ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9753–9757 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.84 Spec. Iss. on ICRTAMS-2020

\mathcal{AC}^* AND $\mathcal{AC}_2^*\text{-}\mathsf{PAIRWISE}$ PARACOMPACTNESS IN BITOPOLOGICAL SPACES

S. UMAMAHESWARI¹ AND M. SARASWATHI

ABSTRACT. This paper deals with two new classes of \mathcal{AC}^* pairwise and \mathcal{AC}_2^* pairwise paracompact spaces in bitopological spaces some characterizations and several basic properties of \mathcal{AC}^* and \mathcal{AC}_2^* pairwise paracompact spaces are obtained. Also introduced the \mathcal{AC}^* -pairwise normal spaces in bitopological spaces and its properties were discussed.

1. INTRODUCTION

We are focused on the idea of \mathcal{AC}^* - pairwise paracompact spaces, \mathcal{AC}_2^* -pairwise paracompact spaces and \mathcal{AC}^* - pairwise normal in bitopological spaces. Various characterzations of bitopological compactness have showed up in the writing of Fletcher in [5]. The bitopological paracompactness has also been considered by M. C. Datta in [4], C- paracompact spaces and C_2 - paracompact spaces were characterized by Arhangelskii. C- paracomapact spaces and C_2 - paracompact spaces were concentrated in [7]. S. Alzahrani in [1] research C- normal topological property. In this paper, every bitopological space are presumed to be pairwise Hausdorff. According to D. H. Fermlin in [2], we consider a space angelic. We use the idea of an angelic spaces in C- pairwise paracompact and

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 54E55, 46A50, 54D10, 54D20.

Key words and phrases. Bitopological spaces, Angelic spaces, AC^* -pairwise paracompact, AC_2^* pairwise paracompact, AC^* - pairwise normal.

 C_2 - pairwise paracompact spaces and C-pairwise normal in bitopological spaces. Throughout this paper p_w denotes pairwise.

2. PRELIMINARIES

The preliminary definitions of p_w - compact, p_w - Hausdorff, p_w - regular, p_w normal, p_w - paracompact, p_w - continuous and p_w - homeomorphism are studied in the following references in [3], [4], [5] and [6].

3. \mathcal{AC}^* and \mathcal{AC}_2^* pairwise paracompact spaces

Definition 3.1. Let (L, τ_1, τ_2) be an angelic bitopological space and (Y, τ_1^*, τ_2^*) be an angelic p_w -compact subspace of (L, τ_1, τ_2) . If there is a bijection mapping t : $(L, \tau_1, \tau_2) \rightarrow (M, \delta_1, \delta_2)$, (M, δ_1, δ_2) is an angelic p_w -paracompact space and the restriction $t|_Y : Y \rightarrow t(Y)$ is a p_w - homeomorphism, then (L, τ_1, τ_2) is said to be an $\mathcal{AC}^* p_w$ - paracompact space.

Definition 3.2. Let M be an angelic bitopological space and (Y, τ_1^*, τ_2^*) be an angelic p_w -compact subspace of (L, τ_1, τ_2) . If there is a bijection function $t : (L, \tau_1, \tau_2) \rightarrow (M, \delta_1, \delta_2)$, (M, δ_1, δ_2) is a p_w - Hausdorff angelic p_w - paracompact space and the restriction $t|_Y : Y \rightarrow t(Y)$ is a p_w - homeomorphism, then (L, τ_1, τ_2) is said to be an $\mathcal{AC}_2^* p_w$ - paracompact space.

Theorem 3.1. Every $AC^* p_w$ - paracompact space ($AC_2^* p_w$ - paracompact space) is a topological property.

Proof. Suppose (M, δ_1, δ_2) is an \mathcal{AC}^* - p_w paracompact $(\mathcal{AC}_2^* p_w$ -paracompact) space and $(L, \tau_1, \tau_2) \cong (P, \lambda_1, \lambda_2)$. Let (M, δ_1, δ_2) be an angelic p_w - paracompact $(p_w$ -Hausdorff angelic p_w -paracompact) space and $t : (L, \tau_1, \tau_2) \to (M, \delta_1, \delta_2)$ be a bijective mapping \ni the restriction $t|_Y : Y \to t(Y)$ is p_w -homeomorphism for every angelic p_w -compact subspace $Y \subseteq L$. Let $u : (P, \lambda_1, \lambda_2) \to (L, \tau_1, \tau_2)$ be a p_w -homeomorphism. Hence, (M, δ_1, δ_2) and $t \circ u : (P, \lambda_1, \lambda_2) \to (L, \tau_1, \tau_2)$ has the topological properties. \Box

Theorem 3.2. Every $\mathcal{AC}^* p_w$ - paracompact space ($\mathcal{AC}_2^* p_w$ - paracompact space) has an additive property.

9754

Theorem 3.3. If (L, τ'_1, τ'_2) is a submetrizable space of (L, τ_1, τ_2) with $(\tau'_1, \tau'_2) \subseteq (\tau_1, \tau_2)$, then (L, τ'_1, τ'_2) is an $\mathcal{AC}^*_2 p_w$ -paracompact.

