

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9619–9627 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.67 Spec. Iss. on ICRTAMS-2020

OBTAIN NEW SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING HADAMARD PRODUCT OF LINEAR OPERATOR WITH POLYLOGARITHM FUNCTIONS

M. THIRUCHERAN, M. VINOTHKUMAR, AND T. STALIN¹

ABSTRACT. In this article, we explore some standard properties for the new subclass $\mathcal{P}_{\delta,b}^{n,\lambda}(\phi(\zeta))$ of analytic function which is associated with the differential operator $\mathcal{G}_{\delta}^{n,\lambda}f(\zeta)$ and also we obtain Briot-Bouquet differential subordination, coefficient inequalities, integral means of inequalities, extreme points and distortion of the class of polylogarithms functions.

1. INTRODUCTION

Let $f(\zeta)$ be the form of analytic functions of class \mathcal{A} ,

(1.1)
$$f(\zeta) = \zeta + \sum_{k=2}^{\infty} a_k \zeta^k,$$

which are analytic function in $\mathcal{U} = \zeta$: $|\zeta| < 1$, where \mathcal{U} is the unit disc. Let the function $f(\zeta)$ is given by (1.1) and $g(\zeta)$ is given by

$$g(\zeta) = \zeta + \sum_{k=2}^{\infty} b_k \zeta^k,$$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. analytic functions, univalent functions, polylogarithm functions, Hadamard product, derivative operator.

then the Hadamard product of $f(\zeta)$ and $g(\zeta)$ is expressed by

$$(f * g)(\zeta) = \zeta + \sum_{k=2}^{\infty} a_k b_k \zeta^k.$$

For $f \in A$, Al-Oboudi [2] introduced the following differential operator:

$$\mathcal{D}_{\delta}^{n} f(\zeta) = \zeta + \sum_{k=2}^{\infty} [1 + (k-1)\delta]^{n} a_{k} \zeta^{k}, \qquad (n \in N_{0} = N \cup \{0\}, \delta > 0 : \zeta \in \mathcal{U}).$$

For $f \in A$, Ruscheweyh [9] introduced the following differential operator:

$$\mathcal{R}^{\lambda}f(\zeta) = \frac{\zeta}{(1-\zeta)^{\lambda+1}} * f(\zeta) = \zeta + \sum_{k=2}^{\infty} \frac{(\lambda+k-1)!}{\lambda!(k-1)!} a_k \zeta^k, \quad (\lambda > -1).$$

Now consider the Polylogarithm function $I(n, \delta)$ given by

$$I(n,\delta) = \sum_{k=1}^{\infty} \frac{\zeta^k}{[1+(k-1)\delta]^n}.$$

Note that $I(-1,1) = \frac{\zeta}{(1-\zeta)^2}$ for $k = 1, 2, 3, \ldots$ is Koebe function. For more details about polylogarithms in the theory of univalent functions see Ponnusamy and Sabapathy [7], K. Al Shaqsi and M. Daraus [4], and Ponnusamy [8].

Now we introduce a function $I^{\kappa}(n, \delta)$ given by

$$I(n,\delta) * I^{\kappa}(n,\delta) = \frac{\zeta}{(1-\zeta)^{\lambda+1}}, \qquad (\lambda > -1, n \in \mathbb{Z})$$

and obtain the linear operator

(1.2)
$$\mathcal{G}_{\delta}^{n,\lambda}f(\zeta) = I^{\kappa}(n,\delta) * f(\zeta).$$

Now we find the explicit form of the function

$$I^{\kappa}(n,\delta) = \sum_{k=1}^{\infty} [1 + (k-1)\delta]^n \frac{(\lambda+k-1)!}{\lambda!(k-1)!} \zeta^k.$$

From equation (1.2), we define

$$\mathcal{G}^{n,\lambda}_{\delta}f(\zeta) = \sum_{k=2}^{\infty} [1 + (k-1)\delta]^n \frac{(\lambda+k-1)!}{\lambda!(k-1)!} a_k \zeta^k.$$

Note that $\mathcal{G}_1^{n,0} = \mathcal{D}^n, \mathcal{G}_1^{0,\lambda} = \mathcal{D}^\lambda$ which give the Salagean differential operator [10] and Ruscheweyh differential operator [9] respectively. It is obvious that the operator $\mathcal{G}_{\delta}^{n,\lambda}$ includes two well known operators. Also note that $\mathcal{G}_1^{0,0} = f(\zeta)$ and $\mathcal{G}_1^{0,1} = \mathcal{G}_1^{1,0} = \zeta f'(\zeta)$.

