ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9747–9751 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.83 Spec. Iss. on ICRTAMS-2020

A NOTE ON FUZZY BRK TOPOLOGICAL ACTION OF SUBGROUP

S. SIVAKUMAR¹ AND S. KOUSALYA

ABSTRACT. In this paper, fuzzy BRK topological action can be extended to a subgroup S. We study some theorems and properties of a fuzzy BRK topological action on subgroup. Also, we discuss about normal fuzzy BRK topological action in a subgroup of G.

1. INTRODUCTION AND PRELIMINARIES

The concept of a fuzzy set was introduced in [12], provides a general topology called fuzzy topological spaces. The structure of a fuzzy topological spaces by Foster in [2] combined with a fuzzy group. Rosenfeld in [6] has formulate the elements of a theory of fuzzy topological groups. Ma and Yu in [4] and Yalvac in [11] changed the definition to ordinary topological group is a special case of a *ftg*. In 2012, Bandaru in [5] introduced *BRK*-algebra, which is a generalization of *BCK/BCI/BCH/Q/QS/BM*-algebras. Sivakumar et al. introduced a topology on *BRK*-algebra in [7] and also studied there properties. Haddadi in [3] and Rosenfeld in [6] study fuzzy actions of fuzzy submonoids and fuzzy subgroups from an algebraic point of view. Boixader and Recasens in [1] has made some interesting in group with fuzzy actions. The fuzzy actions in a *BRK*-topological spaces has explained in a paper, [10]. In this paper, we

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 20F19.

Key words and phrases. fuzzy BRK topological action, fuzzy BRK topological action of S, normal fuzzy $BRKtAS_q$.

extend fuzzy BRK topological action to a subgroup S. Also, we study a normal fBRKtA of subgroup and their properties. All other undefined notions are from [2, 5, 8–10, 12] and cited therein.

2. Fuzzy BRK topological action on subgroup

Definition 2.1. Let G be a $fBRKtg (G, \star, 0, \tau)$ on X and S be a subgroup of G, then the map $\mu : (G \times S, \tau \times \tau) \to (S, \star, 0, \tau)$ is a fBRKtA of S (briefly, $fBRKtAS_g$) on X if (a^{*}) $\mu(e\star(f\star s)) = \mu((e\star f)\star s)$, (a^{**}) $\mu(0\star s) = \mu(s) \forall e, f \in G \& s \in S$, (b) $\mu(e \star (s \star t)) \geq \min(\mu(e \star s), \mu(e \star t))$, (c) $\mu((e \star f) \star s) \geq \min(\mu(e \star s), \mu(f \star t))$, (d) $\mu(e \star s^{-1}) \geq \mu(e \star s) \forall e, f \in G \& s, t \in S$.

Example 1. Let $(X = \{0_c, 1_c, 2_c, 3_c\}, \star, 0)$ be a fBRKtg in which \star is defined by

*	0_c	1_c	2_c	3_c
0_c	0_c	1_c	2_c	3_c
1_c	1_c	0_c	3_c	2_c
2_c	2_c	3_c	0_c	1_c
3_c	3_c	2_c	1_c	0_c

Now define a fuzzy set $\mu : X \to [0, 1]$ by $\mu(0_c) = 0.8$, $\mu(1_c) = 0.7$, $\mu(2_c) = \mu(3_c) = 0.6$, $\{0, 1, 2\} \in G$ and $\{0, 1\} \in S$. Then, it is a $fBRKtAS_g$.

Theorem 2.1. Let *G* be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$, then every subgroup *H* of *G* acts on *S*.

