

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9719–9725 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.79 Spec. Iss. on ICRTAMS-2020

NEUTROSOPHIC IDEALS OF NEUTROSOPHIC BCH-ALGEBRAS

M. VASU¹ AND D. RAMESH KUMAR

ABSTRACT. In this paper, the new concept of a nBCH-algebra is introduced and investigated some related properties. Also, nBCH-ideals of a nBCHalgebra are studied and a few properties are obtained. Furthermore, a few results of ideals under homomorphism are discussed in nBCH-algebra.

1. INTRODUCTION AND PRELIMINARIES

In 1966, Imai and Iséki introduced BCK and BCI-algebras, [6, 7]. BCIalgebras are a generalization of BCK-algebras. These algebras have been extensively studied since their introduction. In 1983, Hu and Li in [4,5] introduced the notion of a BCH-algebra, which is a generalization of the notions of BCKand BCI-algebras. They have studied a few properties of these algebras. In this paper, we introduce a neutrosophic BCH-ideal of a neutrosophic BCH-algebra and investigated some related properties. Also, we study a neutrosophic homomorphism of a neutrosophic BCH-algebra and some results are obtained. All other undefined notions are from [1–4] and cited therein.

2. Neutrosophic BCH-algebra

Definition 2.1. Let $(S, *, \Theta)$ be any BCH alg & let $S(\mathfrak{I}) = \langle S, \mathfrak{I} \rangle$ be a set produced by $S \& \mathfrak{I}$. The triple $(S(\mathfrak{I}), *, (\Theta, \Theta))$ is called a neutrosophic BCH-algebra

¹Corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 03B52.

Key words and phrases. BCH alg, nBCH alg, nBCHI.

(briefly, nBCH alg). If $(\varrho_1, \varrho_2 \mathfrak{I}) \& (\varrho_3, \varrho_4 \mathfrak{I})$ are any two elements of $S(\mathfrak{I})$ with $\varrho_1, \varrho_2, \varrho_3, \varrho_4 \in S$, we define

(2.1)
$$(\varrho_1, \varrho_2 \mathfrak{I}) * (\varrho_3, \varrho_4 \mathfrak{I}) = (\varrho_1 * \varrho_3, (\varrho_1 * \varrho_4 \land \varrho_2 * \varrho_3 \land \varrho_2 * \varrho_4) \mathfrak{I}).$$

An element $l \in S$ is represented by $(l, \Theta) \in S(\mathfrak{I})$ and (Θ, Θ) represents the constant element in $S(\mathfrak{I})$. $\forall (l, \Theta), (m, \Theta) \in S$, we define

(2.2)
$$(l,\Theta) * (m,\Theta) = (l * m,\Theta) = (l \wedge \neg m,\Theta)$$

where $\neg m$ is the negation of m in S.

Example 1. Let $(S(\mathfrak{I}), *, (\Theta, \Theta\mathfrak{I}))$ is a neutrosophic set. For all $(\varrho_1, \varrho_2\mathfrak{I}), (\varrho_3, \varrho_4\mathfrak{I}) \in S(\mathfrak{I})$ in which * is defined by $(\varrho_1, \varrho_2\mathfrak{I}) * (\varrho_3, \varrho_4\mathfrak{I}) = (\varrho_1, \varrho_2\mathfrak{I}) - (\varrho_3, \varrho_4\mathfrak{I}) = (\varrho_1 - \varrho_3, (\varrho_2 - \varrho_4)\mathfrak{I})$. Then $(S(\mathfrak{I}), *, (\Theta, \Theta\mathfrak{I}))$ is a *nBCH alg*.

Theorem 2.1. Every nBCI-alg $(S(\mathfrak{I}), *, (\Theta, \Theta))$ is a nBCH alg. But not conversely.

