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NEUTROSOPHIC IDEALS OF NEUTROSOPHIC BCH-ALGEBRAS

M. VASU1 AND D. RAMESH KUMAR

ABSTRACT. In this paper, the new concept of a nBCH-algebra is introduced
and investigated some related properties. Also, nBCH-ideals of a nBCH-
algebra are studied and a few properties are obtained. Furthermore, a few
results of ideals under homomorphism are discussed in nBCH-algebra.

1. INTRODUCTION AND PRELIMINARIES

In 1966, Imai and Iséki introduced BCK and BCI-algebras, [6, 7]. BCI-
algebras are a generalization of BCK-algebras. These algebras have been ex-
tensively studied since their introduction. In 1983, Hu and Li in [4,5] introduced
the notion of a BCH-algebra, which is a generalization of the notions of BCK
and BCI-algebras. They have studied a few properties of these algebras. In this
paper, we introduce a neutrosophic BCH-ideal of a neutrosophic BCH-algebra
and investigated some related properties. Also, we study a neutrosophic homo-
morphism of a neutrosophic BCH-algebra and some results are obtained. All
other undefined notions are from [1–4] and cited therein.

2. NEUTROSOPHIC BCH -ALGEBRA

Definition 2.1. Let (S, ∗,Θ) be any BCH alg & let S(I) = 〈S, I〉 be a set pro-
duced by S & I. The triple (S(I), ∗, (Θ,Θ)) is called a neutrosophic BCH-algebra
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(briefly, nBCH alg). If (%1, %2I) & (%3, %4I) are any two elements of S(I) with
%1, %2, %3, %4 ∈ S, we define

(2.1) (%1, %2I) ∗ (%3, %4I) = (%1 ∗ %3, (%1 ∗ %4 ∧ %2 ∗ %3 ∧ %2 ∗ %4)I).

An element l ∈ S is represented by (l,Θ) ∈ S(I) and (Θ,Θ) represents the
constant element in S(I). ∀ (l,Θ), (m,Θ) ∈ S, we define

(2.2) (l,Θ) ∗ (m,Θ) = (l ∗m,Θ) = (l ∧ ¬m,Θ)

where ¬m is the negation of m in S.

Example 1. Let (S(I), ∗, (Θ,ΘI)) is a neutrosophic set. For all (%1, %2I), (%3, %4I) ∈
S(I) in which ∗ is defined by (%1, %2I) ∗ (%3, %4I) = (%1, %2I) − (%3, %4I) = (%1 −
%3, (%2 − %4)I). Then (S(I), ∗, (Θ,ΘI)) is a nBCH alg.

Theorem 2.1. Every nBCI-alg (S(I), ∗, (Θ,Θ)) is a nBCH alg. But not con-
versely.

Example 2. Let S(I) = {(Θ,ΘI), (%1, %2I), (%3, %4I), (%5, %6I)} in which ∗ is de-
fined by:

∗ (Θ,ΘI) (%1, %2I) (%3, %4I) (%5, %6I)

(Θ,ΘI) (Θ,ΘI) (Θ,ΘI) (Θ,ΘI) (Θ,ΘI)

(%1, %2I) (%1, %2I) (Θ,ΘI) (%5, %6I) (%5, %6I)

(%3, %4I) (%3, %4I) (Θ,ΘI) (Θ,ΘI) (%3, %4I)

(%5, %6I) (%5, %6I) (Θ,ΘI) (Θ,ΘI) (Θ,ΘI)

Then (S(I), ∗, (Θ,ΘI)) is a nBCH alg but not nBCI-alg.

Theorem 2.2. Every nBCH alg (S(I), ∗, (Θ,Θ)) is a BCH alg but not converse.

Proof. Suppose that (S(I), ∗, (Θ,Θ)) is a nBCH alg. Let l = (w1, w2I), m =

(w3, w4I) and z = (w5, w6I) be arbitrary elements of S(I). Then
(BCH1) We have l ∗ l = (w1, w2I) ∗ (w1, w2I) = (w1 ∧ ¬w1, (w1 ∧ ¬w2 ∧ w2 ∧
¬w1 ∧ w2 ∧ ¬w2)I) = (Θ,Θ). (BCH2) Suppose that l ∗ m = Θ and m ∗ l = Θ.
Then (w1, w2I) ∗ (w3, w4I) = (Θ,Θ) and (w3, w4I) ∗ (w1, w2I) = (Θ,Θ)⇒ (w1 ∧
¬w3, (w1 ∧ ¬w4 ∧ w2 ∧ ¬w3 ∧ w2 ∧ ¬w4)I) = (Θ,Θ) and (w3 ∧ ¬w1, (w3 ∧ ¬w2 ∧
w4∧¬w1∧w4∧¬w2)I) = (Θ,Θ)⇒ (w1∧¬w3, (w1∧¬w4∧w2∧¬w3)I) = (Θ,Θ)

