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SOME RESULTS ON DOUBLE TWIN DOMINATION NUMBER OF A GRAPH

S. ANUTHIYA1 AND G. MAHADEVAN

ABSTRACT. The total number of vertices that dominates every pair of vertices
SDTwin(G) =

∑
DTwin(G) for u, v ∈ V (G), where DTwin (u, v) is sum of

number of a u − v paths of length less than or equal to four. The double twin
domination number of G is defined as DTD(G) = SDTwin(G)

(n2)
. In this paper,

we discuss this parameter for some standard graphs, corona product graph, Fan
graph and umbrella graph.

1. INTRODUCTION

In a communication network, if some vertices and lines are interrupted, its
effectiveness has been lost. A network can generally be modelled through a
graph. In network design a more stable model is favoured. Vulnerability attrib-
uted of a communication of network is the resistance of network to disturbance
of certain vertices before communication of network breakdown. Duygu Vargor
and Pinar in [1], introduced the concept of the medium domination number.
dom(u,v) of G is sum of number of u− v paths of length one and two of a graph
G. The total number of vertices of a graph G that dominate every pair of vertices
DTV (G) =

∑
dom(u, v) for u, v ∈ V (G).

The medium domination number of a graph G is defined as MD(G) = DTD(G)

(n2)
.

Motivated by the above definition, G. Mahadevan and Vijayalakshmi in [2–5],
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introduced the concept of the extended medium domination number of a graph.
edom(u, v) of G is sum of number of u − v paths of length less than or equal to
three of a graph. The total number of verices of a graph G that dominate every
pair of vertices ETDV (G) =

∑
edom(u, v) for u, v ∈ V (G).

The extended medium domination number of a graph G is defined as EMD(G) =
ETDV (G)

(n2)
. G. Mahadevan et al. already obtained the parameter double twin dom-

ination number in [6,7].
In this paper, we initiate this parameter of double twin domination number of

a graph and discuss this number for some standard and special types of graphs.
We investigate the double twin domination number for some special type of
graph.

The Corona product G1�G2 is defined as the graph G obtained by taking one
copy of G1 of order n and n copies of G2 and then joining the ith vertex of G1

to every vertex in the ith copy of G2. The graph F(1,m) = Pn +K1 is called a Fan
graph. For any integer m > 2 and n > 1, an umbrella graph U(m,n) is the graph
obtained by appending a path Pn to the central vertex of a Fan F(1,m) = Pn+K1.
Here vertex set V (U(m,n)) = {u1, u2, . . . , um, (u = v1), v2, . . . , vn} and edge set
E(U(m,n)) = {(ui, ui+1)/1 ≤ i ≤ m − 1} ∪ {(ui, v1 = u1)/1 ≤ i ≤ m} ∪
{(vi, vi+1)/1 ≤ i ≤ n − 1}. Hence, |V (U(m,n))| = m + n and |E(U(m,n))| =
2m+ n− 1.

Notation 1.
- DTwin(G) denotes Double Twin Domination number of a graph.
- SDTwin(G) denotes Sum of Double Twin Domination number of a graph.
- DTD(G) denotes Double Twin Total Domination number of a graph.

2. DOUBLE TWIN DOMINATION NUMBER OF STANDARD GRAPH

In this section, we discuss about the concept of double twin domination num-
ber for many standard types of graphs.

Definition 2.1. Let G=(V,E) be a graph. Let V,E be the vertex set and edge set,
respectively. DTwin (u, v) is sum of number of u− v path of length one, two, three
and four. Let G be a graph. The total number of vertices that dominate every pair
of vertices. SDTwin(G) =

∑
DTwin(u, v) for u, v ∈ V (G). In any simple graph
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G of n number of vertices, the double twin domination number of G is defined as
DTD(G) = SDTwin(G)

(n2)
.