Example 2. Let $S(\mathfrak{I}) = \{(\Theta, \Theta\mathfrak{I}), (\varrho_1, \varrho_2\mathfrak{I}), (\varrho_3, \varrho_4\mathfrak{I}), (\varrho_5, \varrho_6\mathfrak{I})\}$ in which * is defined by:

*	$(\Theta,\Theta\mathfrak{I})$	$(\varrho_1, \varrho_2 \Im)$	$(\varrho_3, \varrho_4 \Im)$	$(\varrho_5, \varrho_6 \mathfrak{I})$
$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$
$(\varrho_1, \varrho_2 \mathfrak{I})$	$(\varrho_1, \varrho_2 \mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\varrho_5, \varrho_6 \Im)$	$(\varrho_5, \varrho_6 \mathfrak{I})$
$(\varrho_3, \varrho_4 \Im)$	$(\varrho_3, \varrho_4 \Im)$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\varrho_3, \varrho_4 \Im)$
$(\varrho_5, \varrho_6 \mathfrak{I})$	$(\varrho_5, \varrho_6 \mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$	$(\Theta,\Theta\mathfrak{I})$

Then $(S(\mathfrak{I}), *, (\Theta, \Theta\mathfrak{I}))$ is a *nBCH* alg but not *nBCI*-alg.

Theorem 2.2. Every nBCH alg $(S(\mathfrak{I}), *, (\Theta, \Theta))$ is a BCH alg but not converse.

Proof. Suppose that $(S(\mathfrak{I}), *, (\Theta, \Theta))$ is a *nBCH alg.* Let $l = (w_1, w_2\mathfrak{I}), m = (w_3, w_4\mathfrak{I})$ and $z = (w_5, w_6\mathfrak{I})$ be arbitrary elements of $S(\mathfrak{I})$. Then

 $(BCH_1) \text{ We have } l * l = (w_1, w_2\mathfrak{I}) * (w_1, w_2\mathfrak{I}) = (w_1 \land \neg w_1, (w_1 \land \neg w_2 \land w_2 \land \neg w_1 \land w_2 \land \neg w_2)\mathfrak{I}) = (\Theta, \Theta). (BCH_2) \text{ Suppose that } l * m = \Theta \text{ and } m * l = \Theta.$ Then $(w_1, w_2\mathfrak{I}) * (w_3, w_4\mathfrak{I}) = (\Theta, \Theta) \text{ and } (w_3, w_4\mathfrak{I}) * (w_1, w_2\mathfrak{I}) = (\Theta, \Theta) \Rightarrow (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3 \land w_2 \land \neg w_4)\mathfrak{I}) = (\Theta, \Theta) \text{ and } (w_3 \land \neg w_1, (w_3 \land \neg w_2 \land w_4 \land \neg w_1 \land w_4 \land \neg w_2)\mathfrak{I}) = (\Theta, \Theta) \Rightarrow (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_2)\mathfrak{I}) = (\Theta, \Theta) \Rightarrow (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3)\mathfrak{I}) = (\Theta, \Theta) \text{ and } (w_3 \land \neg w_1, (w_3 \land \neg w_2 \land w_4 \land \neg w_1)\mathfrak{I}) = (\Theta, \Theta) \text{ and therefore, } w_1 \land \neg w_3 = \Theta, w_1 \land \neg w_4 \land w_2 \land \neg w_3 = \Theta, w_3 \land \neg w_1 = \Theta \text{ and } w_3 \land \neg w_2 \land w_4 \land \neg w_1 = \Theta \text{ from which we obtain } w_1 = w_3 \text{ and } w_2 = w_4.$ Hence $(w_1, w_2\mathfrak{I}) = (w_3, w_4\mathfrak{I})$; that is,

 $l = m. (BCH_3) \text{ Put } LHS = (l * m) * n = ((w_1, w_2 \Im) * (w_3, w_4 \Im)) * (w_5, w_6 \Im),$ $RHS = (l * n) * m = ((w_1, w_2 \Im) * (w_5, w_6 \Im)) * (w_3, w_4 \Im)$

