ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9849–9859 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.95 Spec. Iss. on ICRTAMS-2020

SOME COMMON FIXED POINT THEOREMS FOR EXPANSIVE MAPPINGS IN *d*-COMPLETE TOPOLOGICAL SPACES

S. RATHEE, P. GUPTA¹, AND VISHNU NARAYAN MISHRA¹

ABSTRACT. In the present paper, we entrenched common fixed point theorems for self mappings satisfying expansive condition in d-complete topological spaces. Also we prove a fixed point theorem for (ζ, α) -expansive mapping in the setting of d-complete topological spaces. Our results extend and generalize the results of Shahi et al. to d-complete topological spaces.

1. INTRODUCTION

Fixed point theory" is a fundamental theory in mathematics. It is an important tool in non-linear functional analysis. It has been widely applied to many branches in pure mathematics and applied mathematics. Fixed point theory is a beautiful mixture of analysis, topology and geometry. Wang et al. in [10] in 1984 introduced some results on "expansion mappings" in metric spaces. Further results of in [10] was generalized by Khan et al. and in [6] by using functions. After that several researchers in [9] introduced the results on expansion mappings. Shahi et al. in [8] proposed the results on "expansive mappings" in "generalized metric spaces". Also Shahi et al. in [7] proposed a new concept of (ξ, α) -expansive mappings and gave fixed point theorems (FPT) for this mapping in complete metric spaces.

¹corresponding authors

²⁰²⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Common fixed point, expansive mappings, d-complete topological spaces.

In 1975, "d-complete topological space (TS)" was proposed by Kashahara, [4,5], as a generalization of "complete metric spaces". Hicks in [1], Hicks and Rhoades in [2] and many other authors in [3] introduced several results in d-complete topological spaces. Examples of d-complete TS are complete quasi metric spaces and complete metric spaces.

In this paper, we prove common fixed point theorems for expansion mapping and a fixed point theorem for (ζ, α) -expansive mapping in the setting of d-complete TS. Our results extend and generalize the results of Shahi et al., [7], [8] to d-complete topological spaces.

2. PRELIMINARIES

Before going to our main results, we state some definitions.

Definition 2.1. [1], Let, for a TS (U, τ) , $d: U \times U \to [0, \infty)$ be such that d(s, t) = 0iff s = t. If $\sum_{n=0}^{\infty} d(s_n, s_{n+1}) < \infty$ then the sequence $\langle s_n \rangle$ is forenamed to be *d*-cauchy sequence.

Definition 2.2. [1], Let, for a TS (U, τ) , $d: U \times U \rightarrow [0, \infty)$ be such that d(s, t) = 0iff s = t. If $\sum_{n=0}^{\infty} d(s_n, s_{n+1}) < \infty \implies$ the sequence $\langle s_n \rangle$ is convergent in (U, τ) then the triplet (U, τ, d) is forenamed to be d-complete TS.

Definition 2.3. [9], Two self mappings T and S on a topological space (U, τ) are forenamed to be weakly compatible if Tu = Su, for $u \in U \implies STu = TSu$.

Two compatible mappings are weakly compatible but converse not true.

Definition 2.4. [9], Let for a TS (U, τ) , $d : U \times U \rightarrow [0, \infty)$ be a mapping such that d(s, t) = 0 if and only if s = t and $T : U \rightarrow U$ be a self mapping. The mapping T is forenamed to be expansive if $\exists h > 1$ such that

$$d(Ts, Tt) \ge hd(s, t),$$

 $\forall s, t \in U.$

9850

Here we are using the notation Γ denoting the class of all non-decreasing functions $\zeta : [0, \infty) \to [0, \infty)$ which satisfies the subsequent properties:

(i) $\sum_{n=1}^{\infty} \zeta^n(a) < \infty$ for every a > 0, where ζ^n represents the n^{th} iterate of ζ ;

(ii)
$$\zeta(a) + \zeta(b) = \zeta(a+b)$$
.

