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STRONG PRIME IDEALS IN TERNARY SEMIRING

P. MURUGADAS1

ABSTRACT. This article introduces the notion of strong prime ideals in ternary
semiring; an m-system corresponding to the above strong primeness and expose
some results in completely prime ideals in ternary semiring.

1. INTRODUCTION

The writing of the theory of ternary operations is huge and disperse over var-
ious disciplines of mathematics. Ternary generalization of mathematical struc-
tures are the exceptionally characteristic ways for additional turn of events and
inside and out cognizance of their essential attributes. Cayley just because
spearheaded and propelled first ternary mathematical operations in the man-
ner, thinking back to the nineteenth century. Cayley’s thoughts elucidated and
created n-ary generalization of matrices and their determinants [9,13] and gen-
eral theory of n-ary algebras [3, 10] and ternary rings [11]. Ternary structures
and their generalizations creat a few expectations in view of their chance of uti-
lizations in material science. A couple of significant physical applications are
recorded in [1,2,6,7]. In compatibility of Lister’s generalization of ternary rings
presented in 1971, T. K. Dutta and S. Kar concocted the thought of ternary
semirings. T. K. Dutta and S. Kar started prime ideals and prime radical of
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ternary semirings in [4]. Similar analysts propelled semiprime ideals and irre-
ducible ideals of ternary semirings in [5]. Moreover S. Kar in [8] concocted the
thought of quasi-ideals and bi-ideals in ternary semirings. Thus, M. Shabir and
M. Bano coasted prime bi-ideals in ternary semigroups in [12].

2. PRELIMINARIES

For the basic terminology about ternary semirings see [4–8]. Throughout the
paper TS means a ternary semiring with zero.

3. STRONG PRIME IDEAL IN TERNARY SEMIRING

In this section we introduce the notion of SPI in TS. Further ltI, llI and rtI

means left ideal, lateral ideal and right ideal respectively.

Definition 3.1. An ideal P of TS is said to be SPI if for any ltI L,llI M and
rtI R of TS RML ⊆ P ⇒ R ⊆ P or M ⊆ Por L ⊆ P .

Any element a ∈ RML is of the form a =
∑
i

rimili for ri ∈ R, mi ∈ M and

li ∈ L. Clearly every SPI is prime but not the converse, and SxS + SSxSS is a
llI of TS.

Theorem 3.1. Let P be a proper ideal of TS. Then the conditions bellow are
equivalent:

(1) P is SPI.
(2) For every l,m, n,∈ TS such that lSmSn+lSSmSSn ⊆ P then l ∈ P or

m ∈ P or n ∈ P .
(3) If 〈l〉, 〈m〉 and 〈n〉 are principle ideals in TS 3 〈l〉〈m〉〈n〉 ⊆ P, then l ∈ P

or m ∈ P or n ∈ P.

Proof.
(1)⇒ (2): Let l,m, n ∈ TS 3 such that lSmSn+lSSmSSn ⊆ P . We know

that lSS is rtI, SmS+SSmSS is a llI and SSc is a ltI. Now:
lSS(SmS+SSmSS)SSn=lSSSmSSSn+lSSSSmSSSSn=
lSmSn+lSSmSSn ⊆ P ⇒ lSS ⊆ P or (SmS + SSmSS) ⊆ P or SSl ⊆ P. If
lSS ⊆ P, then l3 + lSS ⊆ P .
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Consider rtI, llI and ltIgenerated by l; 〈l〉R, 〈l〉M , 〈l〉L. Now, 〈l〉R〈l〉M〈l〉L =

{(n0l+ lSS)(n1l+SlS+SSlSS)(n2l+SSl)} ⊆ l3+ lSS ⊆ P. (Here ni, i = 0, 1, 2

represent elements in N.) That implies 〈l〉R ⊆ P or 〈l〉M ⊆ P or 〈l〉L ⊆ P

⇒ l ∈ P .
Likewise we can prove for SmS+SSmSS ⊆ P and SSn ⊆ P. That is 〈m〉R
〈m〉M〈m〉L=(n0m+mSS)(n1m+SmS+SSmSS)(n2m+SSm) ⊆ SmS+SSmSS

⊆ P ⇒ 〈m〉R ⊆ P or 〈m〉M ⊆ P or 〈m〉L ⊆ P ⇒ m ∈ P and similarly the other
case arrive, that is n ∈ P .