Proof. A fBRKtg G on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$. Then (a^*) , G acting on S. Also there exists a map $\mu : (G \times S, \tau \times \tau) \to (S, \star, 0, \tau)$ with the conditions $\mu(g \star (h \star s)) = \mu((g \star h) \star s)$ and $\mu(0 \star s) = \mu(s) \forall g, h \in G, s \in S$. In particular, the restriction map of μ on $(H \times S, \tau \times \tau) \to (S, \star, 0, \tau)$ satisfies the conditions $\mu(g \star (h \star s)) = \mu((g \star h) \star s)$ and $\mu(0 \star s) = \mu(s) \forall g, h \in H, s \in S$. (b) $\mu(g \star (s \star t)) \ge \min(\mu(g \star s), \mu(g \star t)),$ (c) $\mu((g \star h) \star s) \ge \min(\mu(g \star s), \mu(h \star t)),$ (d) $\mu(g \star s^{-1}) \ge \mu(g \star s) \forall g, h \in H, s, t \in S$. Hence every subgroup of G acts on the given $fBRKtAS_g \mu$. Similarly G acts on each fuzzy subgroup H_μ of μ under S.

Theorem 2.2. Let G be a fBRKtg on a $fBRKtAS_q \mu$ on $(S, \star, 0, \tau)$. Then:

(i) $\mu(g \star s) \leq \mu(0 \star s)$ for all $g \in G$ and $s \in S$.

9748

(ii) The subset $G_{\mu} = \{g \in G/\mu(g \in s) = \mu(0 \star s)\}$ is a subgroup of G acting on $fBRKtAS_{q} \mu$.

Proof. Let $g \in G$. Then $\mu(g * s) = \min\{\mu(g * s), \mu(g * s)\} = \min\{\mu(g * s), \mu((g^{-1}) * s)\} \le \mu((g * g^{-1}) * s) = \mu(0 * s)$ implies (i). To verify (ii), it follows that $0 \in G_{\mu}$, and $G_{\mu} \neq 0$. Let $g, h \in G_{\mu}$ and $s \in S$. $\mu((g * h^{-1}) * s) \ge \min\{\mu(g * s), \mu((h^{-1}) * s)\} = \min\{\mu(g * s), \mu(h * s)\} = \min\{\mu(0 * s), \mu(0 * s)\} = \mu(0 * s)$ but from (i) $\mu((g * h^{-1}) * s) \le \mu(0 * s)$ for $g, h \in G$ and $s \in S$, so $\mu((g * h^{-1}) * s) = \mu(0 * s)$ which means $(g * h^{-1}) \in G_{\mu}$. Thus G_{μ} is a subgroup of G. So G_{μ} acts on $fBRKtAS_{g} \mu$ on S by Theorem 2.1.

Corollary 2.1. Let *G* be a *fBRKtg* on a *fBRKtAS_g* μ on $(S, \star, 0, \tau)$. Consider the subset *H* of *G* given by $H = \{g \in G/\mu(g \star s) = \mu(0 \star s)\}$. Then *H* is a crisp subgroup of *G* acting on *S*.

Theorem 2.3. Let G be a fBRKtg on a $fBRKtAS_g$'s μ_1 and μ_2 on $(S, \star, 0, \tau)$. Then G acts on a $fBRKtAS_g$'s $\mu_1 \cap \mu_2$ on S.

Proof. Let G be a fBRKtg on a $fBRKtAS_g$'s μ_1 and μ_2 on $(S, \star, 0, \tau)$. It is given that μ_1 and μ_2 are $fBRKtAS_g$'s on S. It follows that $\mu_1 \cap \mu_2$ on S.

Since G acts on S, then there exists a map $\mu : (G \times S, \tau \times \tau) \to (S, \star, 0, \tau)$ such that $e \star (f \star s) = (e \star f) \star s$ and $0 \star s = s$ or all $s \in S$, and $\forall e, f \in G$ which gives (a*) & (a**). Let $e, f \in G$ and $s \in S$. (b) $(\mu_1 \cap \mu_2)(e \star (s \star t)) = \min\{\mu_1(e \star (s \star t)), \mu_2(e \star (s \star t))\} \ge \min\{\min\{\mu_1(e \star s), \mu_1(e \star t)\}, \min\{\mu_2(e \star s), \mu_2(e \star t)\}\} = \min\{\min\{\mu_1(e \star s), \mu_2(e \star s)\}, \min\{\mu_1(e \star s), \mu_2(e \star s)\}\} = \min\{(\mu_1 \cap \mu_2)(e \star s), (\mu_1 \cap \mu_2)(e \star t)\}.$ (c) $(\mu_1 \cap \mu_2)((e \star f) \star s) = \min\{\mu_1((e \star f) \star s), \mu_2((e \star f) \star s)\} \ge \min\{\min\{\mu_1(e \star s), \mu_1(f \star s)\}, \min\{\mu_2(e \star s), \mu_2(f \star s)\}\} = \min\{\min\{\mu_1(e \star s), \mu_2(e \star s)\}, \min\{\mu_1(e \star s^{-1}), \mu_2(e \star s^{-1})\} \ge \min\{\mu_1(e \star s), \mu_2(e \star s)\} = \min\{\mu_1(e \star s), \mu_2(e \star$