Now, $l * m = (w_1, w_2 \mathfrak{I}) * (w_3, w_4 \mathfrak{I}) = (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3 \land w_2 \land \neg w_4)\mathfrak{I}) = (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3)\mathfrak{I}) \equiv (\rho_3, \rho_4 \mathfrak{I}).$ LHS $\Rightarrow (l * m) * n = ((w_1, w_2 \mathfrak{I}) * (w_3, w_4 \mathfrak{I})) * (w_5, w_6 \mathfrak{I}) = (\rho_3, \rho_4 \mathfrak{I}) * (w_5, w_6 \mathfrak{I}) = (\rho_3 * w_5, (\rho_3 * w_6 \land \rho_4 * w_5 \land \rho_4 * w_6)\mathfrak{I}) = (\rho_3 \land \neg w_5, (\rho_3 \land \neg w_6 \land \rho_4 \land \neg w_5 \land \rho_4 \land \neg w_6)\mathfrak{I}) = (\rho_3 \land \neg w_5, (\rho_3 \land \neg w_5, (w_1 \land \neg w_3 \land \neg w_6 \land w_1 \land \neg w_4 \land w_2 \land \neg w_3 \land \neg w_5)\mathfrak{I})$

(2.3)
$$= (w_1 \wedge \neg w_3, (w_1 \wedge \neg w_3 \wedge \neg w_4 \wedge \neg w_5 \wedge \neg w_6 \wedge w_2)\mathfrak{I}).$$

Now, $l * n = (w_1, w_2 \mathfrak{I}) * (w_5, w_6 \mathfrak{I}) = (w_1 \land \neg w_5, (w_1 \land \neg w_6 \land w_2 \land \neg w_5 \land w_2 \land \neg w_6)\mathfrak{I}) = (w_1 \land \neg w_5, (w_1 \land \neg w_6 \land w_2 \land \neg w_5)\mathfrak{I}) \equiv (\rho_3, \rho_4 \mathfrak{I}).$ RHS $\Rightarrow (l * n) * m = ((w_1, w_2 \mathfrak{I}) * (w_5, w_6 \mathfrak{I})) * (w_3, w_4 \mathfrak{I}) = (\rho_3, \rho_4 \mathfrak{I}) * (w_3, w_4 \mathfrak{I}) = (\rho_3 \land \neg w_3, (\rho_3 \land \neg w_4 \land \rho_4 \land \neg w_3 \land \rho_4 \land \neg w_4)\mathfrak{I}) = (\rho_3 \land \neg w_3, (\rho_3 \land \neg w_4 \land \rho_4 \land \neg w_3)\mathfrak{I}) = (w_1 \land \neg w_5 \land \neg w_3, (w_1 \land \neg w_5 \land \neg w_4 \land w_1 \land \neg w_6 \land w_2 \land \neg w_5)\mathfrak{I}).$

$$(2.4) \qquad = (w_1 \wedge \neg w_3 \wedge \neg w_5, (w_1 \wedge \neg w_3 \wedge \neg w_4 \wedge \neg w_5 \wedge \neg w_6 \wedge w_2)\mathfrak{I})$$

From (2.3) and (2.4), LHS = RHS.

From $(BCH_1) - (BCH_4)$, we have $(S(\mathfrak{I}), *, (\Theta, \Theta))$ is a *BCH alg*.

Example 3. Let $(S, *, \Theta)$ is a non-empty set. For all $\varrho_1, \varrho_2 \in S$ in which * is defined by $\varrho_1 * \varrho_2 = \varrho_1 - \varrho_2$. Then $(S, *, \Theta)$ is a *BCH* alg but not *nBCH* alg.

Lemma 2.1. $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a BCH alg. Then $(b_1, b_2\mathfrak{I}) * (\Theta, \Theta) = (b_1, b_2\mathfrak{I})$, iff $b_1 = b_2$.

Lemma 2.2. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg. Then for all $(w_1, w_2\mathfrak{I}), (w_3, w_4\mathfrak{I}) \in S(\mathfrak{I})$,

(i)
$$(\Theta, \Theta) * ((w_1, w_2 \Im) * (w_3, w_4 \Im)) = ((\Theta, \Theta) * (w_1, w_2 \Im)) * ((\Theta, \Theta) * (w_3, w_4 \Im)),$$

(ii) $(\Theta, \Theta) * ((\Theta, \Theta) * ((w_1, w_2 \Im) * (w_3, w_4 \Im))) = (\Theta, \Theta) * ((w_1, w_2 \Im) * (w_3, w_4 \Im)).$

Proof.