(2) ⇒ (3) Let 〈l〉〈m〉〈n〉 ⊆ P. Now lSmSn + lSSmSSn ⊆ 〈l〉〈m〉〈n〉 ⊆ P.

Therefore by hypothesis l ∈ P or m ∈ P or n ∈ P.
(2)⇒ (1) Let for every l,m, n ∈ TS such that lSmSn+lSSmSSn ⊆ P ⇒ l ∈ P

or m ∈ P or n ∈ P. Then we prove that P is a SPI. Let RML ⊆ P for any
R− rtI,M − llI and L− ltI of TS. Suppose not; R 6⊂ P, M6⊂ P and L 6⊂ P. Then
there exists l ∈ R\P, m ∈ M\P and n ∈ L\P . Now lSmSn+lSSmSSn ⊆RML
+ RML = RML ⊆ P that implies l ∈ P or m ∈ P or n ∈ P , which is absurd.
This implies R ⊆ P or M ⊆ P or L ⊆ P . Therefore P is a SPI. �

Definition 3.2. m1 − system: Let M ⊆ TS. M is an m1 − system if given
l,m, n ∈M there exists l1 ∈ 〈l〉R,m1 ∈ 〈m〉M and n1 ∈ 〈n〉L 3 l1m1n1 ∈M .

Theorem 3.2. Let P be an ideal of a TS. Then P is SPI iff S\P is an m1−system.

Proof. Let P be a SPI of TS. Let l,m, n ∈ S\P . Suppose l1m1n1 /∈ S\P for all
l1 ∈ 〈l〉R,m1 ∈ 〈m〉M and n1 ∈ 〈n〉L. Then 〈l〉R〈m〉M〈〉L ⊆ P. Since P is SPI
〈l〉R ⊆ P or 〈m〉M ⊆ P or 〈n〉L ⊆ P. This implies l ∈ P or m ∈ P or n ∈ P. which
is a contradiction. Therefore l1m1n1 ∈ S\P for some l1 ∈ 〈l〉R,m1 ∈ 〈m〉M and
n1 ∈ 〈n〉L.

Conversely, let L,M,N be rtI, llI and ltI of TS respectively such that LMN ⊆
P . Suppose L 6⊂ P,M 6⊂ P and N 6⊂ P. Set l ∈ L\P,m ∈ M\P and n ∈ N\P.
Then l,m, n ∈ S\P and since S\P is an m1 − system l1m1n1 ∈ S\P for some
l1 ∈ 〈l〉L,m1 ∈ 〈m〉M and n1 ∈ 〈n〉N .

But l1m1n1 ∈ 〈l〉L〈m〉M〈n〉N ⊆ LMN ⊆ P. This in turn implies l1m1n1 ∈ P.

which is a contradiction to the assumption that l1m1n1 ∈ S\P. Hence L ⊆ P or
M ⊆ P or N ⊆ P. �

Theorem 3.3. Let TS has an ideal I, and A be an m-system such that M ∩I = φ,

then TS has a PI P such that I ⊆ P with P ∩ A = φ.
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Proof. Consider J = {K ⊆ S/I ⊆ K,M ∩K = φ}. K is an ideal in TS. Clearly
J 6= φ, since I is one such ideal. Suppose J1, J2, ...... ∈ J such that J1 ⊆ J2 ⊆
...... ⊆ Jn.... Let J =

⋃
Ji then we prove that J is an ideal. Let a ∈ J, then

a ∈ Ji for some i. As Ji is an ideal in S, for s1, s2 ∈ S, s1s2x ∈ Ji, s1xs2 ∈ Ji and
xs1s2 ∈ Ji. And so s1s2x ∈ J, s1xs2 ∈ J and xs1s2 ∈ J. Therefore given set is a
non-empty. By, Zorn’s lemma there exists a maximal ideal P 3M ∩ P = φ.