Illustration 1. For the graph 3.1, DTwin(1, 2) = 6;DTwin(1, 3) = 6;
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Figure 3.1

Dom(1, 4) = 6;DTwin(1, 5) = 6;DTwin(1, 6) = 5;DTwin(1, 7) = 6;

DTwin(2, 3) = 5;DTwin(2, 4) = 6;DTwin(2, 5) = 8;DTwin(2, 6) = 6;

DTwin(2, 7) = 6;DTwin(3, 4) = 5;DTwin(3, 5) = 6;DTwin(3, 6) = 6;

DTwin(3, 7) = 5;DTwin(4, 5) = 6;DTwin(4, 6) = 6;DTwin(4, 7) = 6;

DTwin(5, 6) = 4;DTwin(5, 7) = 6;DTwin(6, 7) = 6. SDTwin(G) = 122;

DTD(G)=SDTwin(G)

(n2)
= 122

21

Observation 1. [2] For any graph (G), EDTV (G) ≤ SDTwin(G). For example,
equality occurs in the graph K1,n, i.e., ETDV (K1,n) = SDTwin(K1,n)

Theorem 2.1. If G = Pn for n > 4, then DTD(G)= 4n−10

(n2)
.

Proof. Consider the graph Pn with n vertices. Let the vertices are {x1, x2, x3, . . . , xn}.
DTwin(xi, xi+1)= 1; for i = 1 to n-1;Therefore

∑n−1
i=1 DTwin(xi, xi+1) = n-1.

DTwin(xi, xi+2)= 1; for i = 1 to n-2;Therefore
∑n−2

i=1 DTwin(xi, xi+2)= n-2.
DTwin(xi, xi+3)= 1; for i = 1 to n-3;Therefore

∑n−3
i=1 DTwin(xi, xi+3)= n-3.

DTwin(xi, xi+4)= 1; for i = 1 to n-4;Therefore
∑n−4

i=1 DTwin(xi, xi+4) = n-4.
SDTwin(G)=n− 1 + n− 2 + n− 3 + n− 4 = 4n− 10 = 2(2n− 5).
DTD(G)=SDTwin(G)

(n2)
= 2(2n−5)

(n2)
. �

Illustration 2. For the graph Pn, For the graph 3.2, DTwin(v1, v2) = 1;

b bbbb
v1 v2 v3 v4 v5

Figure 3.2 - P5



9672 S. ANUTHIYA AND G. MAHADEVAN

DTwin(v1, v3) = 1; . . . By considering as an illustration all possible instances, it
can be checked that SDTwin(G) = 10;DTD(G) = 4n−10

(n2)
= 10

10
= 1.

Theorem 2.2. If G = Cn for n ≥ 5 then DTD(G) = 4n

(n2)
.

Proof. Consider the graph Cn with n vertices. let the vertices are {x1, x2, x3, . . . , xn}.
DTwin (xi, xi+1)=1; for i=1 to n-1;Therefore

∑n−1
i=1 DTwin(xi, xi+1)= n-1.

DTwin(xn, x1) = 1.
DTwin (xi, xi+2)=1; for i=1 to n-2;Therefore

∑n−2
i=1 DTwin(xi, xi+2)=n-2.

DTwin(xn, x2) = 1, DTwin(xn−1, x1) = 1.

DTwin (xi, xi+3)=1; for i=1 to n-3;Therefore
∑n−3

i=1 DTwin(xi, xi+3)=n-3.
DTwin(xn, x3) = 1, DTwin(xn−1, x2) = 1, DTwin(xn−2, x1) = 1.
DTwin (xi, xi+4)=1; for i=1 to n-4;Therefore

∑n−4
i=1 DTwin(xi, xi+4)=n-4.

DTwin(xn, x4) = 1, DTwin(xn−1, x3) = 1, DTwin(xn−2, x2) = 1,
DTwin(xn−3, x1) = 1

SDTwin(G) = n−1+1+n−2+2+n−3+3+n−4+4 = 4n. DTD(G) = 4n

(n2)
. �

Illustration 3. For the graph Cn, For the graph 3.3, DTwin(v1, v2) = 2;
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Figure 3.3 - C5

DTwin(v1, v3) = 2; . . . By considering as an illustration all possible instance, it can
be checked that SDTwin(G) = 4n = 20;DTD(G) = 20

10
= 2.

Theorem 2.3. If G = Kn for n > 4, then DTD(G)=2n2 − 9n+ 11.