and (w3 ∧ ¬w1, (w3 ∧ ¬w2 ∧ w4 ∧ ¬w1)I) = (Θ,Θ) and therefore, w1 ∧ ¬w3 = Θ,
w1 ∧ ¬w4 ∧ w2 ∧ ¬w3 = Θ, w3 ∧ ¬w1 = Θ and w3 ∧ ¬w2 ∧ w4 ∧ ¬w1 = Θ from
which we obtain w1 = w3 and w2 = w4. Hence (w1, w2I) = (w3, w4I); that is,
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l = m. (BCH3) Put LHS = (l ∗m) ∗ n = ((w1, w2I) ∗ (w3, w4I)) ∗ (w5, w6I),
RHS = (l ∗ n) ∗m = ((w1, w2I) ∗ (w5, w6I)) ∗ (w3, w4I)

Now, l ∗m = (w1, w2I) ∗ (w3, w4I) = (w1 ∧ ¬w3, (w1 ∧ ¬w4 ∧ w2 ∧ ¬w3 ∧ w2 ∧
¬w4)I) = (w1 ∧ ¬w3, (w1 ∧ ¬w4 ∧ w2 ∧ ¬w3)I) ≡ (ρ3, ρ4I). LHS⇒ (l ∗m) ∗ n =

((w1, w2I) ∗ (w3, w4I)) ∗ (w5, w6I) = (ρ3, ρ4I) ∗ (w5, w6I) = (ρ3 ∗w5, (ρ3 ∗w6 ∧ ρ4 ∗
w5 ∧ ρ4 ∗w6)I) = (ρ3 ∧¬w5, (ρ3 ∧¬w6 ∧ ρ4 ∧¬w5 ∧ ρ4 ∧¬w6)I) = (ρ3 ∧¬w5, (ρ3 ∧
¬w6∧ρ4∧¬w5)I) = (w1∧¬w3∧¬w5, (w1∧¬w3∧¬w6∧w1∧¬w4∧w2∧¬w3∧¬w5)I)

= (w1 ∧ ¬w3, (w1 ∧ ¬w3 ∧ ¬w4 ∧ ¬w5 ∧ ¬w6 ∧ w2)I).(2.3)

Now, l ∗ n = (w1, w2I) ∗ (w5, w6I) = (w1 ∧ ¬w5, (w1 ∧ ¬w6 ∧ w2 ∧ ¬w5 ∧ w2 ∧
¬w6)I) = (w1 ∧ ¬w5, (w1 ∧ ¬w6 ∧ w2 ∧ ¬w5)I) ≡ (ρ3, ρ4I). RHS⇒ (l ∗ n) ∗m =

((w1, w2I) ∗ (w5, w6I)) ∗ (w3, w4I) = (ρ3, ρ4I) ∗ (w3, w4I) = (ρ3 ∧¬w3, (ρ3 ∧¬w4 ∧
ρ4 ∧ ¬w3 ∧ ρ4 ∧ ¬w4)I) = (ρ3 ∧ ¬w3, (ρ3 ∧ ¬w4 ∧ ρ4 ∧ ¬w3)I) = (w1 ∧ ¬w5 ∧
¬w3, (w1 ∧ ¬w5 ∧ ¬w4 ∧ w1 ∧ ¬w6 ∧ w2 ∧ ¬w5)I).

= (w1 ∧ ¬w3 ∧ ¬w5, (w1 ∧ ¬w3 ∧ ¬w4 ∧ ¬w5 ∧ ¬w6 ∧ w2)I)(2.4)

From (2.3) and (2.4), LHS = RHS.

From (BCH1) - (BCH4), we have (S(I), ∗, (Θ,Θ)) is a BCH alg. �

Example 3. Let (S, ∗,Θ) is a non-empty set. For all %1, %2 ∈ S in which ∗ is defined
by %1 ∗ %2 = %1 − %2. Then (S, ∗,Θ) is a BCH alg but not nBCH alg.

Lemma 2.1. (S(I), ∗, (Θ,Θ)) be a BCH alg. Then (b1, b2I) ∗ (Θ,Θ) = (b1, b2I),
iff b1 = b2.

Lemma 2.2. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg. Then for all (w1, w2I), (w3, w4I) ∈
S(I),

(i) (Θ,Θ)∗((w1, w2I)∗(w3, w4I)) = ((Θ,Θ)∗(w1, w2I))∗((Θ,Θ)∗(w3, w4I)),
(ii) (Θ,Θ)∗((Θ,Θ)∗((w1, w2I)∗(w3, w4I))) = (Θ,Θ)∗((w1, w2I)∗(w3, w4I)).

