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PROPERTIES OF SEQUENTIALLY COMPACT AND LOCALLY COMPACT IN
STAR AND ALMOST MENGER SPACES

A. KALPANA1 AND M. SARASWATHI

ABSTRACT. Our aim of this work is to propose the concept sequentially compact
and locally compact in almost and star Menger spaces. Also we have developed
their properties in the same spaces.

1. INTRODUCTION

SM and strongly SSM spaces were besides examined in papers [2], [6] and
[7]. To survey a few outcomes in [3], we review few ideas. For l, e ∈ ΩΩ, l ≤ e

implies that l(n) ≤ e(n) for each q ∈ Ω. The minmal cardinality of a cofinal
subset in (ΩΩ,≤) is meant by σ, [7]. Consider F is a essentially different family
comprising of infinite subsets of Ω.

Assume Ψ(R) = Ω ∪ F is the Mrowka-Isbell type space, [4], each point of Ω

is isolated in Ψ(R) and an neighbourhood (shortly, nhd.) at R ∈ F is of the
structure {R}∪B, where B is a cofinite subset of R. In this work, we utilize the
image Cof(Fin(k)N) rather than σk.
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2. PRELIMINARIES

Definition 2.1. [5], A space M is termed as a Star Menger (SM) (respectively,
ASM, Weakly star Menger (WSM)) for every {Tn : q ∈ Q} of open covers M,
there are finite subfamilies Kn ⊂ Kn (respectively finite subsets Fn ⊂ M) 3
{st(T Kn,Tn) : q ∈ Ω}(respectively {st(Fn,Tn) : q ∈ Ω}) is a cover ofM.

Definition 2.2. [8], A space M is termed as a 1-star compact (1SC) if for each
open cover T ofM, there is a finite subfamily K ⊂ T (respectively a finite sub-set
F ⊂M) 3 st(∪K,T) =M. (respectively st(F =M)).

Definition 2.3. [8], A space M is termed as a1-star Lindelöf (1SL) (respectively
Strongly 1-star Lindelöf), if for each open cover K ⊂ T (respectively a countable
subset R ⊂M) 3 st(∪K,T) =M (respectively st(A,T) =M).

Definition 2.4. [5], A spaceM is termed as a Strongly star Menger (SSM) if for
every seq. {Tn : q ∈ Q} of open covers ofM, ∃ a sequence {Fn : q ∈ Q} of finite
sub-sets of 3, st{(Fn,Tn) : q ∈ Q} is an open cover ofM.

Definition 2.5. [1], A sub-set R of a spaceM is Menger relative toM if for any
seq. {Tn : q ∈ Q} of covers of R by sets open inM, there is a sequence {Kn : q ∈ Q}
3 every Kn is a finite sub-set of Tn and R ⊂

⋂
q∈N ∪Kn.

3. SEQUENTIALLY COMPACT STAR MENGER SPACES

Definition 3.1. Let M be a M-space. If t1, t2, . . . be a increasing sequence of Tn
and k1, k2, . . . be a increasing sequence of Kn and if each sequence of points has a
convergent subsequence, then the space is termed as asequentially compact Menger
space (SCM-space).

Definition 3.2. A SM-spaceM is termed as a Sequentially Compact Star Menger
space (SCSM-space) if {Tn}n=1,2,.. be a sequence of Tn and {Kn}n=1,2,.. be a se-
quence of finite subfamilies of Kn ⊂ Kn (respectively finite subsets En ⊂M) if each
sequence of points has a convergent subsequence.

Definition 3.3. Let M be a 1SCM-space. If t be a subsequence of T and k be a
subsequence of k ⊂ t and if both sequences converge to a point then the spaceM is
termed as a sequentially compact 1-star Menger space (SC1SM-space).
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Definition 3.4. A M-space M is termed as a sequentially compact strongly star
Menger(SCSSM) space if {tn}q∈N be a finite sequence of kn and if each sequence of
points has a convergent subsequence

Definition 3.5. A M-spaceM is termed as a sequentially compact 1-star Lindelöf
(SC1SL-space) (resp. SCS1SL) if {t} ∈ T and {t} ∈ K and if each sequence of
points has a convergent subsequence.

Proposition 3.1.