(i) We have $(w_1, w_2\mathfrak{I}) * (w_3, w_4\mathfrak{I}) = (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3)\mathfrak{I}) \equiv (\rho_3, \rho_4\mathfrak{I}).$ LHS $\Rightarrow (\Theta, \Theta) * ((w_1, w_2\mathfrak{I}) * (w_3, w_4\mathfrak{I})) = (\Theta, \Theta) * (\rho_3, \rho_4\mathfrak{I}) = (\Theta * \rho_3, (\Theta * \rho_4 \land \Theta * \rho_3 \land \Theta * \rho_4)\mathfrak{I}) = (\rho_3, (\rho_4 \land \rho_3)\mathfrak{I})$

$$(2.5) \qquad \equiv (\rho_3, \rho_4 \mathfrak{I}).$$

Now $(\Theta, \Theta) * (w_1, w_2 \mathfrak{I}) = (\Theta * w_1, (\Theta * w_2 \land \Theta * w_1 \land \Theta * w_2) \mathfrak{I}) = (w_1, (w_2 \land w_1) \mathfrak{I}) = (w_1, w_2 \mathfrak{I})$ and $(\Theta, \Theta) * (w_3, w_4 \mathfrak{I}) = (\Theta * w_3, (\Theta * w_4 \land \Theta * w_3 \land \Theta * w_4) \mathfrak{I}) = (\Theta * w_3, (\Theta * w_4 \land \Theta * w_3 \land \Theta * w_4) \mathfrak{I})$

 $(w_3, (w_4 \land w_3)\mathfrak{I}) \equiv (w_3, w_4\mathfrak{I}) \text{ therefore RHS} = ((\Theta, \Theta) * (w_1, w_2\mathfrak{I})) * ((\Theta, \Theta) * (w_3, w_4\mathfrak{I})) = (w_1, w_2\mathfrak{I}) * (w_3, w_4\mathfrak{I}) = (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3)\mathfrak{I}) = (w_1 \land \neg w_3, (w_1 \land \neg w_4 \land w_2 \land \neg w_3)\mathfrak{I})$

$$(2.6) \qquad \equiv (\rho_3, \rho_4 \mathfrak{I}).$$

Therefore from (2.5) & (2.6) LHS = RHS (ii) It is similar.

Theorem 2.3. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg. Then $\forall (w_1, w_2\mathfrak{I}), (w_3, w_4\mathfrak{I}), (w_5, w_6\mathfrak{I}) \in S(\mathfrak{I}).$ (i) $(w_1, w_2\mathfrak{I}) * (w_3, w_4\mathfrak{I}) = (\Theta, \Theta)$ implies that $((w_1, w_2\mathfrak{I}) * (w_5, w_6\mathfrak{I}))*((w_3, w_4\mathfrak{I})*(w_5, w_6\mathfrak{I})) = (\Theta, \Theta)$ and $((w_5, w_6\mathfrak{I})*(w_3, w_4\mathfrak{I}))*((w_5, w_6\mathfrak{I})*(w_1, w_2\mathfrak{I})) = (\Theta, \Theta)$, (ii) $((w_1, w_2\mathfrak{I})*(w_5, w_6\mathfrak{I}))*((w_3, w_4\mathfrak{I})*(w_5, w_6\mathfrak{I}))*((w_1, w_2\mathfrak{I})*(w_3, w_4\mathfrak{I})) = (\Theta, \Theta)$.

Theorem 2.4. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH alg.* Then $S(\mathfrak{I})$ is not commutative (resp. implicative) even if S is commutative (resp. implicative).

Definition 2.2. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg. A nonempty subset $A(\mathfrak{I})$ is called a neutrosophic subalgebra (briefly, nsubalg) of $S(\mathfrak{I})$ if

- (i) $(\Theta, \Theta) \in A(\mathfrak{I})$,
- (*ii*) $(\varrho_1, \varrho_2 \mathfrak{I}) * (\varrho_3, \varrho_4 \mathfrak{I}) \in A(\mathfrak{I})$ for all $(\varrho_1, \varrho_2 \mathfrak{I}), (\varrho_3, \varrho_4 \mathfrak{I}) \in A(\mathfrak{I})$,
- (*iii*) $A(\mathfrak{I})$ contains a proper subset which is a BCH alg.