Proof. Consider the complete graph Kn with n vertices. Let the vertices {x1, x2, x3,

. . . , xn}. For the vertices x1, x2;
k1(x1, x2) = 1, k2(x1, x2) = n− 2,

k3(x1, x2) = (n− 2)(n− 3), k4(x1, x2) = (n− 2)(n− 3)

DTwin(x1, x2) = 1 + (n− 2) + (n− 2)(n− 3) + (n− 2)(n− 3)
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DTwin(x1, x2) = 2n2 − 9n+ 11

Similarly, we can collect
(
n
2

)
pairs of vertices. Therefore SDTwin(G)=

(
n
2

)
(2n2 −

9n+ 11)

DTD(G)=SDTwin(G)

(n2)
=(n2)(2n2−9n)+11)

(n2)
=2n2 − 9n+ 11. �

Illustration 4. For the graph Kn, For the graph 3.4, DTwin(v1, v2) = 16;
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Figure 3.4 - Complete graph K5

DTwin(v1, v3) = 16; . . . By considering as an illustration all possible instance, it
can be check that SDTwin(G)=

(
n
2

)
(2n2 − 9n+ 11) = 160;

DTD(G)=(2n2 − 9n+ 11) = 16.

Theorem 2.4. If G = W1,n for n > 8, then DTD(G) = 13n2−11n

2(n+1
2 )

.

Proof. Consider the wheel graph W1,n with n + 1 vertices. Let the root vertices
be a and the outer cycle vertices are {x1, x2, x3, . . . , xn}.

DTwin(a, xi) = 7; for i=1 to n; therefore
∑n

i=1DTwin(a, xi) = 7n.
DTwin(xi, xi+1) = 7; for i=1 to n − 1; therefore

∑n−1
i=1 DTwin(xi, xi+1) =

7(n− 1). DTwin(xn, x1) = 7.

DTwin(xi, xi+2)=11; for i=1 to n − 2; therefore
∑n−2

i=1 DTwin(xi, xi+2) =

11(n− 2),
DTwin(xn, x2) = 11; DTwin(xn−1, x1) = 11.
DTwin(xi, xi+3) = 14; for i=1 to n − 3; therefore

∑n−3
i=1 DTwin(xi, xi+3) =

14(n− 3).
DTwin(xn, x3) = 14;DTwin(xn−1, x2) = 14;DTwin(xn−2, x1) = 14

DTwin(xi, xi+4) = 14;for i=1 to n − 4; therefore
∑n−4

i=1 DTwin(xi, xi+4) =

14(n− 4). DTwin(xn, x4) = 14;

DTwin(xn−1, x3) = 14; DTwin(xn−2, x2) = 14; DTwin(xn−3, x1) = 14.
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DTwin(x1, xi) = 13; for i=6 to n−4; therefore
∑n−4

i=6 DTwin(x1, xi) = 13(n−9)
DTwin(x2, xi) = 13; for i=7 to n−3; therefore

∑n−3
i=7 DTwin(x2, xi) = 13(n−9)

DTwin(x3, xi) = 13; for i=8 to n−2; therefore
∑n−2

i=8 DTwin(x3, xi) = 13(n−9)
DTwin(x4, xi) = 13; for i=9 to n−1; therefore

∑n−1
i=9 DTwin(x4, xi) = 13(n−9)

DTwin(x5.xi) = 13; for i=10 to n ; therefore
∑n

i=10DTwin(x5, xi) = 13(n−9).
DTwin (x6, xi) = 13; for i = 11 to n; therefore

∑n
i=11DTwin(x6, xi) = 13(n−

10) . . . DTwin(xn−5, xn) = 13.
SDTwin(G)=13n2−11n

2
; DTD(G)=13n2−11n

2(n+1
2 )

�

3. DOUBLE TWIN DOMINATION NUMBER FOR A SOME

SPECIAL TYPE OF GRAPH

In this section, we discuss about the concept of double twin domination num-
ber for the some special types of graphs.

Theorem 3.1. Let G be a graph F1,n where n ≥ 9 then DTD(G) = 108n−579

(n+1
2 )

.

Proof. Consider the Fan graph F1,n with n+ 1 vertices. Let the root vertices be a

and the outer vertices are {b1, b2, . . . , bn}.
DTwin(a, bi) = 4; i=1, n; therefore

∑
i=1,nDTwin(a, bi) = 8.

DTwin(a, bi) = 5; i=2, n− 2; therefore
∑

i=2,n−1DTwin(a, bi) = 10.

