ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9031–9036 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.7

η^{**} -CLOSED SETS IN TOPOLOGICAL SPACES

E. SUBHA¹ AND D. VIDHYA

ABSTRACT. The notion of this paper is to introduce a new class of closed sets called η^{**} -closed sets and η^{**} open sets in topological spaces(TS) and we studied few of its basic properties. Also, examined the relationship of η^{**} -closed set with other sets in the TS.

1. INTRODUCTION

In 1970, the concept of gclosed sets in TS was introduced by Levine [5]. Dunham [4] introduced the concept of the closure operator cl^* and a topology τ^* and studied its few properties. Arya [2], Bhattacharyya and Lahiri [3] had introduced and investigated generalized semiclosed sets, semigeneralized closed sets respectively. In this paper, a new generalization of closed sets is obtained in the TS (X, τ) . X and Y are TS(throughout this paper) where no assumptions on separation axioms are made. For a subset C of a TS X, int(C), cl(C), cl*(C), denote the interior, closure, closure* of C respectively.

2. Preliminaries

Definition 2.1. [5] In a TS X, a subset D is called generalized closed(gclosed) if $cl(D) \subseteq P$, $D \subseteq P$ and P is open in X.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. η^{**} -closed set, η^{**} -open set.

E. SUBHA AND D. VIDHYA

Definition 2.2. [3] In a TS X, a subset D is called semigeneralized closed(sgclosed) if $scl(D) \subseteq P$, $P \subseteq G$ and P is semiopen in X.

Definition 2.3. [2] In a TS X, a subset D is called Generalized semiclosed(gsclosed) ifscl ($D \subseteq P$, $D \subseteq P$ and P is open in X.

Definition 2.4. [7] In a TS X, a subset D is called α -closed if $cl(int(cl(D))) \subseteq D$.

Definition 2.5. [8] In a TS X, a subset D is called α generalized closed (α g-closed) if α cl(D) \subseteq P, whenever D \subseteq P and P is open in X.

Definition 2.6. [9] In a TS X, a subset D is called Generalized closed (gclosed) if $spcl(D) \subseteq P$, $D \subseteq P$ and P is open in X.

Definition 2.7. [2] In a TS X, a subset D is called Generalized semipre closed (gspclosed) if $scl(D) \subseteq P$, $D \subseteq P$ and P is open in X.

Definition 2.8. [11] In a TS X, a subset D is called Strongly generalized closed (strongly gclosed) if cl (D) \subseteq P, D \subseteq P and P is gopen in X.

Definition 2.9. [10] In a TS X, a subset D is called

- preclosed if $cl(int(D)) \subseteq D$.
- semiclosed if $int(cl(B)) \subseteq B$.
- semipre closed(sp-closed)[1] if $int(cl(int(D))) \subseteq D$.

Definition 2.10. [5] For the subset B of a TS X, the intersection of all gclosed sets containing B is defined as the generalized closure operator cl^{*}.

Definition 2.11. For the subset B of a TS X,

- the semiclosure of B (scl(B)) $[6] = \cap \{all \text{ semiclosed sets containing } B\};$
- the semipreclosure of B (spcl(B)) $[1] = \cap \{all \text{ semipreclosed sets containing } B\};$
- the closure of B (briefly cl(B)) [7] the intersection of all closed sets containing B.

3. η^{**} -closed sets

Definition 3.1. A subset D of a TS X is called η^{**} -closed set if $cl^*(D) \subseteq H$ whenever $D \subseteq H$ and H is semiopen in X. The complement of η^{**} -closed set is called η^{**} -open set.

9032

Theorem 3.1. Every closed set is η^{**} -closed set.

Proof. Let F be a closed set in X such that $F \subseteq I$, I is semiopen in X. Since F is closed, cl (F) = F. Since cl^{*} (F) \subseteq cl (F) = F. Therefore, cl^{*} (F) \subseteq I. Hence F is a η^{**} -closed set in X.

