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ON A STUDY OF STAGGERED LEAPFROG SCHEME FOR LINEAR
SHALLOW WATER EQUATIONS

L. KRISMIYATI BUDIASIH! AND L. HARI WIRYANTO

ABSTRACT. In this paper, we present an analytical and numerical study of stag-
gered leapfrog scheme for linear shallow water equation. It is shown that the
scheme is stable when Courant number < 1, has second order accurate in both
time and space, and there is no damping error in this scheme. We implement
the scheme to simulate standing wave in a closed basin to show that the surface
motions stay zero in a node and have constant amplitude at the antinode. For
an external force given into the basin, it will induce a resonance, which cause
the wave amplitude is getting bigger at the position of antinode. Moreover, we
simulate a wave in a tidal basin, and show that the model has infinite spin up
time. For a linear shallow water equation with linear friction, it is shown that
the model has finite spin up time.

1. INTRODUCTION

Mesinger and Arakawa in 1976 applied the leapfrog scheme to the shallow
water equations, [3]. The scheme is stable for Courant number < 0.5 in the
staggered C-grids, [2]. Thereafter, some researchers introduced a modified
leapfrog schemes for shallow water equations, which is a semi-implicit scheme,
but more stable than the previous leapfrog scheme. Zhou proposed the 1D
leapfrog scheme, which is at every time step, both pressure and momentum
fields are computed, [8]. Sun and Sun, using the time-averaged heights in the
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pressure gradient force, has modified the leapfrog scheme and showed that their
scheme is stable when Courant number < 1, [6]. Although the scheme is rel-
atively stable, however, the semi-implicit scheme may indicate a low conver-
gence, [7].

To design an efficient numerical scheme, in this study we implement an ex-
plicit leapfrog scheme for linear shallow water equation in staggered grid scheme
proposed by Stelling and Duinmeijer, [5]. The staggered leapfrog scheme was
also considered in [4]. The continuity and momentum equation are approxi-
mated on different cells, that are around full grid points and half grid points,
respectively in [1]. We show that the scheme is stable when Courant number <
1. Moreover, we investigate the ability of numerical scheme to simulate standing
wave in a closed basin and tidal basin.

2. GOVERNING EQUATIONS

Consider an ideal fluid which is incompressible and has no viscosity over a
flat bottom. The fluid domain is bounded by the sea bed at z = —d,, where d,,
is constant, and z = n(x, t) is the free surface, where ¢ represents time. The free
surface flow of the fluid in shallow areas can be modelled with the 1D shallow
water equations (SWE) for flat bottom, without friction:

e+ (0 + do)u)z = 0

U + utly + gn, =0

with u(z,t) denote the horizontal component of fluid particle velocity, and g is
the gravity constant. For small deformation of the steady situation, the model
can be simplified in the linear form, when the non-linear terms are negligible,
which are expressed as follows:

2.1 N = —douy,

Derivating equations (2.1) and (2.2) with respect to ¢ and z yields, respectively,
Ny = —doug and uy, = —gn.,.. Then we have

(2.3) Nt — 9doNzz = 0.
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Similarly, if we derivate (2.1) and (2.2) with respect to = and ¢ yields, respec-
tively, n;, = —dou,, and uy = —gn,,. It results

(24) Ut — gdouxa: =0

Equations (2.3) and (2.4) are two standard wave equations. Therefore, the
linear SWE (2.1) and (2.2) is equivalent with a pair of wave equations (2.3)
and (2.4). They have the same left and right running characteristics.

An analytical solution of the linear SWE (2.3) and (2.4) with its boundary
conditions can be derived by separating variable method. Consider equation
(2.4), with boundary condition « (0,#) = 0 and u (L,t)=0; it represent hard
wall boundaries. Suppose that u (z,t) = X (z) T'(t) is a solution of the equation.
Substituting the solution to equation (2.4) will result XT" = 2 X"T, with ¢ =
gdy. If we divide the equation by —c¢3 X T, we obtain

T X
a7 = -5

where ) is a constant. Thus, it results a pair of ordinary differential equations

"

=A

T" + E\T = 0; X" 4+ AX =0.

The system will have non trivial solutions when A\ > 0. Suppose A = 3. Then
the solutions are:

(2.5) T (t) = Acos (Bcy)t + Bsin (Beg)t

(2.6) X (z) = C cos Bz + Dsin fx.

From the boundary condition u (0,¢) = X (0) T (t) = X (L) T (t) = 0 for every
t, we have X (0) = X (L) = 0. Substitute the results into equation (2.6), we
obtain:
X (0)=C=0; X (L) = DsinpL = 0.
If C=D = 0, then u = 0, i.e. a trivial solution. In order to get a non-trivial
solution, it should be sin 3L = 0 or 8L = nm. Therefore, \, = % = (%)2, n
=1, 2, 3, ..., which are the eigenvalues with eigen function X, (z) = sin 2*x.

