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GENERALIZED THEORY OF MAGNETO-THERMO-VISCOELASTIC
SPHERICAL CAVITY PROBLEM UNDER FRACTIONAL ORDER

DERIVATIVE: STATE SPACE APPROACH

S. G. KHAVALE AND K. R. GAIKWAD1

ABSTRACT. This paper is dealing the modified Ohm’s law with the temperature
gradient of generalized theory of magneto-thermo-viscoelastic for a thermally,
isotropic and electrically infinite material with a spherical region using frac-
tional order derivative. The general solution obtained from Laplace transform,
numerical Laplace inversion and state space approach. The temperature, dis-
placement and stresses are obtained and represented graphically with the help
of mathcad software.

1. INTRODUCTION

Sherief et al. in [1] presented the new theory of coupled and generalized
thermoelasticity using time using the method of fractional calculus. Povstenko
in [2,3] solved some thermoelastic problem based on the 1D and 2D thermoelas-
tic problem with a time fractional derivative. Gaikwad in [4] analysed the ther-
moelasticity of thin disk under partially heat supply. Many researchers in [5–9]
studied the various problems on thermoelasticity and fractional order thermoe-
lasticity.
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2. BASIC EQUATIONS

We consider a isotropic, homogeneous, thermo-viscoelastic solid: R ≪ r <

∞, where R is the radius of the shell. First we shall consider the medium is per-
fect electrical conductor and secondly permeated by an initial constant magnetic
field H0. This produces an induced magnetic field h and electric field E.

(i) Linear equations of electromagnetism valid for slowly moving medium are:

(1) curl h = J + ϵ0
∂E

∂t

(2) curl E = −µ0
∂E

∂t

B = µ0H

div B = 0

where J- current density vector, H- total magnetic field.
(ii) The modified Ohm’s law as:

(3) E = −µ0
∂u

∂t
×H0 + k0gradθ

here µ0 - magnetic permeability, k0 - coefficient of temperature gradient.
The equation of Lorentz force, whose expression is:

(4) F = J ×B

(iii) The displacement equation:

(5) ρ
∂2ui

∂t2
= 2µ(β1 + λβ2)uj,ij − (3λ+ 2µ)αtβθ,i + µ0(J ×H0).

where:

β1 = 1 + α1
∂

∂t
, β2 = 1 + α2

∂

∂t
, β = 1 +

3λα1 + 2µα2

3λ+ 2µ

∂

∂t

where ρ, λ, µ, α1, α2 are density , Lame’s constant, and thermoviscoelastic relax-
ation times.

(iv) Heat conduction equation:

(6) Kθ,ii =

(
∂

∂t
+ τα0

∂α+1

∂tα+1

)
(ρCEθ + (3λ+ 2µ)αtβT0e+ π0divJ)

where π0 - coefficient of the current density, T0 - reference uniform tempera-
ture, αt - coefficients of linear thermal expansion, K - thermal conductivity, θ -
temperature increment, τ0 - thermal relaxation time, CE - specific heat constant.
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The Caputo fractional derivative defined in [10] as:

Dαf(t) =


1

Γ(n− α)

∫ t

0

fn(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n;

df(t)

dt
, n = 1.

For finding the Laplace transform, the Caputo derivative requires information
of the initial values of the function f(t) and its integer derivative of the order
k = 1, 2, ..., n− 1

L{Dαf(t); s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n”

(v) Constitutive equations:

(7) σij = 2µβ1eij + λβ2eδij + (3λ+ 2µ)αtβθδij

eij =
1

2
(ui,j + uj,i)

where σij and δij are the stress tensor components and Kronecker’s constants.
The equations (1) to (7) constitute the problem formulation under considera-
tion.

3. PROBLEM FORMULATION

The spherical coordinates (r, ϕ, θ) are taken for any representative point of
the body at time t and the origin is the center of the spherical cavity. Due
the symmetry, all the quantities appearing in equation (1)–(7) are depends of
variables r and t only. The displacement and strain components as:

ur = u(r, t), uϕ = uθ = 0

err =
∂u

∂r
, eθθ =

u

r
= eϕϕ, erϕ = erθ = eθϕ = 0

(8) e =
∂u

∂r
+

2u

r
=

1

r2
∂(r2u)

∂r
.

From equation (7), we obtained the stress tensor components as:

(9) σrr = 2µβ1
∂u

∂r
+ λβ2e− (3λ+ 2µ)βαtθ

(10) σθθ = σϕϕ = 2µβ1
u

r
+ λβ2e− (3λ+ 2µ)βαtθ



9772 S. G. KHAVALE AND K. R. GAIKWAD

(11) σrθ = σrϕ = σθϕ = 0.