We shall prove P is PI. Suppose 〈a〉 6⊂ P, 〈b〉 6⊂ P and 〈c〉 6⊂ P for 〈a〉-an ideal
generated by a, 〈b〉- an ideal generated by b and 〈c〉- an ideal generated by c. By
the maximality theory there exists a1 ∈ M such that a1 ∈ P + 〈a〉, b1 ∈ M such
that b1 ∈ P + 〈b〉 and c1 ∈M such that c1 ∈ P + 〈c〉.

Since M is an m-system there exists a′1 ∈ 〈a1〉, b′1 ∈ 〈b1〉, and c′1 ∈ 〈c1〉 such
that a′1b

′
1c

′
1 ∈ M. Moreover a′1b

′
1c

′
1 ∈ (P + 〈a1〉)(P + 〈b1〉)(P + 〈c1〉) ⊆ P only

when 〈a1〉〈b1〉〈c1〉 ⊆ P that would simply a′b′c′ ∈ P. This is impossible, since
M ∩ P = φ. Therefore 〈a1〉〈b1〉〈c1〉  P and hence P is prime. �

Theorem 3.4. Let TS has an ideal Uand M be an m1 − system 3 M ∩ U = φ.

Then there exists a SPI P 3 U ⊆ P with M ∩ P = φ.

Proof. Construct set of ideals K as in Theorem 3.3 3 U ⊆ K and M ∩ K = φ.

The set of all such ideal is non-empty, since U is in the set. By the Zone’s lemma
we have a maximal ideal P 3M ∩ P = φ.

Suppose 〈l〉R 6⊂ P, 〈m〉M 6⊂ P and 〈n〉L 6⊂ P for 〈l〉R - a rtI generated by l,
〈m〉M - a llI generated by m and 〈n〉L - a ltI generated by n. By the maximality
theory, there exists l1 ∈ M 3 l1 ∈ (P + 〈l〉R), m1 ∈ M 3 m1 ∈ (P + 〈m〉M) and
m1 ∈ M 3 n1 ∈ (P + 〈n〉L). Since M is a m1 − system for l1,m1, n1 ∈ M there
exists l′1 ∈ 〈l1〉R,m

′
1 ∈ 〈m1〉M and n′

1 ∈ 〈n1〉L such that l′1m
′
1n

′
1 ∈M.

Moreover [l′1m
′
1n

′
1 ∈ (P + 〈l〉)(P + 〈m〉)(P + 〈n〉) ⊆ P ] iff 〈l〉R〈m〉M〈n〉L ⊆ P.

That indeed imply l
′
1m

′
1n

′
1 ∈ P , which contradicts the fact that M ∩ P = φ.

Therefore 〈l〉R〈m〉M〈n〉L 6⊂ P. So P is a SPI. �

Theorem 3.5. If M is an m− system then M is an m1 − system.

Proof. Let l,m, n ∈ M. Consider an element l1 ∈ 〈l〉R a rtI generated by l,

m1 ∈ 〈m〉M a llI generated by m and n1 ∈ 〈n〉L a ltI generated by n. Since
〈l〉R ⊆ 〈l〉, 〈m〉M ⊆ 〈m〉 and 〈n〉L ∈ 〈n〉 ⇒ l1 ∈ 〈l〉, m1 ∈ 〈m〉 and n1 ∈ 〈n〉 and
as M is an m-system⇒ l1m1n1 ∈M. Therefore M is an m1 − system. �

Definition 3.3. An ideal P of a TS is said to be CSPI if p3 ∈ P ⇒ p ∈ P.



STRONG PRIME IDEALS IN TERNARY SEMIRING 9683

Theorem 3.6. If U is an ideal and V is CSPI in TS, then (U : V ) is an ideal.