L
Hence, the solution is
nw

2.7)  uy(z,t) = (An cos con—gt + B, sin con—gt) sin T n=1, 2,3, ...

We can do the same way in order to get the exact solution for n(x, t).
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3. THE STAGGERED LEAPFROG SCHEME

In this paper, we formulate the staggered leapfrog method to solve the linear
SWE (2.1) and (2.2). We define the partition points as z1/, = 0, 21, ..., T;_1/2, Z;,
Tjt1/2,-.,Tn41/2 = L. The equations are discretized around grid points (x;, t,)
and (412, tnt1/2), respectively, as follows [4]:

n n—1 u? . —u”
n; —n; j+i i—3
3.1 ) AL B A |
3.1 At ThTTAL
n+1 n n+ n+i
w. Ty —u 2 2
2 5 i1 n;
3.2 J+3 J+3 i+ ; —0
(3.2) At 9T AL

3.1. Von-Neumann stability analysis. The stability condition of the scheme is
obtained using Von-Neumann method, by substituting 77 = prelAT and uj =
r"e'AT to Egs. (3.1) and (3.2). Then, if we devide the equations by ¢%“* and
eialit2)Ae | respectively, we obtain

A A
(3.3) ,0"Jrl =p" = dOA_;Qi sin (a%) P
and
A A
(3.4) Pt —pn gA—;% sin (a%) Pt

Equations (3.3) and (3.4) can be written in a matrix form as follows

with

1 —dpRL2isin (a22)
—gﬁ—i?i sin (a%) —4gd0(§—;)281n2 (a%) +1

The eigenvalue of matrix A, that is A, satisfies |[A — AI| = 0, i.e.

A
1+ <4O§sm2 (a§> —2)>\+>\2:0

with C2 = gdo(%)Q. Therefore, the eigenvalues of A are

A:
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The stability of the scheme is fulfilled if || \|| = max |\;| < 1, thatis

1-2C7 sin” (a%) — 2\/ Cy sin* <a%) - C¢ sin” (a%)

Suppose y = Cysin (a5%). Eq. (3.5) can be written as follows

‘1 —2y2 — 2yt — 92

Hence, as C always be positive, the scheme is stable if Cy =/ ng% < 1. Here

(3.5) < 1.

A
<1+ —1< Cysin (a7x> <1.

Cy is a Courant number.

The eigenvalue of matrix A can also be stated as \;, = 1 — 2y* + QM.
As the scheme is stable when y? < 1, so the eigenvalue are complex, and they
can be written as

Ao =1—2y" £i2yy/1 — y2

Thus, |\| = \/(1 — 22" 42 (1 — 22)° = /1 — 4y + 4yt + 4y? — 4yt = 1.
Therefore, there is no damping error in this scheme.

3.2. Order of accuracy. The accuracy of the leapfrog scheme can be deter-

mined using Taylor expansion of 7//}':

n n 1

Ml = T A+ j“.EAx? +0 (Az?)
n n n 1

= = = 0[] AT + 0l AtAT + 1, ] EAxZ + O (Az?)

Substituting the Taylor expansion to equation (3.2), we obtain:

wlf + unlj SO+ g | e} + 0[O+ el S Az| 4+ O (AF, Ax?) =0

n n n 1 n
< ut’j +g77x|] — utt’j‘ﬁAt_ utx\]Ax+O (At2,A$2) =0.

Thus, the error of the scheme is
1
error = —utt|?.§At — uM?Am +0 (Atz, Aa:z)

Hence, the scheme is of second order for time and space, that is O (At*, Az?).
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4. NUMERICAL SIMULATIONS

In this section, the leapfrog scheme (3.1) and (3.2) are implemented for sim-
ulating some cases. First, simulation of standing wave in a closed basin, to show
that the motion will continue for infinitely long time without any damping. We
expand the case by introduce an external force into the closed basin, to show
that there is resonance in surface motion. Moreover, we simulate wave in a tidal
basin, using linear SWE with and without linear friction.

4.1. Standing wave in a closed basin. Consider standing wave in a closed
basin with length L. = 20 m, and depth d, = 10 m, with hard wall boundaries at
the left and right ends. The initial surface elevation is 7 (z,0) = 0.1 cos (7z/L).

The standing wave motion for ¢t = 0,2, 5,15 and ¢t = 18 s are shown in Figure
1. For the computation we use g = 9.81, Az = 0.5 and At = 0.05. It can be seen
that the surface motion n (L/2,t¢) and 7 (L, t) will stays zero and have constant
amplitude, respectively.
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0.04 0.04
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= 0 E = 0
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FIGURE 1. Standing wave motion for t = 0,2,5,15and ¢t = 18 s
(left); Surface motion at z = L/2 and = = L (right).