Due to the application of H0 their induced magnetic field h = (0, 0, h) which will
be negligible. Applying H0 = (0, 0, H0) to equations (1-3), is obtained:

(12) J = H0
∂e

∂r
+

k0
µ0

∂θ

∂r

(13) h = −H0

(
∂u

∂r
+

u

r

)
− k0

µ0

∂θ

∂r

(14) E = µ0H0
∂u

∂t
+ k0

∂θ

∂r
.

Using equations (4) and (12) the Lorentz force is:

Fr = µ0H
2
0

∂e

∂r
+ k0H0

∂θ

∂r

Using equation (8) in equation (5), we obtain:

(15) ρ
∂2u

∂t2
= (2µβ1 + λβ2 + µ0H

2
0 )
∂e

∂r
− (3λ+ 2µ)αtβ

∂e

∂r
+ k0H0

∂θ

∂r
.

The equation (6) becomes

(16) K∇2θ =

(
∂

∂t
+ τα0

∂α+1

∂tα+1

)
(ρCEθ + (3λ+ 2µ)αtβT0e+ π0divJ)

where

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
.

Now, we will introduced the non-dimensional variables:

r′ = cηr, t′ = c2ηt, β′
1 = c2ηβ1, β′

2 = c2ηβ2, u′ = cηu,

θ′ =
θ0
T0

, σ′
ij =

σij

µ
, h′ =

h

H0

, E ′ =
E

µ0H0c
, J ′ =

J

ηHoc
.

where η = ρCE

K
, c =

√
λ+2µ

ρ
.

Equations (9)-(16) takes the forms (dropping the primes for convenience):

(17) σrr =
2µ

λ+ 2µ
β1

∂u

∂r
+

λ

λ+ 2µ
β2e−

(3λ+ 2µ)αtθ0
λ+ 2µ

βθ

(18) σθθ = σϕϕ =
2µ

λ+ 2µ
β1

u

r
+

λ

λ+ 2µ
β2e−

(3λ+ 2µ)αtθ0
λ+ 2µ

βθ

(19) σrθ = σrϕ = σθϕ = 0



SPHERICAL CAVITY PROBLEM UNDER FRACTIONAL DERIVATIVE... 9773

(20) J =
∂e

∂r
+

k0
H0µ0

∂θ

∂r

(21) h = −
(
∂u

∂r
+

u

r

)
− k0

H0µ0

∂θ

∂r

(22) E =
∂u

∂t
+

k0
H0µ0

∂θ

∂r

(23)
∂2u

∂t2
=

(
1 +

k0
H0µ0

+ µ0H
2
0 +

2µβ1 + λβ2

ρc2

)
∂e

∂r
− (3λ+ 2µ)αtθ0

ρc2

(
β +

k0
H0µ0

)
∂θ

∂r

(24) ∇2θ =
ηc2

K

(
∂

∂t
+ τα0

∂α+1

∂tα+1

)
θ +

(3λ+ 2µ)αtc
2

K
β

(
∂

∂t
+ τα0

∂α+1

∂tα+1

)
e.

The equation (23) becomes:
(25)

ë =

(
1 +

k0
H0µ0

+ µ0H
2
0 +

2µβ1 + λβ2

ρc2

)
∇2e− (3λ+ 2µ)αtθ0

ρc2

(
β +

k0
H0µ0

)
∇2θ

The boundary conditions:

(26) θ(R, t) = θ0, at r = R

(27) e(R, t) = 0, at r = R.

Applying the Laplace transform to the equations (17-22) and (24-25) by using
the homogeneous initial conditions, defined as:

f̄(r, s) = L[f(r, t)] =
∫ ∞

0

f(r, t)e−stdt,

we obtain

(28) σ̄rr = l1
dū

dr
+ l2ē− l3θ̄

(29) σ̄θθ = σ̄ϕϕ = l1
ū

r
+ l2ē− l3θ̄

J̄ =
dē

dr
+

k0
H0µ0

dθ̄

dr

h̄ = −
(
dū

dr
+

ū

r

)
− k0

H0µ0

dθ̄

dr
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Ē = sū+
k0

H0µ0

dθ̄

∂r

(30) ∇2θ̄ = L1θ̄ + L2ē

(31) ∇2ē = M1θ̄ +M2ē

(32) θ̄(r, s) =
θ0
s
, at r = R

(33) ē(R, t) = ē0 = 0, at r = R

where
l1 =

2µ
λ+2µ

(
k0

H0µ0
+ β∗

1

)
, l2 =

λ
λ+2µ

(
k0

H0µ0
+ β∗

2

)
, l3 =

(3λ+2µ)αtθ0
λ+2µ

(
k0

H0µ0
+ β∗

)
,

β∗
1 = 1 + α1s, β∗

2 = 1 + α2s, β∗ = 1 + 3λα1+2µα2

3λ+2µ
s,

L1 =
ηc2(s+τα0 sα+1)