Let p be the class of functions of the form $p(\zeta) = 1 + p_1\zeta + p_2\zeta^2 + ...$, analytic in \mathcal{U} , which satisfy $Re \{p(\zeta)\} > 0$.

Definition 1.1. We define $\mathcal{P}_{\delta,b}^{n,\lambda}(\phi(\zeta))$ be the class of functions $f \in \mathcal{A}$ for which

$$1 + \frac{1}{b} \left(\frac{\zeta(\mathcal{G}^{n,\lambda}_{\delta} f(\zeta))'}{\mathcal{G}^{n,\lambda}_{\delta} f(\zeta)} - 1 \right) \prec \phi(\zeta),$$

where $n, \lambda \in N_0, \delta > 0, b > 0, \phi \in p; \zeta \in \mathcal{U}$.

Definition 1.2. For $\phi(\zeta) = \frac{1+(1-2\beta)\zeta}{(1-\zeta)}$, we define $\mathcal{P}_{\delta,b}^{n,\lambda}(\phi(\zeta)) \equiv \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$ be the class of functions $f \in \mathcal{A}$ for which

$$1 + \frac{1}{b} \left(\frac{\zeta(\mathcal{G}^{n,\lambda}_{\delta} f(\zeta))'}{\mathcal{G}^{n,\lambda}_{\delta} f(\zeta)} - 1 \right) > \beta,$$

where $n, \lambda \in N_0, \delta > 0, b > 0, 0 \le \beta \le 1$; all $\zeta \in \mathcal{U}$.

If $f(\zeta)$ and $g(\zeta)$ are analytic in \mathcal{U} , we state that $f(\zeta)$ is subordinate to $g(\zeta)$, i.e., $f(\zeta) \prec g(\zeta)$, if there exists a Schwarz function $w(\zeta)$, with w(0) = 0 and |w| < 1 such that $f(\zeta) = g(w(\zeta))$. Furthermore, if the function $g(\zeta)$ is univalent in \mathcal{U} , then the above subordination equivalence holds (see [7,8]). $f(\zeta) \prec g(\zeta)$ if and only if f(0) = g(0), and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Note that $\mathcal{P}_{1,1}^{n,\lambda}\phi(\zeta) = \mathcal{K}_{\lambda}^{n}\phi(\zeta), \mathcal{P}_{1,1}^{n,\lambda}(\beta) = \mathcal{R}_{\lambda}^{n}(\beta)$ was studied by K. AlShaqsi and M. Darus [4], $\mathcal{P}_{1,1}^{0,0}\phi(\zeta) = \mathcal{S}^{*}\phi(\zeta)$ was studied by Ma and Minda [6], $\mathcal{P}_{1,1}^{0,\lambda}(\beta) = \mathcal{R}_{\lambda}(\beta)$ was introduced and studied by Ahuja [1] and $\mathcal{P}_{1,1}^{n,0}(\beta) = \mathcal{R}_{n}(\beta)$ was introduced and studied [3].

2. MAIN RESULTS

To construct Briot-Bouquet differential subordination theorem, we have to follow the next lemma:

Lemma 2.1. Let β , v be the complex numbers. Let $\phi \in p$ be convex univalent in \mathcal{U} with $\phi(0) = 1$ and $Re \left[\beta \phi(\zeta) + v\right] > 0, \zeta \in \mathcal{U}$.

Theorem 2.1. Let $n, \lambda \in N_0, \delta > 0$ and $\phi \in p$, then $\mathcal{P}_{\delta,b}^{n,\lambda+1}(\phi(\zeta)) \subset \mathcal{P}_{\delta,b}^{n,\lambda}(\phi(\zeta))$.

Proof. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda+1}(\phi(\zeta))$ and $p(\zeta) = 1 + \frac{1}{b} \left(\frac{\zeta(\mathcal{G}_{\delta}^{n,\lambda}f(\zeta))'}{\mathcal{G}_{\delta}^{n,\lambda}f(\zeta)} - 1 \right)$, where $p(\zeta)$ is analytic in \mathcal{U} with p(0) = 1, then

$$\zeta(\mathcal{G}^{n,\lambda}_{\delta}f(\zeta))' = (\lambda+1)\mathcal{G}^{n,\lambda+1}_{\delta}f(\zeta) - (\lambda)\mathcal{G}^{n,\lambda}_{\delta}f(\zeta).$$

Hence

(2.1)
$$1 + \frac{1}{b} \frac{\zeta(\mathcal{G}^{n,\lambda+1}_{\delta}f(\zeta))'}{\mathcal{G}^{n,\lambda+1}_{\delta}f(\zeta)} = p(\zeta) + \frac{\zeta p'(\zeta)}{bp(\zeta) + 1 - b + \lambda}.$$

Applying Lemma 2.1 in (2.1) we get $p \prec \phi$, that is $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\phi(\zeta))$. This completes the theorem.