Theorem 3.4. If (L, τ_1, τ_2) is an $\mathcal{AC}^* p_w$ -paracompact $(\mathcal{AC}_2^* p_w$ -paracompact) Frechét space and $t_\alpha : (L_\alpha, \tau_1, \tau_2) \to (M_\alpha, \delta_1, \delta_2)$ is a witness of the \mathcal{AC}^* - p_w paracompactness $(\mathcal{AC}_2^*-p_w \text{ paracompactness})$ of (L, τ_1, τ_2) , then t is p_w - continuous.

Corollary 3.1. If (L, τ_1, τ_2) is an \mathcal{AC}^* - p_w paracompact (\mathcal{AC}_2^* - p_w paracompact) first countable space and t_α : $(L_\alpha, \tau_1, \tau_2) \rightarrow (M_\alpha, \delta_1, \delta_2)$ is a witness of the \mathcal{AC}^* - p_w paracompact (\mathcal{AC}_2^* - p_w paracompact) of (L, τ_1, τ_2) , then t is p_w - continuous.

Corollary 3.2. If (L, τ_1, τ_2) is an \mathcal{AC}_2^* - p_w paracompact Frechet space, then X is p_w -Hausdorff.

Theorem 3.5. If (L, τ_1, τ_2) is a T_1 space \ni the only angelic p_w - compact subsets are the finite subsets, then M is an $\mathcal{AC}_2^* p_w$ - paracompact space.

Theorem 3.6. Let (L, τ_1, τ_2) be the p_w - Hausdorff locally angelic p_w - compact space. Then (L, τ_1, τ_2) is an \mathcal{AC}_2^* - p_w paracompact space.

Definition 3.3. A topological space (L, τ_1, τ_1) is termed as lower angelic p_w - compact if \exists a coarser topology (τ'_1, τ'_2) on $(L, \tau_1, \tau_1) \ni (X, \tau'_1, \tau'_2)$ is T_2 angelic p_w -compact.

Theorem 3.7. If (L, τ_1, τ_2) lower angelic p_w - compact space, then L is an \mathcal{AC}_2^* - p_w paracompact.

Proof. Suppose (τ'_1, τ'_1) is a T_2 angelic p_w - compact topology on $(L, \tau_1, \tau_1) \ni (\tau'_1, \tau'_1)$ $\subseteq (\tau_1, \tau'_2)$. Next (L, τ'_1, τ'_2) is T_2 angelic p_w - paracompact and the identity mapping $id_L : (L, \tau_1, \tau_2) \rightarrow (L, \tau'_1, \tau'_2)$ is a p_w - continuous function. If (Y, τ^*_1, τ^*_2) is some angelic p_w -compact subspace of (L, τ_1, τ_2) , next the restriction of the identity mapping on Y onto $id_L(Y)$ is a p_w - homeomorphism as Y is an angelic p_w compact, $id_L(Y)$ is p_w - Hausdorff being a subspace of the T_2 space (L, τ'_1, τ'_2) and every p_w -continuous 1-1 function of an angelic p_w -compact space onto a p_w -Hausdorff space is a p_w - homeomorphism. Hence, (L, τ_1, τ_2) is an \mathcal{AC}^*_2 - p_w paracompact.

Theorem 3.8. If (L, τ_1, τ_2) is an \mathcal{AC}_2^* - p_w paracompact countably angelic p_w -compact Frechet, then (L, τ_1, τ_2) is lower angelic p_w - compact.

4. \mathcal{AC}^* - pairwise normal and its properties

Definition 4.1. A space (L, τ_1, τ_2) is termed as an \mathcal{AC}^* - normal if \exists a p_w normal space (M, δ_1, δ_2) and a bijective $t : (L, \tau_1, \tau_2) \to (M, \delta_1, \delta_2) \ni$ the restriction $t|_Y : Y \to t(Y)$ is p_w - homeomorphism for every angelic p_w - compact subspace $(Y, \tau_1^*, \tau_2^*) \subseteq (L, \tau_1, \tau_2)$.

Definition 4.2. A space (L, τ_1, τ_2) is termed as an angelic countably p_w - normal if there exists a p_w -normal space (M, δ_1, δ_2) and a bijective $t : (L, \tau_1, \tau_2) \to (M, \delta_1, \delta_2)$ \ni the restriction $t|_Y : Y \to t(Y)$ is a p_w -homeomorphism for each angelic countable subspace $(Y, \tau_1^*, \tau_2^*) \subseteq (L, \tau_1, \tau_2)$.

Example 1. An $\mathcal{AC}^* p_w$ - normal space is not an \mathcal{AC}_2^* - p_w paracompact.