DTwin(a, bi) = 6; i=3, n− 2; therefore
∑

i=3,n−2DTwin(a, bi) = 12.
DTwin(a, bi) = 7; i=4 to n− 3; therefore

∑n−3
i=4 DTwin(a, bi) = 7(n− 6).

DTwin(b, bi+1) = 4; i=1 to n− 1; therefore
∑

i=1,n−1DTwin(b, bi+1) = 8.

DTwin(b, bi+1) = 6; i=2, n− 2; therefore
∑

i=2,n−2DTwin(b, bi+1) = 12.

DTwin(b, bi+1) = 7; i=3 to n− 3; therefore
∑n−3

i=3 DTwin(b, bi+1) = 7(n− 5).

DTwin(b, bi+2) = 7; i=1, n− 2; therefore
∑

i=1,n−2DTwin(b, bi+2) = 14.

DTwin(b, bi+2) = 10; i=2, n-3; therefore
∑

i=2,n−3DTwin(b, bi+2) = 20.

DTwin(b, bi+2) = 11; i=3 to n− 4; therefore
∑n−4

i=3 DTwin(b, bi+2) = 11(n− 6).

DTwin(b, bi+3) = 10; i=1, n-3; therefore
∑

i=1,n−3DTwin(b, bi+3) = 20.

DTwin(b, bi+3) = 13; i=2, n-4; therefore
∑

i=2,n−4DTwin(b, bi+3) = 26.

DTwin(b, bi+3) = 14; i=3 to n− 5; therefore
∑n−5

i=3 DTwin(b, bi+3) = 14(n− 7).

DTwin(b, bi+4) = 10; i=1, n-4; therefore
∑

i=1,n−4DTwin(b, bi+4) = 20.

DTwin(b, bi+4) = 13; i=2, n-5; therefore
∑

i=2,n−5DTwin(b, bi+4) = 26.

DTwin(b, bi+4) = 14; i=3 to n− 5; therefore
∑n−5

i=3 DTwin(b, bi+4) = 14(n− 8).

DTwin(bi, bn) = 9; i=3 to n− 5; therefore
∑n−5

i=3 DTwin(bi, bn) = 9(n− 7).
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DTwin(bi, bn−1) = 12; i=3 to n−6; therefore
∑n−6

i=3 DTwin(bi, bn−1) = 12(n−8).
DTwin(b1, bi) = 9; i=6 to n− 2; therefore

∑n−2
i=6 DTwin(b1, bi) = 9(n− 7).

DTwin(b1, bn−1) = 8; DTwin(b1, bn) = 6.

DTwin(b2, bi) = 12; i=7 to n− 2; therefore
∑n−2

i=7 DTwin(b2, bi) = 12(n− 8).
DTwin(b2, bn−1) = 11; DTwin(b2, bn) = 8.

DTwin(bi, bj) = 13; i = 3 to n − 7; j = 7 to n − 2; j − i > 4; therefore∑n−6
i=3 DTwin(bi, bj) = 13(n− 9).

SDTwin(G)=108n− 579;DTD(G) = 108n−579

(n+1
2 )

. �

Theorem 3.2. Let G be a graph U(n,m) where n > 2 and m > 6 then DTD(G)=
4m+117n−597

(n+m
2 )

.

Proof. We consider the umberlla graph U(n,m) with n +m vertices. Let {a1, a2,
. . . , am} be the vertices of the path Pm and {b1, b2, . . . , bn} be the pendent vertices
of the star K1,n. Now attach the root vertex of K1,n to end vertex (say) a1 of the
path Pm. Now join bi to b+i+ 1 for i = 1 to n−1 . For any path Pm, SDTwin(G)=
4m− 10.

For any Fan graph F1,m, SDTwin(F1,m) = 108m− 579.
DTwin(a2, bi) = 3; for i=1, n; therefore

∑
i=1,nDTwin(a2, bi) = 6

DTwin(a2, bi) = 4; for i=2, n− 1; therefore
∑

i=2,n−1DTwin(a2, bi) = 8

DTwin(a2, bi) = 5; for i= 3 to n− 2; therefore
∑n−2

i=3 DTwin(a2, bi) = 5(n− 4)

DTwin(a3, bi) = 2; for i=1, n; therefore
∑

i=1,nDTwin(a3, bi) = 4

DTwin(a3, bi) = 3; for i= 2 to n− 1; therefore
∑n−1

i=2 DTwin(a3, bi) = 3(n− 2)

DTwin(a4, bi) = 1; for i= 1 to n; therefore
∑n

i=1DTwin(a4, bi) = n.∑
i=1,n−2DTwin(b, bi+2) = 14.