K
, L2 =

(3λ+2µ)αtc2β∗(s+τα0 sα+1)

K
,

M1 =
(3λ+2µ)αtθ0(k0+H0µ0β∗)L1

H0µ0(µ0H2
0ρc

2+ρc2+2µβ∗
1+λβ∗

2 )
, M1 =

ρc2s2+(3λ+2µ)αtθ0(k0+H0µ0β∗)L2

H0µ0(µ0H2
0ρc

2+ρc2+2µβ∗
1+λβ∗

2 )
.

4. SOLUTION OF PROBLEM IN STATE PACE DOMAIN

We chosen as state variables the temperature increment θ̄ and strain compo-
nent ē, then the equations (30) and (31) in matrix form:

(34) ∇2V = XV̄

where

V̄ =

[
θ̄

ē

]
, X =

[
L1 L2

M1 M2

]
.

The solution of equation (34) is

(35) V̄ (r, s) = B1
e−

√
X(s)r

r
+B2

e−
√

X(s)r

r
.

Consider r large for bounded solution, cancelled the positive power of exponen-
tial part. Also at r = R the value of B1 is given by B1 = RV̄ (R, s)e

√
X(s)R, then

equation (35) reduces r ≫ R to,

V̄ (R, s) =
R

r
V̄ (R, s)e−

√
X(s)R.

The Characteristic equation corresponding to X(s) as:

m2 − (M2 + L1)m+ (M2L1 −M1L2) = 0.
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The eigen values m1 and m2 must satisfy:

m1 +m2 = M2 + L1 m1m2 = M2L1 −M1L2.

The Tailor’s series expansion for e−
√

X(s)(r−R) has the form:

(36) e−
√

X(s)(r−R) =
∞∑
n=0

[
−
√

X(s)(r −R)
]n

n!
.

Making use of Cayley-Hamiltonian theorem, the equation (36) becomes:

(37) e−
√

X(s)(r−R) = b1I + b2X,

where b1 and b2 are constants.
By Cayley-Hamiltonian theorem, the eigen values m1 and m2 of the matrix X

satisfy the equation (37).

e−
√
m1(r−R) = b1 + b2m1 and e−

√
m2(r−R) = b1 + b2m2,

Solving the above system of equations, is obtained:

b1 =
m1e

−√
m2(r−R) −m2e

−√
m1(r−R)

m1 −m2

and b2 =
e−

√
m1(r−R) − e−

√
m2(r−R)

m1 −m2

.

Hence, we have:
e−

√
X(s)(r−R) = Lij, i, j = 1, 2,

where

(38)

L11 =
e−

√
m1(r−R)(L1 −m2)− e−

√
m2(r−R)(L1 −m1)

m1 −m2

,

L12 =
L2e

−√
m1(r−R) − L1e

−√
m2(r−R)

m1 −m2

,

L21 =
M1e

−√
m2(r−R) −M2e

−√
m1(r−R)

m1 −m2

,

L22 =
e−

√
m1(r−R)(M2 −m2) + e−

√
m2(r−R)(m1 −M2)

m1 −m2

.

Using the equation (32) and (33) into equation (35) and using equation(38),
we obtain:

(39) θ̄(r, s) =
Rθ0

s(m1 −m2)r

[
(m1 − L2)e

−√
m2(r−R) − (L1 −m2)e

−√
m1(r−R)

]
(40) ē(r, s) =

RM1θ0
s(m1 −m2)r

[
(m2 − L1)e

−√
m1(r−R) − (L2 −m1)e

−√
m2(r−R)

]
.
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Taking Laplace transform for equation (23) using equations (39) and (40), we
get displacement function as follows:
(41)

ū(r, s) =
Rθ0

sr2(m1 −m2)r

[
((D2(L1 −m2)(1 + r

√
m1))−D1M1) e

−√
m1(r−R)

+((1 + r
√
m2)(D2(m1 − L2)) +D1M1) e

−√
m2(r−R)

]
,

where

D1 =
1

s2
+

2µβ∗
1 + λβ∗

2

ρc2s2
, D2 =

(3λ+ 2µ)αtθ0β
∗

ρc2s2
.