Theorem 2.4. If *G* acts each member in the family $\{\mu_i\}_i \in G$ of fBRKtg under *S*, then *G* acts on $fBRKtg \cap \mu_i$ under *S*.

Theorem 2.5. Let *G* be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$, then *G* acts on anti- $fBRKtAS_g \mu^c$ on *S*.

Theorem 2.6. Let G be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$. Then G acts on level cut set $U(\mu; t)$ on S where t is in [0, 1].

3. NORMAL $fBRKtAS_q$

Definition 3.1. Let *G* be a *fBRKtg* on a *fBRKtAS_g* μ on $(S, \star, 0, \tau)$ and θ is a homomorphism from *S* into *S*. Define $\mu^{\theta} = \{ \langle s \in S, \inf_{x \in G} \mu(\theta(x)) \star s \rangle \}$ under *S*.

Definition 3.2. A $fBRKtAS_g \mu$ on S is normal $fBRKtAS_g$ (briefly, $nfBRKtAS_g$) if $\inf_{c \in G} \mu(c \star s) = \inf_{c \in G} \mu(c \star (t^{-1} \star s \star t)) \forall s, t \in S$.

Definition 3.3. Let G be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$ is a fuzzy BRK characteristic of G acting on S if $\mu^{\theta} = \mu$ for some homomorphism θ on S. In a group S, define $[s, t] = (t^{-1} \star s^{-1} \star s \star t)$.

Theorem 3.1. Let G be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$ and θ is a homomorphism from S into S. The group G acts on fuzzy BRK subgroup $\mu^{\theta} = \{ < s \in S, \inf_{x \in G} \mu(\theta(x)) \star s > \}$ under S.

Theorem 3.2. Let G be a fBRKtg on a $fBRKtAS_g \mu$ on $(S, \star, 0, \tau)$. Let μ^+ be a fuzzy set $\{ < s \in S, \mu^+(s) >: \mu^+(s) = \inf_{c \in G} \mu(c \star s) + 1 - \mu(0 \star s)$. Then G acts on the fuzzy BRK group μ^+ under S.

 $\begin{array}{l} \textit{Proof. It follows that } \mu^+(s) = \inf_{c \in G} \mu(c \star s) + 1 - \mu(0 \star s) \text{ for all } s \in S. \text{ So } \\ \mu^+(s \star t^{-1}) = \inf_{c \in G} \mu(c \star (s \star t^{-1})) + 1 - \mu(0 \star (s \star t^{-1})) = [\inf_{c \in G} \mu(c \star s) + 1 - \mu(0 \star s)], \\ \inf_{c \in G} \mu(c \star t) + 1 - \mu(0 \star t) \; \forall \; s, t \in S. \text{ Thus } s, t \in \mu^+ \text{ implies that } s \star t^{-1} \in \mu^+. \\ \text{Then } \mu^+ \text{ is a fuzzy } BRK \text{ subgroup of } S. \text{ Hence } G \text{ acts on the fuzzy } BRK \text{ group } \\ \mu^+ \text{ under } S. \text{ So } \mu^+(c \star (t \star s \star t^{-1})) = \inf_{c \in G} \mu(c \star (t \star s \star t^{-1})) + 1 - \mu(0 \star (t \star s \star t^{-1})) = \\ \mu(c \star s) + 1 - \mu(0 \star s) = \mu^+(c \star s) \; \forall \; s, t \in S. \text{ Hence } \mu^+ \text{ is normal fuzzy } BRK \text{ group } \\ \text{of } G \text{ acting on } S. \end{array}$

Theorem 3.3. Let G be a fBRKtg act on a $nfBRKtAS_g \mu$ on $(S, \star, 0, \tau)$. Then $\inf_{x \in G} \mu(x \star [s, t]) = \mu(0 \star s) \forall s, t \in S$.