SDTwin(G)=4m+ 117n− 597;DTD(G) = 4m+117−579

(n+m
2 )

. �

4. DOUBLE TWIN DOMINATION NUMBER FOR CORONA PRODUCT

In this section, we discuss about the concept of double twin domination num-
ber for corona product of two distict path of a graph.

Theorem 4.1. If G is Pn�Pm, then DTD(G) = 6m2n−7m2+122nm−591n−24m+10

(nm
2 )

where

n > 5,m > 9.

Proof. Consider the graph Pn�Pm. Let {a1, a2, . . . , an} be the vertices of the path
Pn. {ai1, ai2, . . . , aim} be the vertices of the fan graph F1,m, where i = 1, 2, . . . , n.
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Now attach the root vertex of the fan graph F1,m to each vertex of the path Pn

say ai. For any path graph Pn, SDTwin(Pn) = 4n− 10.

For any Fan graph
SDTwin(n copies of F1,m) = 108nm− 579n

DTwin (ai, a(i±1)j) = 3; for i = 1 to n−1; j = 1,m; therefore
∑n−1

i=1 (ai, a(i±1)j) =

12(n− 1).

DTwin (ai, a(i±1)j) = 4; for i = 1 to n−1; j = 2,m−1; therefore
∑n−1

i=1 (ai, a(i±1)j) =

16(n− 1).

DTwin (ai, a(i±1)j) = 5; for i = 1 to n−1; j= 3 to m−2; therefore
∑n−1

i=1 (ai, a(i±1)j) =

10(n− 1)(m− 4).

DTwin (ai, a(i±2)j) = 2; for i = 1 to n−2; j = 1,m; therefore
∑n−2

i=1 (ai, a(i±2)j) =

8(n− 2).

DTwin (ai, a(i±2)j) = 3; for i = 1 to n−2; j=2 to m−1; therefore
∑n−2

i=1 (ai, a(i±2)j) =

6(n− 2)(m− 2).

DTwin (ai, a(i±3)j) = 1; for i = 1 to n−3; j=2 to m; therefore
∑n−3

i=1 (ai, a(i±3)j) =

2(n− 3)m.

DTwin (aij, a(i+1)k) = 3; for i = 1 to n − 1; j = 1, m; k = 1,m; therefore∑n−1
i=1 (aij, a(i+1)k) = 12(n− 1).

DTwin (aij, a(i+1)k) = 4; for i = 1 to n− 1; j = 1, m; k = 2 to m− 1; therefore∑n−1
i=1 (aij, a(i+1)k) = 8(n− 1)(m− 2).

DTwin (aij, a(i+1)k) = 4; for i = 1 to n− 1; j = 2 to m− 1; k = 1, m; therefore∑n−1
i=1 (aij, a(i+1)k) = 8(n− 1)(m− 2).

DTwin (aij, a(i+1)k) = 5; for i = 1 to n − 1; j = 2 to m − 1; k = 2 to m − 1;
therefore

∑n−1
i=1 (aij, a(i+1)k) = 5(n− 1)(m− 2)2.

DTwin (aij, a(i+2)k) = 1; for i = 1 to n − 1; j = 1 to m; k = 1, m; therefore∑n−2
i=1 (aij, a(i+2)k) = (n− 2)m2.

SDTwin(G)=6m2n− 7m2 + 122nm− 591n− 24m+ 10

DTD(G) = 6m2n−7m2+122nm−591n−24m+10

(nm
2 )

. �

5. CONCULUSION

In this paper, we discussed the parameter called Double twin domination
number of a graph. We obtained this number for some standard graphs, fan
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graph, umberlla graph and corona product of two distinct path. The authors in-
vestigated this number for many product related graph and some more special
types of graphs which will be reported in the sub sequent papers.
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