Remark 3.1. *Example 1 proves the converse part of theorem 3.1 may not be true.*

Example 1. Let $X = \{d, e, f\}$ with the topology $\{\emptyset, X, \{d, e\}\}$. Let $B = \{e, f\}$. Here B is η^{**} -closed set but not a closed set of (X, τ) .

Theorem 3.2. Every gclosed set is a η^{**} -closed set.

Proof. Let D be a gclosed set. Assume that $D \subseteq H$, H is semiopen in TS X. Then cl $(D) \subseteq H$. But cl^{*} $(D) \subseteq$ cl (D). Therefore, cl^{*} $(D) \subseteq H$. Hence D is η^{**} -closed. \Box

Remark 3.2. *Example 2 explains the converse part of theorem 3.2 may not be true.*

Example 2. Consider the TS $X = \{d, e, f\}$ with topology $\tau = \{\emptyset, X, \{d\}\}$. Then the set $\{d\}$ is η^{**} -closed but not gclosed.

Remark 3.3. The following example proves that η^{**} -closedness and preclosedness are independent. Let $X = \{d, e, f\}$ be the TS.

- (i) In the topology $\tau = \{\emptyset, X, \{d\}\}$. Then the sets $\{d\}, \{d, e\}, \{d, f\}$ are η^{**} -closed set but not preclosed set.
- (ii) In the topology $\tau = \{\emptyset, X, \{d, e\}\}$. Then the set $\{e\}$ is preclosed set but not η^{**} -closed set.

Remark 3.4. The following example proves that η^{**} -closedness and α -closedness are independent. Let $X = \{d, e, f\}$ be the topological space.

- (i) In the topology $\tau = \{\emptyset, X, \{\alpha\}\}$, then $\{d\}, \{d, f\}, \{d, e\}$ are η^{**} -closed set but not α -closed.
- (ii) In the topology $\tau = \{\emptyset, X, \{d\}, \{d, e\}\}$, then $\{e\}$ is α -closed but not η^{**-} closed set.

Remark 3.5. The following example proves that η^{**} -closedness and gsclosedness are independent. Let $X = \{d, e, f\}$ be the topological space.

- (i) In the topology $\{\emptyset, X, \{d\}\}$, then $\{d\}$ is η^{**} -closed set but not gsclosed.
- (ii) In the topology $\{\emptyset, X, \{d\}, \{d, e\}\}$, then $\{d\}$ is gsclosed but not η^{**} -closed.

E. SUBHA AND D. VIDHYA

Remark 3.6. The following example proves that η^{**} -closedness and sgclosedness are independent. Let $X = \{d, e, f\}$ be the topological space.

- (i) In the topology $\{\emptyset, X, \{d\}, \{d, e\}\}$, then $\{e\}$ is spclosed but not η^{**} -closed.
- (ii) In the topology $\{\emptyset, X, \{d\}, \{d, e\}\}$, then $\{d, e\}, \{d, f\}$ are η^{**} -closed but not sgclosed.

Remark 3.7. The following example proves that η^{**} -closedness and semi closedness are independent. Let $X = \{d, e, f\}$ be the topological space.

- (i) In the topology $\{\emptyset, X, \{d\}\}$, then $\{d\}, \{d, e\}, \{d, f\}$ are η^{**} -closed but not semiclosed.
- (ii) In the topology $\{\emptyset, X, \{d\}, \{d, e\}\}$ then $\{e\}$ is semiclosed and not η^{**} -closed.

Remark 3.8. The following example proves that η^{**} -closedness and sg*-closedness are independent.

- (i) In the topology {Ø, X, {d}, {d, e}}, then {d}, {d, e}, {d, f} are η**-closed set but not sg*-closed.
- (ii) In the topology $\{\emptyset, X, \{d\}, \{d, e\}\}$, then $\{e\}$ is sg*closed and not η^{**} -closed.
- (iii) In the topology $\{\emptyset, X, \{d\}\}$, then $\{d\}, \{d, e\}, \{d, f\}$ are η^{**} -closed but not sg*closed.