Proof. Since G acts on a normal fuzzy BRK group μ under S, it gives that $\inf_{x\in G}\mu(x\star s) = \inf_{x\in G}\mu(x\star (t\star s\star t^{-1}) \forall s,t\in S.$ Replacing s by (s^{-1}) and t by (t^{-1}) , $\inf_{x\in G}\mu(x\star s^{-1}) = \inf_{x\in G}\mu(x\star (t^{-1}\star s\star t)) \forall s,t\in S.$ Then it becomes that $\inf_{x\in G}\mu(x\star [s,t]) = \mu(0\star s) \forall s,t\in S.$

Theorem 3.4. Let G act on a fuzzy BRK characteristic group μ with respect to θ under S. Then μ is a $nfBRKtAS_g$ of S.

9750

Proof. Let $g \in G$. Consider the map $\theta_t : S \to S$ by $\theta(s) = t \star s \star t^{-1}$, where t fixed in S. Clearly θ_t is an automorphism of S. Now $\mu(g \star s) = \mu^{\theta_t}(x \star s) = \mu(\theta_t(g \star s)) \forall s \in S = \mu((g \star (t^{-1} \star s \star t)) \forall s, t \in S)$. It follows that $\inf_{g \in G} \mu(g \star s) = \inf_{g \in G} \mu(g \star (t \star s \star t^{-1})) \forall s, t \in S$. So μ is a $nfBRKtAS_g$ of S and hence G acts on a $nfBRKtAS_g$ under S.

REFERENCES

- [1] D. BOIXADER, J. RECASENS: Fuzzy actions, Fuzzy Sets and Systems, 339 (2018), 17–30.
- [2] D. H. FOSTER: Fuzzy topological group, J. Math. Anal. Appl., 67(2) (1979), 549–564.
- [3] M. HADDADI: Some algebraic properties of fuzzy S-acts, Ratio Mathematica, 24 (2013), 53–62.
- [4] J. L. MA, C. H. YU: Fuzzy topological groups, Fuzzy Sets and Systems, 12(3) (1984), 289–299.
- [5] R. K. BANDARU: *On BRK-algebras*, International Journal of Mathematics and Mathematical Sciences, (2012), 1–12.
- [6] A. ROSENFELD: Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
- [7] S. SIVAKUMAR, S. KOUSALYA, R. V. PRASAD, A. VADIVEL: *Topological structures on BRK-algebras*, Journal of Engineering Sciences, **10**(11) (2019), 459–471.
- [8] S. SIVAKUMAR, S. KOUSALYA, R. V. PRASAD, A. VADIVEL: On Fuzzy Topological BRK-Subalgebras, submitted.
- [9] S. SIVAKUMAR, S. KOUSALYA, A. VADIVEL: On fuzzy topological BRK-group, submitted.
- [10] S. SIVAKUMAR, S. KOUSALYA, A. VADIVEL: On fuzzy BRK-topological action, submitted.
- [11] T. H. YALVAC: Fuzzy set and functions on fuzzy spaces, J. Math. Anal., 126(2) (1987), 409–423.
- [12] L. A. ZADEH: Fuzzy sets, Inform. Control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE CHIDAMBARAM, TAMIL NADU - 608 102, INDIA Email address: ssk.2012@yahoo.co.in

DEPARTMENT OF MATHEMATICS VIDYAA VIKAS COLLEGE OF ENGINEERING AND TECHNOLOGY TIRUCHENGODE, TAMIL NADU - 637 214, INDIA *Email address*: kousalyavaasan@gmail.com