Using equations (28-29) and (39-41), we obtain the stresses as:

(42)

σ̄rr =
Rθ0

sr2(m1 −m2)r

{
e−

√
m1(r−R)

(
(l3 + l1)M1r

2 + 2l1M1D1(1 + r
√
m1)

−(L1 −m2)(l3r
2 + 2l1D2(1 + r

√
m1))

)
+ e−

√
m2(r−R)

(
−M1(l1 + l2)r

2

+2l1D1M1(1 + r
√
m1)− (L1 −m2)(l3r

2 + 2l1D2(1 + r
√
m2))

)}
(43)

σ̄θθ =
Rθ0

sr2(m1 −m2)r2
{
e−

√
m1(r−R) [l1D1M1 − (L1 −m2)(l1D1(1 + r

√
m1)

+(l2M1 + l3)r
3)
]
+ e−

√
m2(r−R) [l1D1M1 + (m1 − L2)(l1D1(1 + r

√
m2)

+(l2M1 + l3)r
3)
]}

.

5. INVERSION OF THE LAPLACE TRANSFORMS

The solution of temperature, displacement and stresses is obtained numeri-
cally by the inversion of Laplace transform method in time domain in [11].

f(t) =
eγt

t

(
1

2
f̄(γ) +Re

(
N∑
k=1

(−1)kf̄(γ + ikπ/t)

))
.

6. RESULTS AND DISCUSSION

The copper material was chosen for the purpose of numerical evaluation. We
have taken the parameters as following Table 1.

The computational mathematical software PTC Mathcad Prime-3.1 was used
to obtained the numerical calculation and graphs. Figures 1-4, depicts the
variation of temperature, displacement, stresses in radial distance r at instants
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TABLE 1. Material constants

T0 = 293 K ρ = 8954 kg.m−3 K = 386 W. m−1 K−1

λ = 7.76 ·1010 kg.m−1 s−2 αt = 1.78 · 10−5K−1 θ0 = 1 , R=1
CE = 383.1 J. kg−1 K−1 µ = 3.86 ·1010 kg.m−1 s−2 µ0 = 4 π ·10−7 H m−1

H0=4 π ·10−7 H m−1 α1 = 0.325 s, α2 = 0.325 s τ0 =0.02 s

α = 0.25 for time parameter t = 0.25, 0.50, 0.75, 1. From Figure 1 the tempera-
ture profile decreases with time increases within the region 0 ≤ r ≤ 0.5 and then
increases with increasing the radius. From Figure 2. the displacement increases
with time increases within the region 0 ≤ r ≤ 0.5 and then decreases with in-
creasing the radius. Figure 3. and Figure 4. shows the radial and angular stress
distribution for different time parameters. it is clear that the time increases the
stresses increases with increasing the radial distance.

Figure 5-8, depicts the temperature, displacement, stresses in radial direction
at time t = 0.50 for different values of α = 0.25, 0.50, 0.75, 1. From Figure
5. we can see that temperature distribution initially decreases with the value
of α increases and then increases with increasing the radial distance. Figure
6. depicts the displacement in radial direction with different fractional order
parameter at time t = 0.5. It is clear that displacement increases with the value
of α increases and then decreases with increasing the radial distance.

Figure 1. Temperature. Figure 2. Displacement.
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Figure 3. Radial stress.
Figure 4. Angular stress.

Figure 5. Temperature. Figure 6. Displacement.

Figure 7. Radial stress.
Figure 8. Angular stress.
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Figure 7 and Figure 8 shows the radial and angular stress distribution for dif-
ferent fractional order parameter at time t = 0.5. We observed that the fractional
order parameter increases the stresses increases with increasing the radius.

7. CONCLUSION

This article analyzed the modified Ohm’s law with the temperature gradient
of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic
and electrically infinite material with a spherical region using fractional order
derivative. The general solution obtained from Laplace transform, numerical
Laplace inversion and state space approach. Figures 1-4, shows the temperature,
displacement and thermal stresses at α = 0.25 for times t = 0.25, 0.50, 0.75, 1.
From Figures 5-8, we see that the time fractional derivatives play the significant
role on the all quantities in the given field and changes in the values of the
parameter α. We conclude that the speed of propagation of strain is finite,
coincide the behavior of viscoelastic material. This work may prove helpful
in material science, designers, real life engineering problems, physicists and in
understanding the concept of a theory of magneto-thermo-viscoelasticity.
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