Remark 2.1. If we put b = 1 in the above theorem, we obtain the result of K. AlShaqsi and M. Darus [4].

Theorem 2.2. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda+1}(\phi(\zeta))$ and let c be real number such that c > -1, then \mathcal{F} defined by $\mathcal{F} = \frac{c+1}{\zeta^c} \int_0^{\zeta} t^{c-1} f(t) dt$ belongs to the class $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\phi(\zeta))$.

Proof. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda+1}(\phi(\zeta))$, then $q(\zeta) = 1 + \frac{1}{b} \frac{\zeta(\mathcal{G}_{\delta}^{n,\lambda+1}\mathcal{F}(\zeta))'}{\mathcal{G}_{\delta}^{n,\lambda+1}\mathcal{F}(\zeta)} \prec \phi(\zeta)$, where $q(\zeta)$ is analytic in \mathcal{U} with q(0) = 1, then

$$\zeta(\mathcal{G}^{n,\lambda}_{\delta}\mathcal{F})' = (\lambda+1)\mathcal{G}^{n,\lambda+1}_{\delta}\mathcal{F} - (\lambda)\mathcal{G}^{n,\lambda}_{\delta}\mathcal{F}.$$

Let
$$q(\zeta) = 1 + \frac{1}{b} \left(\frac{\zeta(\mathcal{G}^{n,\lambda+1}_{\delta}\mathcal{F}(\zeta))'}{\mathcal{G}^{n,\lambda+1}_{\delta}\mathcal{F}(\zeta)} - 1 \right)$$
, then we get

(2.2)
$$1 + \frac{1}{b} \frac{\zeta(\mathcal{G}^{n,\lambda+1}_{\delta}\mathcal{F}(\zeta))'}{\mathcal{G}^{n,\lambda+1}_{\delta}\mathcal{F}(\zeta)} = q(\zeta) + \frac{\zeta q'(\zeta)}{bq(\zeta) + 1 - b + c}.$$

Applying Lemma 2.1 in (2.2) we get $q \prec \phi$. Hence the theorem is proved.

Theorem 2.3. Let $f(\zeta)$ be defined by (1.1). Then $f \in A$ if and only if

(2.3)
$$\sum_{k=2}^{\infty} (\beta b - b + 1 - k) [1 + (k - 1)\delta]^n \mathcal{C}(\lambda) |a_k| \le (1 - \beta)b,$$

where $C(\lambda) = \frac{(k+\lambda-1)!}{\lambda!(k-1)!}, 0 \le \beta < 1, n \in N_0 = N \cup \{0\}, \delta > 0, b > 0, \lambda \ge 0; \zeta \in \mathcal{U}.$

Proof. Suppose that the inequality (2.3) is true and $|\zeta| < 1$. Then it is sufficient to show that $\left|1 + \frac{1}{b}\left(\frac{\zeta(\mathcal{G}^{n,\lambda}, \delta f(\zeta))'}{\mathcal{G}_{\delta}^{n,\lambda}f(\zeta)} - 1\right) - \beta + 1\right| < 1$, which gives $\sum_{k=2}^{\infty} (\beta b - b + 1 - k)[1 + (k - 1)\delta]^n \mathcal{C}(\lambda) |a_k| \le (1 - \beta)b$. It is clear that the values of (2.3) lies in a circle centered at w = 1 whose radius is $(1 - \beta)b$. Hence the condition (2.3) holds.

Conversely, let us consider that the function f defined by (1.1) is in the class $\mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then $Re\left(1+\frac{1}{b}\left(\frac{\zeta(\mathcal{R}_{\lambda,\delta}^{n}f(\zeta))'}{\mathcal{R}_{\lambda,\delta}^{n}f(\zeta)}-1\right)\right) > \beta$, by the value of ζ on the real axis. Let $\zeta \to 1^{-}$ through real values, we obtain the result

$$\sum_{k=2}^{\infty} (\beta b - b + 1 - k) [1 + (k-1)\delta]^n \mathcal{C}(\lambda) |a_k| \le (1-\beta)b.$$

Hence the result is sharp for the function $f(\zeta) = \zeta + \frac{(1-\beta)b}{(\beta b-b+1-k)[1+(k-1)\delta]^n \mathcal{C}(\lambda)}$.