Definition 2.5. [7], Let for a TS (U, τ) , $d : U \times U \to [0, \infty)$ be a mapping such that d(s,t) = 0 iff s = t and $T : U \to U$ be a self mapping. Then T is an (ζ, α) -expansive mapping if there exist two functions $\zeta \in \Gamma$ and $\alpha : U \times U \to [0, \infty)$ such that

$$\zeta(d(Ts, Tt)) \ge \alpha(s, t)d(s, t),$$

for all $s, t \in U$.

Definition 2.6. [7], Let $T: U \to U$ and $\alpha: U \times U \to [0, \infty)$ be two mappings for a non-void set U. The mapping T is forenamed to be α -admissible if $\alpha \ge 1 \implies \alpha(Ts, Tt) \ge 1$, for $s, t \in U$.

Example 1. [7], Let $U = R^+ \cup \{0\}$. Outline the mapping $\alpha : U \times U \rightarrow [0, \infty)$ by

$$\alpha(s,t) = \begin{cases} 1 & \text{if } s \ge t, \\ 0 & \text{if } s < t \end{cases}$$

and the mapping $T: U \to U$ by $Ts = s^2 \quad \forall s \in U$. Then T is α -admissible.

3. MAIN RESULTS

This section includes our main results. Firstly, we find common FPT in dcomplete TS for expansion mappings.

Theorem 3.1. Let C, D, P and Q be self mappings on d-complete TS U satisfying the conditions:

- (i) $\varphi(d(Cs, Dt)) \ge d(Ps, Qt) \ \forall \ s, t \in U,$
- (ii) C and D are surjective,
- (iii) the pairs $\{C, P\}$ and $\{D, Q\}$ are weakly compatible mappings,
- (iv) $d(s,t) = d(t,s) \forall s,t \in U$

where $\varphi : [0, \infty) \to [0, \infty)$ is a "non-decreasing function" with $\varphi(t) < t, \varphi(0) = 0$ and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty \ \forall \ t > 0.$

Then, C, D, P and Q have exactly one common fixed point (CFP) in U.

Proof. Due to surjective mappings of C and D, one can take a point s_1 in U for an arbitrary point s_0 in U such that

$$Cs_1 = Qs_0 = t_0.$$

For a point $s_1 \in U$, \exists a point s_2 in U such that

$$Ds_2 = Ps_1 = t_1.$$

Inductively, a sequence $< t_n >$ in U can be defined such that

$$Cs_{2n+1} = Qs_{2n} = t_{2n},$$

 $Ds_{2n+2} = Ps_{2n+1} = t_{2n+1},$

 $\forall \ n \in N \cup \{0\},$ where N is the set of natural numbers .

Firstly, we will determine that the sequence $< t_n >$ constructed above is a "*d*-cauchy sequence".

Suppose $s_n \neq s_{n+1} \forall n$. By use of (i), we have

$$\varphi(d(t_{2n}, t_{2n+1})) = \varphi(d(Cs_{2n+1}, Ds_{2n+2}))$$

$$\geq d(Ps_{2n+1}, Qs_{2n+2})$$

$$= (d(t_{2n+1}, t_{2n+2})$$

that is,

$$(d(t_{2n+1}, t_{2n+2}) \le \varphi(d(t_{2n}, t_{2n+1})).$$

Similarly,

$$(d(t_{2n}, t_{2n+1}) = (dQs_{2n}, Ps_{2n+1})$$

= $(d(Ps_{2n+1}, Qs_{2n})$
 $\leq \varphi(d(Cs_{2n+1}, Ds_{2n}))$
= $\varphi(d(t_{2n}, t_{2n-1}))$
= $\varphi(d(t_{2n-1}, t_{2n}))$

Thus, in general,

$$d(t_n, t_{n+1}) \le \varphi^n(d(t_0, t_1)).$$

So,

$$P_n = \sum_{i=1}^n d(t_i, t_{i+1}) = d(t_0, t_1) + d(t_1, t_2) + \dots + d(t_n, t_{n+1})$$

$$\leq d(t_0, t_1) + \varphi(d(t_0, t_1)) + \dots + \varphi^n(d(t_0, t_1))$$

$$= \sum_{i=0}^n \varphi^i(d(t_0, t_1)) < \sum_{i=0}^\infty \varphi^i(d(t_0, t_1)) < \infty.$$

Thus $< t_n >$ is a *d*-cauchy sequence.