Proof. For u ∈ (U : V ), s1, s2 ∈ TS, us1s2V V = u(s1s2V )V ⊆ uV V ⊆
U (since U is an ideal). Therefore us1s2 ∈ (U : V ). This implies (U : V )

is a rtI. For s1, s2, s3, s4 ∈ TS and u ∈ (U : V ), consider (s1us2b1b2)
3 =

s1us2(b1b2s1us2b1b2s1u)s2b1b2. Now,

(b1b2s1us2b1b2s1u)
3 = b1b2s1us2b1b2s1(ub1b2)s1us2b1b2s1ub1b2s1us2b1b2s1u ∈ U

Thus (b1b2s1us2b1b2s1u) ∈ U . Therefore (U : V ) is an ideal. �

Theorem 3.7. If U is a CSPI then for any V ⊆ TS, (U : V ) is an ideal.

Proof. From Theorem 3.6 (U : V ) is a ltI. Let b1, b2 ∈ V and s1, s2 ∈ TS.

For x ∈ (U : V ), (xs1s2b1b2)
3 = xs1s2b1b2xs1s2(b1b2x)s1s2b1b2. Now,(b1b2x)

3

= b1b2(xb1b2)xb1b2x ∈ U. Therefore (b1b2x)
3∈ U ⇒ b1b2x ∈ U and (xs1s2b1b2)

3

∈ U ⇒ xs1s2b1b2 ∈ U.⇒ xs1s2 ∈ (U : V ). Therefore (U : V ) is a rtI. Let s1, s2 ∈
S, x ∈ (U : V ) and b1, b2 ∈ V such that (s1xs2b1b2)3 = s1xs2(b1b2s1xs2b1b2s1x)

s2b1b2. Consider (b1b2s1xs2b1b2s1x)
3 = b1b2s1xs2b1b2s1(xb1b2)s1

xs2b1b2s1xb1b2s1xs2b1b2s1x ∈ U , that implies b1b2s1xs2b1b2s1x ∈ U, so s1xs2b1b2 ∈
U. Thus s1xs2 ∈ (U : V ). Therefore (U : V ) is lI. Hence (U : V ) is an ideal. �

Theorem 3.8. An ideal P is CPI iff P is a SPI and a CSPI.

Proof. Let P be CPI and R,M,L 3 RML ⊆ P. Suppose R  P,M  P. Let
a ∈ R\P, b ∈ R\P and c ∈ L with abc ∈ P. As P is CPI a ∈ P or b ∈ P or
c ∈ P but a /∈ P, b /∈ P implies c ∈ P ⇒ L ⊆ P. Let A3 ⊆ P for an ideal, then
AAA ⊆ P. Clearly a3 ∈ P ⇒ a ∈ P .

Conversely, let P be a SPI and CSPI. Let abc ∈ P . Consider asbsc+assbssc such
that (asbsc + assbssc) ∈ P. Now (asbsc+ assbssc)3 =(asbsc + assbssc)(asbsc +
assbssc)(asbsc + assbssc). Take any element of the product asbs(casbscasb)sc,
(casbscasb)3 = casbscasbcas(bca)sbscasbscasb. Now (bca)3 = bc(abc)abca ∈ P.

⇒ bca ∈ P ⇒ casbscasb ∈ P ⇒ asbscasbscasbsc ∈ P.
Similarly, if we take asbs(cassb)sscasbsc in the product, (cassb)3 = cass(bca)

ssbcassb Here bca ∈ P ⇒ cassb ∈ P ⇒ asbscassbsscasbsc ∈ P and similarly if
we take assbsscassbassbsscssc in the product cassb ∈ P ⇒ asbscassbsscasbsc ∈
P . So (asbsc+ assbssc)3 ∈ P ⇒ (asbsc + assbssc) ∈ P . This implies (aSbSc +

aSSbSSc) ⊆ P. Therefore from Theorem 3.1 a ∈ P, b ∈ P and c ∈ P. Thus P is
CPI. �
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