Corollary 2.1. Let $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$, then we have $a_k \leq \frac{(1-\beta)b}{(\beta b-b+1-k)[1+(k-1)\delta]^n \mathcal{C}(\lambda)}$.

Put b = 1, then the class $\mathcal{P}_{\delta,b}^{n,\lambda}(\phi)$ analogous to the class $\mathcal{K}_{\lambda,\delta,}^{n}(\beta)$ introduced by M. Thirucheran, A. Anand and T. Stalin [5].

Corollary 2.2. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then we have $a_k \leq \frac{(1-\beta)}{(\beta-k)[1+(k-1)\delta]^n \mathcal{C}(\lambda)}$.

Put $b = 1, \delta = 1$ we obtain the corollary which analogous to the result of K. AlShaqsi and M. Darus [4].

Corollary 2.3. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then we have $a_k \leq \frac{(1-\beta)}{(\beta-k)(k)^n \mathcal{C}(\lambda)}$.

Theorem 2.4. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$ and suppose that $f(\zeta) = \zeta + \frac{(1-\beta)b\epsilon_k}{\phi(\lambda,\delta)}\zeta^k$, $k = 2, 3, ..., |\epsilon_k| = 1$, where $\phi(\lambda, \delta) = (\beta b - b + 1 - k)[1 + (k - 1)\delta]^n \mathcal{C}(\lambda)$. If there exists $w(\zeta)$ given by $w(\zeta)^{k-1} = \frac{\phi(\lambda,\delta)}{(1-\beta)b\epsilon_k}\sum_{k=2}^{\infty} a_k \zeta^{k-1}$, then for $\zeta = re^{i\theta}, 0 < r < 1$, $\int_0^{2\pi} |f(\zeta)|^{\mu} d\theta \leq \int_0^{2\pi} |g(\zeta)|^{\mu} d\theta, \mu > 0$.

Proof. To complete the theorem we have to prove that

$$\int_0^{2\pi} \left| 1 + \sum_{k=2}^\infty a_k \zeta^{k-1} \right|^\mu d\theta \le \int_0^{2\pi} \left| 1 + \frac{(1-\beta)b\epsilon_k}{\phi(\lambda,\delta)} \zeta^{k-1} \right|^\mu d\theta.$$

Using Littlewood subordination theorem, it is sufficient to prove that

$$1 + \sum_{k=2}^{\infty} a_k \zeta^{k-1} \prec 1 + \frac{(1-\beta)b\epsilon_k}{\phi(\lambda,\delta)} \zeta^{k-1}.$$

Let $1 + \sum_{k=2}^{\infty} a_k \zeta^{k-1} \prec 1 + \frac{(1-\beta)b\epsilon_k}{\phi(\lambda,\delta)} (w(\zeta))^{k-1}$, therefore

$$(w(\zeta))^{k-1} = \frac{\phi(\lambda,\delta)}{(1-\beta)b\epsilon_k} \sum_{k=2}^{\infty} a_k \zeta^{k-1}.$$

Hence w(0) = 0. Furthermore, if $f \in \mathcal{A}$ it satisfies $\phi(\lambda, \delta) \leq (1 - \beta)b$,

$$|w(\zeta)|^{k-1} = \left|\frac{\phi(\lambda,\delta)}{(1-\beta)b\epsilon_k}\right| \sum_{k=2}^{\infty} |a_k| \left|\zeta^{k-1}\right| \le |\zeta| < 1.$$

Hence the theorem is completed.

Let us define new subclass $\overline{\mathcal{P}}_{\delta,b}^{n,\lambda}(\beta) \subset \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, which contains the function $f \in \mathcal{A}$. Now we determine the extreme points of the subclass $\overline{\mathcal{P}}_{\delta,b}^{n,\lambda}(\beta)$.

Theorem 2.5. Let

$$f_1(\zeta) = \zeta, f_k(\zeta) = \zeta + \sum_{k=2}^{\infty} \eta_k \frac{(1-\beta)b}{\phi(\lambda,\delta)} \zeta^k, k = 2, 3, \dots$$

Then $f \in \overline{\mathcal{P}}_{\delta,b}^{n,\lambda}(\beta)$ if and only if $f(\zeta) = \sum_{k=1}^{\infty} \eta_k f_k(\zeta)$ where $\eta_k > 0$ and $\sum_{k=1}^{\infty} \eta_k = 1$.