(i) Each SCSCM-space is Menger.
(ii) Each SCS1SL-space is Menger.

In both cases the converse need not be true.

Proof. Follows from definitions(SCSSM and SC1SL-space). �

Proposition 3.2. Each SCS1SL-space of cardinality less than σ is SCSSM.

Proof. First we prove the result for 1-star L-space. Let M be a SCS1S-Lindelöf
space of cardinality less than σ. For every q ∈ Ω there is a countable sequence
of Kn ⊂ Tn 3 each sequence is finite and if {t} be a sequence of t and k be a
sequence of K ⊂ T then each sequence has a convergent subsequence. For all
m ∈ M, we choose a function lx ∈ ΩΩ 3, St(x,mn) ∩Kn,lx(n) 6= φ for all q ∈ Ω.
Therefore {t} and {k} both converge to mk forM is SCSM ((ie) SCSSM). �

Theorem 3.1. Each regular L-space is SCSSM.

Proof. Let B be a basis ofM with cardinality equal to the weight which is closed
under finite union, finite intersection and complement of closure. let t, k ∈ B
with k ⊂ t then there is open set {Ctk : t, k ∈ β&k ⊂ t}. Suppose Bn has
been defined. Then for every t, k ∈ Bn with K ⊂ T then is an open set Ctv 3
K ⊂ Ctv ⊂ Ctv ⊂ T. Let |Bn+1| = C(M) containing B′

n where Bn+1 is a basis
which closed under finite union, finite intersection and complement of closures.
Clearly, |B| = C(M). Let t be a sequence of open covers of M. Then for each
m ∈ M ∃ Kx,Tx ∈ B 3, m ∈ Kx ⊂ Kx ⊂ Tx ⊂ T for any T ∈ T. By reason of
M is Lindelöf, the Kx’s have countable subcover say K0,K1, . . . ,Km, . . .. Then
Km ⊂ Tm for each m ∈ Ω. Note that K0 ∪ K1 ∪ . . . ∪ Kk ⊂ T0 ∪ T1 ∪ . . . ∪ Tk and
K0 ∪ . . .∪Kk, T0 ∪ . . .∪Tk ∈ Bn for some q. If mk ∈ Kk ⊂ Tk then each sequence
of Kk and Tk converges. HenceM is SCSM-space. �
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Theorem 3.2. A regular almost countably SCL-space(RACSCL-space)M is SC.

Proof. Consider T is an open cover ofM and sinceM is regular then for every
m ∈ M, there is an open set T (m) ∈ T including m and a open set k(m)

3, m ∈ K(m) ⊂ cl(K(m)) ⊂ T (m). By reason of M is Lindelöf, we have a
countable subcover C = {k(mn) : q ∈ Q} of K. By reason of M is almost
countable SC, there is a finite collection, {K(mn1), . . . ,K(mnk

)} ⊂ C such that⋃k
i=1 cl(K(mni

)) = M. By reason of {T (mni
), i = 1, 2, . . .} has a convergent

sequence the spaceM is SC. �

Example 1. Each compact space is a M-space. Then the converse need not be true.
Let the real line R with the topology Z = {0, R, (−∞,m) : m ∈ R} is T0-M-space
but it is not SC.

Example 2. The sorgenfreg line S is a heriditarily L-space but it is not M-space.

Lemma 3.1. Suppose l : M → Y is a continous function whereM is a M-space.
Then l(Sα(G)) = sα(l(G)) for each E ⊂M and each ordinal α.

Proof. Consider a function l : M → Y is continous function, where M and Y

are Menger spaces. By reason of l is continous function, follows that, l(Sα(E)) ⊂
Sα(f(E)). Suppose that α = 1 then s ∈ S(f(E)) and ∃ a sequence (mn) in E 3
l(mn) converges to s. By reason of E is sequentially compact, we may suppose
cont-fn l(m) = s. Thus s ∈ f(s, (E)). Suppose that α ≥ 2. If α is a limit cardinal
then, l(Sα(G)) = l(T Sγ(G)) = T (l(Sα(G))) =

⋃
γ<α Sγ(l(G)) = Sα(l(G)) If α =

γ + 1 then again, l(Sα(G)) = Sα(l(G)). �

4. LOCALLY COMPACT MENGER SPACES

Definition 4.1. Let M be a M-space. If {tn} ∈ Tm, q ∈ Q, q = 1, 2, . . . and
{kn} ∈ Kn, q ∈ Q, q = 1, 2, . . . and for every point m ∈ M and every open nhd.
contains a compact nhd. thenM is termed as a LCM-space.