Proof.
(i) We have (w1, w2I) ∗ (w3, w4I) = (w1 ∧ ¬w3, (w1 ∧ ¬w4 ∧ w2 ∧ ¬w3)I) ≡

(ρ3, ρ4I). LHS ⇒ (Θ,Θ) ∗ ((w1, w2I) ∗ (w3, w4I)) = (Θ,Θ) ∗ (ρ3, ρ4I) = (Θ ∗
ρ3, (Θ ∗ ρ4 ∧Θ ∗ ρ3 ∧Θ ∗ ρ4)I) = (ρ3, (ρ4 ∧ ρ3)I)

≡ (ρ3, ρ4I).(2.5)

Now (Θ,Θ)∗(w1, w2I) = (Θ∗w1, (Θ∗w2∧Θ∗w1∧Θ∗w2)I) = (w1, (w2∧w1)I) =

(w1, w2I) and (Θ,Θ) ∗ (w3, w4I) = (Θ ∗ w3, (Θ ∗ w4 ∧ Θ ∗ w3 ∧ Θ ∗ w4)I) =
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(w3, (w4 ∧ w3)I) ≡ (w3, w4I) therefore RHS = ((Θ,Θ) ∗ (w1, w2I)) ∗ ((Θ,Θ) ∗
(w3, w4I)) = (w1, w2I)∗(w3, w4I) = (w1∧¬w3, (w1∧¬w4∧w2∧¬w3∧w2∧¬w4)I) =

(w1 ∧ ¬w3, (w1 ∧ ¬w4 ∧ w2 ∧ ¬w3)I)

≡ (ρ3, ρ4I).(2.6)

Therefore from (2.5) & (2.6) LHS = RHS (ii) It is similar. �

Theorem 2.3. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg. Then ∀ (w1, w2I), (w3, w4I),

(w5, w6I) ∈ S(I). (i) (w1, w2I) ∗ (w3, w4I) = (Θ,Θ) implies that ((w1, w2I) ∗
(w5, w6I))∗((w3, w4I)∗(w5, w6I)) = (Θ,Θ) and ((w5, w6I)∗(w3, w4I))∗((w5, w6I)∗
(w1, w2I)) = (Θ,Θ), (ii) ((w1, w2I)∗(w5, w6I))∗((w3, w4I)∗(w5, w6I))∗((w1, w2I)∗
(w3, w4I)) = (Θ,Θ).

Theorem 2.4. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg. Then S(I) is not commutative
(resp. implicative) even if S is commutative (resp. implicative).

Definition 2.2. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg. A nonempty subset A(I) is
called a neutrosophic subalgebra (briefly, nsubalg) of S(I) if

(i) (Θ,Θ) ∈ A(I),
(ii) (%1, %2I) ∗ (%3, %4I) ∈ A(I) for all (%1, %2I), (%3, %4I) ∈ A(I),

(iii) A(I) contains a proper subset which is a BCH alg.

If A(I) does not contain a proper subset which is a BCH alg, then A(I) is called a
pseudo nsubalg of S(I).

Example 4. In Example 1, then A(I) = {(Θ,ΘI), (%1, %2I), (%3, %4I)} is a nBCH
subalg of S(I).

Theorem 2.5. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg and for d1 6= Θ let D(d1,d1I)(I)

be a subset of S(I) defined by D(d1,d1I)(I) = {(l,mI) ∈ S(I) : (l,mI) ∗ (d1, d1I) =

(Θ,Θ)}. Then,

(i) D(d1,d1I)(I) is a nsubalg of S(I).
(ii) D(d1,d1I)(I) ⊆ D(Θ,Θ)(I).

Theorem 2.6. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg & ST (I) be a subset of S(I)

defined by ST (I) = {(l, lI) : l ∈ S}. Then ST (I) is a nsubalg of S(I).

Remark 2.1. Since (ST (I), ∗, (Θ,Θ)) is a nsubalg, then ST (I) is a n commutative
BCH alg in its own right.
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Definition 2.3. Let (S(I), ∗, (Θ,Θ)) be a nBCH alg. A non-empty subset B(I) is
called a neutrosophic ideal (briefly, nI) of S(I) if

(i) (Θ,Θ) ∈ B(I),
(ii) If (b1, b2I) ∗ (b3, b4I) ∈ B(I) & (b1, b2I) ∈ B(I) =⇒ (b3, b4I) ∈ B(I),
∀ (b1, b2I), (b3, b4I) ∈ B(I).

Definition 2.4. A non-empty subset BT (I) is called a neutrosophic BCH-ideal
(briefly, nBCHI) of ST (I) if (I1) (Θ,Θ) ∈ BT (I), (I2) If (l, lI) ∗ ((m,mI) ∗
(n, nI)) ∈ bT (I) and (m,mI) ∈ BT (I) implies (l, lI) ∗ (n, nI) ∈ BT (I), for all
(l, lI), (m,mI), (l, lI) ∈ BT (I).