Proof. Let

$$f(\zeta) = \sum_{k=1}^{\infty} \eta_k f_k(\zeta)$$

= $\zeta + \sum_{k=2}^{\infty} \eta_k \frac{(1-\beta)b}{\phi(\lambda,\delta)} \zeta^k$
= $\sum_{k=2}^{\infty} \eta_k \frac{(1-\beta)b}{\phi(\lambda,\delta)} (\phi(\lambda,\delta))$
= $(1-\beta)b \sum_{k=1}^{\infty} \eta_k$
= $(1-\beta)b(1-\eta_1) < (1-\beta)b,$

which shows that $f \in \overline{\mathcal{P}}_{\delta,b}^{n,\lambda}(\beta)$.

Conversely, suppose that $f \in \overline{\mathcal{P}}_{\delta,b}^{n,\lambda}(\beta)$. Since $|a_k| \leq \frac{(1-\beta)b}{\phi(\lambda,\delta)}, k = 2, 3, \dots$. Let $\eta_k \leq \frac{\phi(\lambda,\delta)}{(1-\beta)b}, \eta_1 = 1 - \sum_{k=2}^{\infty} \eta_k$. Then we obtain $f(\zeta) = \sum_{k=1}^{\infty} \eta_k f_k(\zeta)$.

Theorem 2.6. The class $\mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$ is convex.

Proof. Let the function $f_j(\zeta) = \zeta + \sum_{k=2}^{\infty} a_{k,j} \zeta^k$, $a_{k,j} \ge 0, j = 1, 2$ lies in the class $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$. It is sufficient to prove that $h(\zeta) = (\mu + 1)f_1(\zeta) - \mu f_2(\zeta), 0 \le \zeta \le 1$.

Since
$$h(\zeta) = \zeta + \sum_{k=2}^{\infty} [(1+\mu)a_{k,1} - \mu a_{k,2}] \zeta^k$$
, this implies that

$$\sum_{k=2}^{\infty} (\beta b - b + 1 - k) [1 + (k-1)\delta]^n \mathcal{C}(\lambda)(1+\mu)a_{k,1} + (\beta b - b + 1 - k) [1 + (k-1)\delta]^n \mathcal{C}(\lambda)(\mu)a_{k,2}$$

$$\leq (1+\mu)(1-\beta)b + \mu(1-\beta)b$$

$$\leq (1-\beta)b.$$

Therefore $h \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$. Hence $\mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$ is convex.

Theorem 2.7. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then f is close-to-convex of order $\sigma(0 \le \sigma < 1)$ in the disc $|\zeta| < r_1$, where $r_1 := \left(\frac{(1-\sigma)[(\beta b-b+1-k)[1+(k-1)\delta]^n C(\lambda)]}{(k)(1-\beta)b}\right)^{\frac{1}{k-1}}$.

Theorem 2.8. Let $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$, then f is starlike of order $\sigma(0 \le \sigma < 1)$ in the disc $|\zeta| < r_2$, where $r_2 := inf\left(\frac{(1-\sigma)[(\beta b-b+1-k)[1+(k-1)\delta]^n C(\lambda)]}{(k-\sigma)(1-\beta)b}\right)^{\frac{1}{k-1}}, (k \ge 2).$

Theorem 2.9. Let $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then f is convex of order $\sigma(0 \le \sigma < 1)$ in the disc $|\zeta| < r_3$, where $r_3 := inf\left(\frac{(1-\sigma)[(\beta b-b+1-k)[1+(k-1)\delta]^n C(\lambda)]}{k(k-\sigma)(1-\beta)b}\right)^{\frac{1}{k-1}}, (k \ge 2).$

Theorem 2.10. Let $f(\zeta) = \zeta + \sum_{k=2}^{\infty} |a_k| \zeta^k$ be in the class $f \in \mathcal{P}_{\delta,b}^{n,\lambda}(\beta)$, then for $|\zeta| = r$, we have

$$r - \frac{(1-\beta)b}{(\beta b - b - 1)(1+\delta)^n(\lambda+1)}r^2 \le |f(\zeta)| \le r + \frac{(1-\beta)b}{(\beta b - b - 1)(1+\delta)^n(\lambda+1)}r^2$$

and

$$1 - \frac{2(1-\beta)b}{(\beta b - b - 1)(1+\delta)^n(\lambda+1)}r \le |f'(\zeta)| \le 1 + \frac{2(1-\beta)b}{(\beta b - b - 1)(1+\delta)^n(\lambda+1)}r.$$