Theorem 4.1. A regular almost countably compact L-space(RACCL-space) M is
compact.

Proof. Consider T is an open cover of M. By reason of M is regular then for
every m ∈ M, ∃ a T (m) ∈ T ⊃ m including m and an open set K(m) 3, m ∈
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K(m) ⊂ cl(K(m)) ⊂ T (m). If K = {K(m) : m ∈ M} then we have a open cover
ofM. By reason ofM is Lindelöf, we get a countable subcover. P = {K(mn) :

q ∈ Q} of K By reason ofM is almost countably compact and locally compact,
there is a finite collection, {K(mn), . . . ,K(mnk

)} ⊂ P 3
⋃k
i=1 cl(K(mni

)) = M.
Hence the compact nhd. {T (mni

) : i = 1, 2, . . . , k} is a finite subcover of T. �

Example 3. Consider R = {(m, p) ∈ R × R : 0 < m ≤ 1, p = 0} then R

has the subspace topology τ , on R × R. Then R is a M-compact space. Assume
that Tn is the set of all open disks in the upper half-plane of radius 1

n
. Tn is

an open cover of R. For each m ∈ M ∃ nhds. T (mn1), . . . , T (mnk
) ∈ T and

K(pn1),K(pn2), . . . ,K(pnk
) ∈ K. For q ∈ Q. all these open covers has countable

many points in R and compact nhd.s R is a LCM-space.

Theorem 4.2. A Menger dense sub-set of a spaceM is LCM-space.

Proof. Consider R is a dense subset ofM andM is a M-space and {Tn : q ∈ Q}
is a seq. of open covers ofM. By reason of R is a M-space inM∃ finite sets Kn,
q ∈ Q 3 R ⊂

⋃
q∈N ∪{k : k ∈ Kn}.

By reason of M is compact and every point m ∈ M belongs to R ∃ nhd.s
K(mni

), i = 1, 2, . . . , k of K contains a finite subcover. Hence M is a LCM-
space. �

Theorem 4.3. Suppose M be an AM-space and Y be a topological space. If l :

M→ Y is a q-irresolute function, then Y is an AM-space and also it satisfies LC.

Proof. Consider {Tn : q ∈ Q} is a sequence of covers of Y by compact sets and
T′n = {l−1(t) : T ∈ Tn} for every q ∈ Q. By the reason l is a q-irresolute function
{T′

n : q ∈ Q} is a sequence of open covers of M, for each m ∈ M ∃ nhd.s
T (mni

), i = 1, 2, . . . , k 3 each nhd.s contains compact nhd. and M satisfy the
condition of locally compactness. AlsoM is an AMS, ∃ a sequence {Kn : q ∈ Q}
3
⋃
q∈N Kn is a cover ofM. If K(pni

), i = 1, 2, . . . , k, p ∈ Y contains a compact
nhd. then Y is also LCM. Suppose E be a compact set in the topological space,
Y and K ⊂ G then Y is a LCM-space. �

Definition 4.2. A M-spaceM is termed as a M -Lindelöf (respectively Lindelöf) if
each open cover T ofM has a point-countable open refinement ν.

Theorem 4.4. Each M -L space is L-space.
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Proof. SupposeM is a M-space and also L-space. Take T be an open cover ofM
and γ be a point-countable open refinement of T. By reason ofM is a M-space,
there is a sequence of open subsets {Gn : q ∈ Q} 3

⋃
q∈N(Gn, γn) =M. Suppose

Pn be the collection of all members of γ which intersects En. By reason of γ is
pointwise - countable and En is finite then Pn is countable. Then the collection
P =

⋃
q∈N Pn is countable family of γ which is a cover of M. If p ∈ P and

p ∈ Tp. Then the collection {Tp : p ∈ P} is a countable subcover. ThenM is a
L-space. �
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