If $A(\mathfrak{I})$ does not contain a proper subset which is a *BCH* alg, then $A(\mathfrak{I})$ is called a pseudo nsubalg of $S(\mathfrak{I})$.

Example 4. In Example 1, then $A(\mathfrak{I}) = \{(\Theta, \Theta\mathfrak{I}), (\varrho_1, \varrho_2\mathfrak{I}), (\varrho_3, \varrho_4\mathfrak{I})\}$ is a *nBCH* subalg of $S(\mathfrak{I})$.

Theorem 2.5. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a nBCH alg and for $d_1 \neq \Theta$ let $D_{(d_1, d_1\mathfrak{I})}(\mathfrak{I})$ be a subset of $S(\mathfrak{I})$ defined by $D_{(d_1, d_1\mathfrak{I})}(\mathfrak{I}) = \{(l, m\mathfrak{I}) \in S(\mathfrak{I}) : (l, m\mathfrak{I}) * (d_1, d_1\mathfrak{I}) = (\Theta, \Theta)\}$. Then,

- (i) $D_{(d_1,d_1\mathfrak{I})}(\mathfrak{I})$ is a number of $S(\mathfrak{I})$.
- (*ii*) $D_{(d_1,d_1\mathfrak{I})}(\mathfrak{I}) \subseteq D_{(\Theta,\Theta)}(\mathfrak{I}).$

Theorem 2.6. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg & $S_T(\mathfrak{I})$ be a subset of $S(\mathfrak{I})$ defined by $S_T(\mathfrak{I}) = \{(l, l\mathfrak{I}) : l \in S\}$. Then $S_T(\mathfrak{I})$ is a nsubalg of $S(\mathfrak{I})$.

Remark 2.1. Since $(S_T(\mathfrak{I}), *, (\Theta, \Theta))$ is a nsubalg, then $S_T(\mathfrak{I})$ is a *n* commutative *BCH* alg in its own right.

Definition 2.3. Let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg. A non-empty subset $B(\mathfrak{I})$ is called a neutrosophic ideal (briefly, *nI*) of $S(\mathfrak{I})$ if

- (i) $(\Theta, \Theta) \in B(\mathfrak{I})$,
- (*ii*) If $(b_1, b_2 \mathfrak{I}) * (b_3, b_4 \mathfrak{I}) \in B(\mathfrak{I}) \& (b_1, b_2 \mathfrak{I}) \in B(\mathfrak{I}) \implies (b_3, b_4 \mathfrak{I}) \in B(\mathfrak{I}),$ $\forall (b_1, b_2 \mathfrak{I}), (b_3, b_4 \mathfrak{I}) \in B(\mathfrak{I}).$

Definition 2.4. A non-empty subset $B_T(\mathfrak{I})$ is called a neutrosophic BCH-ideal (briefly, nBCHI) of $S_T(\mathfrak{I})$ if ($\mathfrak{I}1$) (Θ, Θ) $\in B_T(\mathfrak{I})$, ($\mathfrak{I}2$) If $(l, l\mathfrak{I}) * ((m, m\mathfrak{I}) * (n, n\mathfrak{I})) \in b_T(\mathfrak{I})$ and $(m, m\mathfrak{I}) \in B_T(\mathfrak{I})$ implies $(l, l\mathfrak{I}) * (n, n\mathfrak{I}) \in B_T(\mathfrak{I})$, for all $(l, l\mathfrak{I}), (m, m\mathfrak{I}), (l, l\mathfrak{I}) \in B_T(\mathfrak{I})$.

Theorem 2.7. Every nBCHI of $S_T(\mathfrak{I})$ is a nI of $S_T(\mathfrak{I})$.