Suppose that we introduce a harmonic external force f(¢) = 0.01 sinwt with
certain frequency w = my/gdy/L into the closed basin. The force will induce
resonance in the closed basin. Figure 2 shows that resonance resulted in surface
motion at the position x = L/2 no longer staying at zero. Likewise, the wave
amplitude at the position x = L is not constant, it is getting bigger.
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FIGURE 2. Resonance in a closed basinat¢ = 0,2,5,15and ¢t = 18s
(left); Surface motion due to resonance at x+ = L/2 and v = L
(right).

4.2. Wave in a tidal basin. Consider a tidal basin, with length L = 20m, depth
dy = 10 m, and with hard wall at the right side + = L. It assumed that at the
initial state, the water surface is 1 (z,0) = 0, with velocity u (z,0) = 0, and a
monochromatic wave 7 (0,¢) = 0.2sinnt enters from the left side. The wave
propagate to the right, hits the hard wall and produce a reflected wave, which
travel to the left. Superposition of the wave which travels to the right and left
will produce a wave which has twice amplitude of the previous wave, as seen
in Figure 3. In this simulation, an incoming wave has amplitude 0.2 and after
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FIGURE 3. Reflected wave in a tidal basin at t = 12.5 s.
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hits the right wall it results a reflected wave with amplitude 0.4, which travels
to the left.

Consider an incoming monochromatic wave is 7 (0,¢) = 0.2cos2nt/T, with
T = 80. The surface elevation at position x = 0 and x = L are shown in Figure 4
(left). From the figure we can explore the spin up time, that is the time for initial

05¢ . . . . . . ; ) 05,
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02 02
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FIGURE 4. Infinite spin up time (left); Finite spin up time (right).

state to vanish in the solution. It is shown that for a long time, the solution are
still influenced by the initial state. Therefore, we say that this model has infinite
spin up time.

Consider the linear SWE with linear friction:

N = —doy; Ut = =GNz — Cfu-

Using the same information from the previous part, the surface elevation at
x =0and z = L, that are 5 (0,¢) and 7 (L, t), respectively, are shown in Figure
4 (right). It can be seen that the initial state influence the solution only in a
certain period of time. Therefore, we say this model has finite spin up time. It
is because there is an additional term which is a function of w.

5. CONCLUSION

The staggered leapfrog scheme is applied to linear shallow water equation.
The von-Neumann stability analysis shows that the scheme is stable if Courant
number < 1. The scheme is explicit and second order accurate in both time and
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space. The numerical simulation for standing wave in a closed basin show that
the scheme has no damping error.

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

REFERENCES

A. A. BOROUJERDI, M. HAMZEH: Comparison of varieties of numerical methods applied
to lid-driven cavity flow: coupling algorithms, staggered grid vs. collocated grid, and FUDS vs.
SUDS, International Journal of Mechanical and Materials Engineering, 14(1) (2019), 7.
G. J. HALTINER, R. T. WILLIAMS: Numerical prediction and dynamic meteorology, 2nd
ed., Wiley, New York, 1980.

F. MESINGER, A. ARAKAWA: Numerical methods used in atmospheric models, Global At-
mospheric Research Program (GARP), 1976.

S. R. PUDJAPRASETYA: Transport Phenomena, equations and numerical methods, ITB
Press, Indonesia, 2018.

G. S. STELLING, S. P. A. DUINMEILJER: A staggered conservative scheme for every Froude
number in rapidly varied shallow water flows, International Journal for Numerical Methods
in Fluids, 43(12) (2003), 1329-1354.

W. Y. SuN, O. M. T. SUN: A modified leapfrog scheme for shallow water equations,
Computers & Fluids, 52 (2011), 69-72.

A. V. TUTUEVA, E. A. RODIONOVA, M. P. BAIDINA, A. V. KAVUNSKAIA, M. N.
KozAK: The Convergence of Semi-Implicit Numerical Methods, IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), (2019), 366-368.
W. ZHOU: An alternative leapfrog scheme for surface gravity wave equations, J. Atmos.
Oceanic Technol., 19(9) (2002), 1415-1423.

DEPARTMENT OF MATHEMATICS

UNIVERSITAS SANATA DHARMA

JL. AFFANDI, MRICAN, DIY 55281, INDONESIA
Email address: lusia_kris@usd.ac.id

FACULTY OF MATHEMATICS AND NATURAL SCIENCES
INSTITUT TEKNOLOGI BANDUNG

JL. GANESHA NO. 10 BANDUNG, INDONESIA

Email address: leo@math.itb.ac.id