Putting $\delta = 1$ in the above theorem we obtain the result which analogue the results of M. Thirucheran, M. Vinothkumar and T. Stalin. [5]

Corollary 2.4. Let $f(\zeta) = \zeta + \sum_{k=2}^{\infty} |a_k| \zeta^k$ be in the class $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$, then for $|\zeta| = r$ we have

$$r - \frac{(1-\beta)b}{(\beta b - b - 1)(2)^n(\lambda + 1)}r^2 \le |f(\zeta)| \le r + \frac{(1-\beta)b}{(\beta b - b - 1)(2)^n(\lambda + 1)}r^2$$

and

$$1 - \frac{2(1-\beta)b}{(\beta b - b - 1)(2)^n(\lambda + 1)}r \le |f'(\zeta)| \le 1 + \frac{2(1-\beta)b}{(\beta b - b - 1)(2)^n(\lambda + 1)}r.$$

Putting $\delta = 1, b = 1$ in the above theorem we obtain result which is analogue the results of K. AlShaqsi and M. Darus. [4]

Corollary 2.5. Let $f \in \mathcal{P}^{n,\lambda}_{\delta,b}(\beta)$ be in the class $f \in \mathcal{P}^n_{\beta,\lambda,\delta,b}(\beta)$, then for $|\zeta| = r$ we have

$$r - \frac{(1-\beta)}{(\beta-2)(2)^n(\lambda+1)}r^2 \le |f(\zeta)| \le r + \frac{(1-\beta)}{(\beta-2)(2)^n(\lambda+1)}r^2$$

and

$$1 - \frac{2(1-\beta)}{(\beta-2)(2)^n(\lambda+1)}r \le |f'(\zeta)| \le 1 + \frac{2(1-\beta)}{(\beta-2)(2)^n(\lambda+1)}r.$$

ACKNOWLEDGMENT

The authors thank the referees for their valuable suggestions which lead to the improvement of this paper.

REFERENCES

- O. AHUJA: Integral operators of certain univalent functions, Internat. J. Math. Sci., 8 (1985), 653–662.
- [2] F.M. AL-OBOUDI: On univalent functions defined by a generalized Salagean operator, Internat. J. of Math. and Math. Sci., **2004** (2004), 1429–1436.
- [3] E. KADIOGLU: On subclass of univalent functions with negative coefficients, Appl.Math. Compt., **146** (2003), 351–358.
- [4] K. AL SHAQSI, M. DARUS: An operator defined by convolution involving the polylogarthims functions, J. of Math. and Stat., **4** (2008), 46–50.
- [5] M. THIRUCHERAN, A. ANAND, T. STALIN: *New Subclasses of Analytic Function associated with Convolution of Polylogarthms Functions*, J. of Inf. and Comp. Sci., **10** (1985), 209–216.
- [6] W. MA, D. MINDA: A unified treatment of some special classes of univalent functions, Proc. of the conf. on complex analysis (1994), 157–169.
- [7] S. PONNUSAMY, S.SABAPATHY: Polylogarthims in the theory of equivalent functions, Results in Mathematics, **30**(1996), 136–150.
- [8] S. PONNUSAMY: Inclusion theorems for convolution product of second order Polylogarthims and functions with derivative in a half plane, Rocky Mountain J. Math., 28 (1998), 695–733.
- [9] S. RUSCHEWEYH: *New criteria for univalent functions*, Proc. Amer. Math. Soc., **49** (1975), 109–115.
- [10] G.S. SALAGEAN: Subclasses of univalent functions, Lecture Notes in Math., 1013 (1983), 362–372.

Post Graduate and Research Department of Mathematics University of Madras L N Government College, Ponneri Chennai - 624 302, Tamil Nadu, INDIA. *Email address*: drthirucheran@gmail.com

Post Graduate and Research Department of Mathematics University of Madras L N Government College, Ponneri Chennai - 624 302, Tamil Nadu, INDIA. *Email address*: vinnigil13@gmail.com

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MADRAS VEL TECH RANGA SANKU ARTS COLLEGE AVADI, CHENNAI-600 062, TAMIL NADU, INDIA. *Email address*: goldstaleen@gmail.com