Definition 2.5. Let $(S(\mathfrak{I}), *, (\Theta, \Theta)) \& (S'(\mathfrak{I}), \circ, (\Theta', \Theta'))$ be two *nBCH alg's*. A mapping $\varrho : S(\mathfrak{I}) \to S'(\mathfrak{I})$ is called a neutrosophic homomorphism (briefly, *nhom*) if:

- (i) $\varrho((b_1, b_2\mathfrak{I}) * (b_3, b_4\mathfrak{I})) = \varrho((b_1, b_2\mathfrak{I})) \circ \varrho((b_3, b_4\mathfrak{I})), \forall (b_1, b_2\mathfrak{I}) (b_3, b_4\mathfrak{I}) \in S(\mathfrak{I}),$
- (*ii*) $\varrho((\Theta, \mathfrak{I})) = (\Theta, \mathfrak{I}).$
- (iii) if ρ is injective (resp. surjective & bijection), then ρ is called a neutrosophic monomorphism (resp. epimorphism & isomorphism) (briefly, nmonomor (resp. nepimor & nisomor)).

A bijective *nhom* from $S(\mathfrak{I})$ onto $S(\mathfrak{I})$ is called a neutrosophic automorphism (briefly, *nautomor*).

Definition 2.6. Let $\varrho: S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a *nhom* of *nBCH* alg's. Then

- (i) Ker $\varrho = \{(b_1, b_2\mathfrak{I}) \in S(\mathfrak{I}) : \varrho((b_1, b_2\mathfrak{I})) = (\Theta, \Theta)\}.$
- (ii) $\Im m \ \varrho = \{ \varrho((b_1, b_2 \Im)) \in S'(\Im) : (b_1, b_2 \Im) \in S(\Im) \}.$

Example 5. In Example 1, let $(S(\mathfrak{I}), *, (\Theta, \Theta))$ be a *nBCH* alg and $\varrho : S(\mathfrak{I}) \rightarrow S(\mathfrak{I})$ be a mapping defined by $\varrho(b_1, b_2\mathfrak{I}) = (b_1, b_2\mathfrak{I}) \forall (b_1, b_2\mathfrak{I}) \in S(\mathfrak{I})$. Then ϱ is a *nBCH* isomor.

Theorem 2.8. Let $\varrho: S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a nhom of nBCH alg's. Then,

- (i) If $(\Theta, \Theta \mathfrak{I})$ is the identity in $S(\mathfrak{I})$, then $\varrho(\Theta, \Theta \mathfrak{I})$ is the identity in $S'(\mathfrak{I})$,
- (*ii*) If S is a nsubalg of $S(\mathfrak{I})$, then $\varrho(S)$ is a nsubalg of $S'(\mathfrak{I})$,
- (*iii*) If S is a nsubalg of $S'(\mathfrak{I})$, then $\varrho^{-1}(S)$ is a nsubalg of $S(\mathfrak{I})$.

Theorem 2.9. Let $\varrho : S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a *nhom* from a *nBCH* alg $S(\mathfrak{I})$ into a *nBCH* alg $S'(\mathfrak{I})$. Then the kernel ϱ is a *nBCHI* of $S(\mathfrak{I})$.

Proof. Since $\varrho(\Theta, \Theta\mathfrak{I}) = (\Theta', \Theta'\mathfrak{I})$, then $(\Theta, \Theta\mathfrak{I}) \in Ker \ \varrho$. Let $(b_1, b_2\mathfrak{I}) * ((b_3, b_4\mathfrak{I}) * (\rho_1, \rho_2\mathfrak{I})) \in Ker \ \varrho$ and $(b_3, b_4\mathfrak{I}) \in Ker \ \varrho$, then $\varrho((b_1, b_2\mathfrak{I}) * ((b_3, b_4\mathfrak{I}) * (\rho_1, \rho_2\mathfrak{I}))) = (\Theta', \Theta'\mathfrak{I})$ and $\varrho(b_3, b_4\mathfrak{I}) = (\Theta', \Theta'\mathfrak{I})$, since $(\Theta', \Theta'\mathfrak{I}) = \varrho((b_1, b_2\mathfrak{I}) * ((b_3, b_4\mathfrak{I}) * (\rho_1, \rho_2\mathfrak{I}))) = \varrho(b_1, b_2\mathfrak{I}) * \varrho((b_3, b_4\mathfrak{I}) * (\rho_1, \rho_2\mathfrak{I})) = \varrho(b_1, b_2\mathfrak{I}) * (\varrho(b_1, b_2\mathfrak{I}) * (\varrho(b_1, b_2\mathfrak{I}) * (\varrho(b_1, b_2\mathfrak{I}))) = \varrho(b_1, b_2\mathfrak{I}) * (\varrho(b_1, b_2\mathfrak{I}) * (\rho_1, \rho_2\mathfrak{I})) = (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I})) = (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I})) = (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I})) = (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1, b_2\mathfrak{I})) = (\rho(b_1, b_2\mathfrak{I}) * (\rho(b_1$

