper, we proved that flower petals graph is an edge odd graceful.

2. Results

The flower petals graph Fp_n^4 with 3n + 1 vertices and 5n edges is constructed by joining n copies of the $K_4 - e$ with a common vertex.

FIGURE 1

FIGURE 2

Theorem 2.1. For $n \ge 2$, $n \not\equiv 3 \pmod{10}$ and $n \not\equiv 5 \pmod{10}$, the flower petals graph Fp_n^4 is an edge odd graceful graph.

Proof. In this graph, the number of vertices is $\alpha = 3n + 1$, number of edges is $\beta = 5n$ and $\gamma = max\{\alpha, \beta\} = 5n$.

Case 1. n is even.

Label the outer edges t_1s_1 , t_1s_2 , t_2s_3 , t_2s_4 ... t_ns_{2n-1} , t_ns_{2n} by $1, 3, 5, \ldots, 4n - 3, 4n-1$ and label the inner edges $t_0s_1, t_0s_2, t_0s_3, \ldots t_0s_{2n}$, by $4n+1, 4n+3, \ldots, 8n-1$, then label the middle edges $t_0t_1, t_0t_2, t_0t_3, \ldots t_0t_n$, by $8n + 1 \pmod{2\gamma}, 8n + 3 \pmod{2\gamma}, 8n + 5 \pmod{2\gamma}, \ldots, (10n-1) \pmod{2\gamma}$. Hence, the induced labeling of vertices $t_1, t_2, t_3, \ldots, t_n$ are $(8n + 5) \pmod{2\gamma}, (8n + 15) \pmod{2\gamma}, \ldots (18n - 5) \pmod{2\gamma}$, the induced labeling of vertices $s_1, s_2, s_3, \ldots s_{2n}$ are $(4n + 2) \pmod{2\gamma}, (4n + 6) \pmod{2\gamma}, \ldots (12n - 2) \pmod{2\gamma}$ and induced vertex labeling of t_0 is $(21n^2) \pmod{2\gamma}$. Figure 1 shows the labeling for n even.

Case 2. n is odd.

Label the middle edges t_0t_1 , t_0t_2 , t_0t_3 , ..., t_0t_n by 1, 3, 5, ..., 2n - 1 and label the inner edges $t_0s_1, t_0s_2, t_0s_3, ..., t_0s_{2n}$, by 2n + 1, 2n + 3, ..., 6n - 1, then label the

outer edges $t_1s_1, t_1s_2, t_2s_3, t_2s_3, \dots, t_ns_{2n-1}, t_ns_{2n}$, by $(6n + 1)(\mod 2\gamma), (6n + 3)(\mod 2\gamma), (6n + 5)(\mod 2\gamma), (6n + 7)(\mod 2\gamma), \dots$,

 $(10n - 1)(\mod 2\gamma)$. Hence, the induced labeling of vertices $t_1, t_2, t_3, \ldots t_n$ are $2n + 5, 2n + 15 \ldots 2n - 5$, the induced labeling of vertices $s_1, s_2, s_3, \ldots s_{2n}$ are $8n + 2, 8n + 6, \ldots (16n - 2)(\mod 2k)$ and induced vertex labeling of t_0 is $9n^2(\mod 2\gamma)$. Figure 2 shows the labeling for n odd. Thus, the graph is edge odd graceful.

FIGURE 3

The following figure shows the illustration for $F_{C_5}^7$.

Theorem 2.2. For $n \ge 3$, and n odd, then the graph $F_{C_5}^n$ is an edge odd graceful graph.

Proof. In this graph, the number of vertices is $\alpha = 4n + 1$, number of edges is $\beta = 5n$ and $\gamma = max\{\alpha, \beta\} = 5n$.

Let the graph $F_{C_5}^n$ be as in Figure 3. The cycles C_5 in it are $C_5^1, C_5^2, C_5^3, \ldots, C_5^n$ and the middle vertex is t_0 . Name the vertices of C_5^i by $t_{4i-3}, t_{4i-2}, t_{4i-1}, t_{4i}$ for

FIGURE 4

 $i \in \{1, 2, 3, ..., n\}$. Now, label the edges of C_5^i for $i \in \{1, 2, 3, ..., n\}$ by $t_0t_1, t_0t_5, t_0t_9, ..., t_0t_{4n-3}$ by 1, 11, 21 ... $10n - 9, t_0t_4, t_0t_8, t_0t_{12}, ..., t_0t_{4n}$ by 9, 19, 29, ... 10n - 1; label the edges $t_1t_2, t_5t_6, ..., t_{4n-3}t_{4n-2}$ by 3, 13, 23, ..., 10n - 7; label the edges $t_4t_3, t_8t_7, ..., t_{4n}t_{4n-1}$ by 7, 17, 27, ..., 10n - 3; label the edges $t_2t_3, t_6t_7, t_{10}t_{11}, \ldots, t_{4n-2}t_{4n-1}$ by 5, 15, 25, ..., 10n - 5. Hence, the induced labeling of vertices $t_1, t_2, t_3, \ldots, t_{4n-1}, t_{4n}$ are $4, 8, 12, \ldots, (20n - 4)(\mod 2\gamma)$, and the induced vertex labeling of t_0 is $10n^2(\mod 2\gamma) = 0$. Figure 3 shows the labeling for this case. Thus, the graph is edge odd graceful.

REFERENCES

- [1] R. BALAKRISHNAN, K. RANGANATHAN: A Textbook of Graph Theory, Springer-Verlag, New York, 2000.
- [2] S. DAOUD: *Edge odd graceful lableling of some path and cycle related graphs*, AKCE International Journal of Graphs and Combinatorics, **14**(2017), 178–203.
- [3] R. B. GNANAJOTHI: *Topics in Graph Theory*, Ph D. Thesis, Madurai Kamaraj University, 1991.

B. AMBIKA AND G. BALASUBRAMANIAN

- [4] S. W. GOLOMB: *How to number a graph*, Graph Theory and computing, R.C.Read(Ed), Academic Press, New York, (1972), 23–37.
- [5] A. ROSA: *On Certain valuations of the vertices of a graph*, Theory of graphs, Internat. Symp. Rome, July 1966, 349–355.
- [6] A. SOLAIRAJU, K. CHITRA: *Edge-odd graceful graphs*, Electron. Notes Discrete Math., **33**(2009), 15–20.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR WOMEN KRISHNAGIRI-635 002,TAMIL NADU, INDIA. *Email address*: ambi3900@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR MEN KRISHNAGIRI-635 002, TAMIL NADU, INDIA. *Email address*: gbs_geetha@yahoo.com