Lemma 4.1. If $t : (L, \tau_1, \tau_2) \to (M, \delta_1, \delta_2)$ is a bijective function, (L, τ_1, τ_2) is an \mathcal{AC}^* - p_w normal space and any finite subset of (L, τ_1, τ_2) is discrete, then (M, δ_1, δ_2) is T_1 .

Theorem 4.1. Every angelic p_w - compact non- p_w normal space is not an \mathcal{AC}^* - p_w normal.

Proof. Consider (L, τ_1, τ_2) is an angelic p_w - compact non- p_w normal space. Assume (L, τ_1, τ_2) is an \mathcal{AC}^* - p_w normal, then \exists a p_w -normal space (M, δ_1, δ_2) and a bijective mapping $t : (L, \tau_1, \tau_2) \rightarrow (M, \delta_1, \delta_2) \ni$ the restriction $t|_Y : Y \rightarrow t(Y)$ is p_w - homeomorphism for every angelic p_w - compact subspace $(Y, \tau_1^*, \tau_2^*) \subseteq$ (L, τ_1, τ_2) . Since (L, τ_1, τ_2) is an angelic p_w - compact, then $(L, \tau_1, \tau_2) \cong (M, \delta_1, \delta_2)$, and this is a contradiction as (M, δ_1, δ_2) is p_w -normal and (L, τ_1, τ_2) is not an angelic p_w - compact non- p_w normal space. Hence (L, τ_1, τ_2) cannot be an \mathcal{AC}^* - p_w normal.

Theorem 4.2. Let (L, τ_1, τ_2) be an \mathcal{AC}^* - p_w normal space. If every countable subspace of (L, τ_1, τ_2) is included in an angelic p_w - compact subspace, then (L, τ_1, τ_2) is an angelic countably p_w - normal.

Proof. Take (L, τ_1, τ_2) is any \mathcal{AC}^* - p_w normal space \ni if (Y, τ_*, δ_2^*) is any countable subspace of (L, τ_1, τ_2) , then \exists an angelic p_w -compact subspace E such that $(Y, \tau_1^*, \tau_2^*) \subseteq E$. Take (M, δ_1, δ_2) is a p_w - normal space and $t : (L, \tau_1, \tau_2) \rightarrow$ (M, δ_1, δ_2) be a bijective mapping $\ni t|_Y : Y \rightarrow t(Y)$ is p_w - homeomorphism for every angelic p_w - compact subspace (Y, τ_1^*, τ_2^*) of (L, τ_1, τ_2) . Now, take (Y, τ_1^*, τ_2^*) is some countable subspace of (L, τ_1, τ_2) . Choose an angelic p_w - compact subspace E of $(L, \tau_1, \tau_2) \ni S \subseteq E$, next $t|_E : E \to t(E)$ is p_w - homeomorphism, hence $t|_Y : Y \to t(Y)$ is p_w - homeomorphism as $(t|_E)|_Y = p|_Y$.

Theorem 4.3. Let (L, τ_1, τ_2) be an \mathcal{AC}^* - p_w normal. If (L, τ_1, τ_2) is a Frechét p_w -Lindelöf space \ni any finite subspace of (L, τ_1, τ_2) is discrete, then (L, τ_1, τ_2) is an \mathcal{AC}_2^* - p_w paracompact.

Theorem 4.4. If (L, τ_1, τ_2) is p_w -Lindelöf epinormal space then (L, τ_1, τ_2) is an \mathcal{AC}_2^* - p_w paracompact.

Theorem 4.5. If (L, τ_1, τ_2) is an \mathcal{AC}_2 - paracompact Frechet space, then (L, τ_1, τ_2) is an epinormal.

REFERENCES

- [1] S. ALZAHRANI, L. KALANTAN: *C*-normal topological property, Filomat, **31** (2017), 407–411.
- [2] J. BOURGAIN, D. H. FERMLINAND, M. TALAGRAND: Pointwise compact sets of Bairemeasurable functions, Amer. J.Math., 100 (1978), 845–886.
- [3] I. E. COOKE, I. L. REILLY: On bitopological compactness, J. London Math. Soc., 9(2) (1975), 518-522.
- [4] M. C. DATTA: Paracompactness in bitopological space and an application to quasi metric spaces, J. Pure Appl. Math., 8(6) (1977), 685–690.
- [5] P. FLETCHER, H. B. III HOYLE, C. W. PATTY: *The comparison of topologies*, Duke Math.J., **36** (1969), 325–331.
- [6] H. BOUSELIANA, A. KILICMAN: Mappings on pairwise para-Lindelöf bitopological spaces, 23 (2015), 377–381.
- [7] M. M. SAEED, L. KALANTAN, H. ALZUMI: C Paracompactness and C₂- Paracompactness, Turk. J. Math., 43 (2019), 9–20.

DEPARTMENT OF MATHEMATICS KKC-VELUR 638182 TAMIL NADU, INDIA. *Email address*: umamaheswari.maths@gmail.com

DEPARTMENT OF MATHEMATICS KKC-VELUR 638182 TAMIL NADU, INDIA. *Email address*: msmathsnkl@gmail.com