Lemma 2.3. Let $\varrho : S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a nhom from a nBCH alg $S(\mathfrak{I})$ into a nBCH alg $S'(\mathfrak{I})$. Then $\varrho((\Theta, \Theta)) = (\Theta', \Theta')$.

Theorem 2.10. Let $\rho : S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a nhom of nBCH alg's. Then ρ is a nmonomor iff Ker $\rho = \{(\Theta, \Theta)\}.$

Theorem 2.11. Let $S(\mathfrak{I}), S'(\mathfrak{I}) \& S''(\mathfrak{I})$ be nBCH alg. Let $\varrho : S(\mathfrak{I}) \to S'(\mathfrak{I})$ be a nepimor and let $\varpi : S(\mathfrak{I}) \to S''(\mathfrak{I})$ be a (a) nhom. If $Ker \ \varrho \subseteq Ker \ \varpi$, then \exists a unique nhom $\nu : S'(\mathfrak{I}) \to S''(\mathfrak{I}) \ni \nu \varrho = \varpi$. Then (i) $Ker \ \nu = \varrho(Ker \ \varpi)$, (ii) $\Im m \ \nu = Im \ \varpi$, (iii) ν is a nmonomor iff $Ker \ \varrho = Ker \ \varpi$, (iv) ν is a nepimor iff ϖ is a nepimor. (b) nhom & let $\varpi : S'(\mathfrak{I}) \to S''(\mathfrak{I})$ be a nmonomor $\ni \Im m \ \varrho \subseteq Im \ \varpi$. Then \exists a unique nhom $\mu : S(\mathfrak{I}) \to S''(\mathfrak{I}) \ni \varrho = \varpi \mu$. Also, (i) $Ker \ \mu = Ker \ \varrho$, (ii) $\Im m \ \mu = \varpi^{-1}(\Im m \ \varrho)$, (iii) μ is a nmonomor iff ϱ is a nmonomor, (iv) μ is a nepimor iff $\Im m \ \varpi = Im \ \varrho$.

REFERENCES

- [1] M. A. CHAUDHRY: On BCH-algebras, Math. Japon., 36(4) (1991), 665–676.
- [2] W. A. DUDEK, J. THOMYS: On decompositions of BCH-algebras, Math. Japon., 35(6) (1990), 1131–1138.
- [3] B. DAVVAZ, S. M. MOSTAFA, F. F. KAREEM: Neutrosophic ideals of neutrosophic KUalgebras, GU J Sci., **30**(4) (2017), 463–472.
- [4] Q. P. HU, X. LI: On BCH-algebras, Math. Sem. Notes., 11 (1983), 313–320.
- [5] Q. P. HU, X. LI: On proper BCH-algebras, Math. Japonica, 30(4) (1985), 659–661.
- [6] Y. IMAI, K. ISEKI: On axioms systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19–22.
- [7] K. ISEKI: An algebra related with a propositional calculus, Proc. Japan Academy, **42** (1966), 26–29.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR WOMEN SIVAGANGAI - 630 562, TAMIL NADU, INDIA. *Email address*: mvasu1974@gmail.com

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS AND SCIENCE COLLEGE KOMARAPALAYAM - 638 183, TAMIL NADU, INDIA. *Email address*: durairameshmath@gmail.com