Theorem 2.7. Every nBCHI of ST (I) is a nI of ST (I).

Definition 2.5. Let (S(I), ∗, (Θ,Θ)) & (S ′(I), ◦, (Θ′,Θ′)) be two nBCH alg’s. A
mapping % : S(I)→ S ′(I) is called a neutrosophic homomorphism (briefly, nhom)
if:

(i) %((b1, b2I)∗(b3, b4I)) = %((b1, b2I))◦%((b3, b4I)),∀(b1, b2I)(b3, b4I) ∈ S(I),
(ii) %((Θ, I)) = (Θ, I).

(iii) if % is injective (resp. surjective & bijection), then % is called a neutrosophic
monomorphism (resp. epimorphism & isomorphism) (briefly, nmonomor
(resp. nepimor & nisomor)).

A bijective nhom from S(I) onto S(I) is called a neutrosophic automorphism
(briefly, nautomor).

Definition 2.6. Let % : S(I)→ S ′(I) be a nhom of nBCH alg’s. Then

(i) Ker % = {(b1, b2I) ∈ S(I) : %((b1, b2I)) = (Θ,Θ)}.
(ii) Im % = {%((b1, b2I)) ∈ S ′(I) : (b1, b2I) ∈ S(I)}.

Example 5. In Example 1, let (S(I), ∗, (Θ,Θ)) be a nBCH alg and % : S(I) →
S(I) be a mapping defined by %(b1, b2I) = (b1, b2I) ∀(b1, b2I) ∈ S(I). Then % is a
nBCH isomor.

Theorem 2.8. Let % : S(I)→ S ′(I) be a nhom of nBCH alg’s. Then,

(i) If (Θ,ΘI) is the identity in S(I), then %(Θ,ΘI) is the identity in S ′(I),
(ii) If S is a nsubalg of S(I), then %(S) is a nsubalg of S ′(I),

(iii) If S is a nsubalg of S ′(I), then %−1(S) is a nsubalg of S(I).
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Theorem 2.9. Let % : S(I) → S ′(I) be a nhom from a nBCH alg S(I) into a
nBCH alg S ′(I). Then the kernel % is a nBCHI of S(I).

Proof. Since %(Θ,ΘI) = (Θ′,Θ′I), then (Θ,ΘI) ∈ Ker %. Let (b1, b2I)∗((b3, b4I)∗
(ρ1, ρ2I)) ∈ Ker % and (b3, b4I) ∈ Ker %, then %((b1, b2I)∗((b3, b4I)∗(ρ1, ρ2I))) =

(Θ′,Θ′I) and %(b3, b4I) = (Θ′,Θ′I), since (Θ′,Θ′I) = %((b1, b2I) ∗ ((b3, b4I) ∗
(ρ1, ρ2I))) = %(b1, b2I)∗%((b3, b4I)∗(ρ1, ρ2I)) = %(b1, b2I)∗(%(b3, b4I)∗%(ρ1, ρ2I)) =

%(b3, b4I)∗(%(b1, b2I)∗%(ρ1, ρ2I)) = (Θ′,Θ′I)∗(%(b1, b2I)∗%(ρ1, ρ2I)) = (%(b1, b2I)∗
%(ρ1, ρ2I)) = %((b1, b2I)∗(ρ1, ρ2I)) We get ((b1, b2I)∗(ρ1, ρ2I)) ∈ Ker %, so Ker %
is nBCHI of S(I). �

Lemma 2.3. Let % : S(I) → S ′(I) be a nhom from a nBCH alg S(I) into a
nBCH alg S ′(I). Then %((Θ,Θ)) = (Θ′,Θ′).

Theorem 2.10. Let % : S(I) → S ′(I) be a nhom of nBCH alg’s. Then % is a
nmonomor iff Ker % = {(Θ,Θ)}.

Theorem 2.11. Let S(I), S ′(I) & S ′′(I) be nBCH alg. Let % : S(I) → S ′(I) be
a nepimor and let $ : S(I) → S ′′(I) be a (a) nhom. If Ker % ⊆ Ker $, then ∃
a unique nhom ν : S ′(I) → S ′′(I) 3 ν% = $. Then (i) Ker ν = %(Ker $), (ii)
Im ν = Im $, (iii) ν is a nmonomor iff Ker % = Ker $, (iv) ν is a nepimor iff $
is a nepimor. (b) nhom & let $ : S ′(I)→ S ′′(I) be a nmonomor 3 Im % ⊆ Im $.
Then ∃ a unique nhom µ : S(I) → S ′(I) 3 % = $µ. Also, (i)Ker µ = Ker %,
(ii) Im µ = $−1(Im %), (iii) µ is a nmonomor iff % is a nmonomor, (iv) µ is a
nepimor iff Im $ = Im %.
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