Remark 3.9. The following example proves that η^{**} -closedness and locally closedness are independent

- (i) In the topology {Ø, X, {d}, {d, e}}, then {d} is locally closed but not η**closed.
- (ii) In the topology $\{\emptyset, X, \{d\}\}$ Then $\{d\}, \{e\}, \{d, e\}, \{d, f\}$ is η^{**} -closed set but not locally closed.

Remark 3.10. Consider the topology $\{\emptyset, X\}$. Then the sets $\{d\}, \{e\}, \{f\}, \{d, e\}, \{e, f\}$ and $\{d, f\}$ are η^{**} -closed but not regular closed. In the topology $\{\emptyset, X, \{d\}\}$, the set $\{d\}$ is η^{**} -closed but not gclosed.

Theorem 3.3. Let E be a η^{**} -closed in X. Then E is gclosed iff $cl^{*}(E)$ - E is a semiopen.

Proof. Assume E be gclosed set in X. Thus, $cl^*(E) = E$ and so $cl^*(E) - E = \emptyset$. which is semiopen in X.

9034

In the converse part, suppose cl^{*} (E) - E is semiopen in X. Also, E is η^{**} -closed, cl^{*} (E)- E contains no nonempty semiclosed set in X. Therefore cl^{*} (E)- $E = \emptyset$. Hence E is gclosed.

Theorem 3.4. For $u \in X$, the set $X - \{u\}$ is η^{**} -closed set or semiopen.

Proof. Suppose $X - \{u\}$ is not semiopen, then $X - \{u\}$ contains the only semiopen set X. Thus, $cl^*(X - \{u\}) \subseteq X$ which proves that $X - \{u\}$ is a η^{**} -closed set in X.

Theorem 3.5. Assume $D \subseteq Y \subseteq X$, and D is η^{**} -closed set in X, then D is η^{**} -closed relative to Y.

Proof. It is given that $D \subseteq Y \subseteq X$ and D is η^{**} -closed set in X. To prove that D is η^{**} -closed relative to Y. Let $D \subseteq Y \cap G$, where G is semiopen in X, hence $Y \cap cl^*(D) \subseteq Y \cap G$. Thus D is η^{**} -closed relative to Y.

Remark 3.11. Thus we conclude the following implications.

References

- [1] D. ANDRIJEVIC: Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] S. P. ARYA, T. NOUR: Characterizations of s-normal spaces, Indian J. Pure App. Math., 21 (1990), 717-719.
- [3] P. BHATTACHARYYA, B.K. LAHIRI: Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.

E. SUBHA AND D. VIDHYA

- [4] W. DUNHAM: A new closure operator for non -T1 topologies, Kyungpook Math. J., 22 (1982), 55-60.
- [5] N. LEVINE: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.
- [6] N. LEVINE: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 36-41.
- [7] S. N. MAHESHWARI, P. C. JAIN: Some new mappings Mathemaica, 24(47) (1-2) (1982), 53-55.
- [8] H. MAKI, R. DEVI, K. BALACHANDRAN: Associate topologies of generalized closed sets and generalized closed sets, Mem. Fac. Sci. Kochi Univ. (Math.), 15 (1994), 51-63.
- [9] H. MAKI, R. DEVI, K. BALACHANDRAN: Generalized closes sets in topology, Bull. Fukuoka Uni. Ed. Part III, **42** (1993), 13-21.
- [10] A. S. MASHHOUR, M. E. ABD EI-MONSEF, N. EI-DEEB: On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [11] A. PUSHPALATHA, S. ESWARAN, P. RAJARUBI: τ^* -Generalized Closed Sets in Topological Spaces, Proceedings of the World Congress on Engineering, Vol II, 2009.

DEPARTMENT OF SCIENCE AND HUMANITIES, KARPAGAM COLLEGE OF ENGINEERING, TAMIL NADU, INDIA. Email address: prajeethsubha@gmail.com

DEPARTMENT OF SCIENCE AND HUMANITIES, SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY, TAMIL NADU, INDIA. *Email address*: vidhyanallamani@gmail.com

9036