Since (U, τ) is a *d*-complete TS, it yields that $< t_n >$ and hence any subsequence of it converge to $\alpha \in U$.

So $\langle Cs_{2n} \rangle$, $\langle Ds_{2n+1} \rangle$, $\langle Ps_{2n+1} \rangle$ and $\langle Qs_{2n+1} \rangle$ converge to $\alpha \in U$. Since (U, τ) is *d*-complete TS, so we can choose a point $p \in U$ such that $Cp = \alpha$.

Now by use of inequality (i), we have:

$$\varphi(d(Cp, Ds_{2n+2}) \ge d(Pp, Qs_{2n+2}).$$

Letting $n \to \infty$, we have

$$\varphi(d(Cp,\alpha)) \ge d(Pp,\alpha).$$

That is,

$$0 = \varphi(0) \ge d(Sp, \alpha).$$

This determines that $Pp = \alpha$. By reason of mappings D and Q weakly compatible, CPp = PCp implies $C\alpha = P\alpha$.

Now, since D(U) is also a *d*-complete TS, so one can choose a point $p_1 \in U$ such that $Dp_1 = \alpha$.

Now consider,

$$\varphi(d(Cs_{2n+1}, Dp_1)) \ge d(Ps_{2n+1}, Qp_1)$$

Letting $n \to \infty$, we get $\varphi(d(\alpha, Dp_1)) \ge d(\alpha, Qp_1)$.

Recalling that $Dp_1 = \alpha$, we obtain $0 = \varphi(0) \ge d(\alpha, Qp_1)$.

This suggest that $Qp = \alpha$. By reason of mappings D and Q weakly compatible, $DQp_1 = QDp_1$ implies that $D\alpha = Q\alpha$.

Now, we have to prove that $C\alpha = \alpha$ and $D\alpha = \alpha$.

Let us presume that $d(C\alpha, \alpha) > 0$. So applying the inequality $\varphi(t) < t \ \forall \ t > 0$, we have

$$d(C\alpha, \alpha) > \varphi(d(C\alpha, \alpha)) \ge d(P\alpha, \alpha) = d(C\alpha, \alpha)$$

which is conflict. So $d(C\alpha, \alpha) = 0$ i.e. $C\alpha = S\alpha = \alpha$.

Similarly, let us presume that $d(D\alpha, \alpha) > 0$. Accordingly, using the fact d(s, t) is symmetric and $C\alpha = P\alpha = \alpha$, we get

 $d(D\alpha, \alpha) > \varphi(d(D\alpha, \alpha)) = \varphi(d(C\alpha, D\alpha)) \ge d(P\alpha, Q\alpha) = d(C\alpha, D\alpha) = d(D\alpha, \alpha)$

which is conflict. So,

$$d(D\alpha, \alpha) = 0.$$

This proves that

$$D\alpha = Q\alpha = \alpha.$$

Therefore,

$$C\alpha = D\alpha = P\alpha = Q\alpha = \alpha.$$

It follows that α is the exactly one CFP of C, P, D and Q.

By taking $\varphi(t) = \frac{t}{h}$, for h > 1 in theorem 3.1, we get as per mentioned below Corollary:

Corollary 3.1. Let C, D, P and Q be self mappings on d-complete TS U satisfying the conditions:

- (i) $d(Cs, Dt) \ge hd(Ps, Qt) \forall s, t \in U \text{ and } h > 1;$
- (ii) C and D are surjective;
- (iii) the pairs $\{D, Q\}$ and $\{C, P\}$ are "weakly compatible" mappings;
- (iv) $d(s,t) = d(t,s) \forall s, t \in U$.

Then, C, D, Pand Q have exactly one CFP in U.

If we take P = Q = I in theorem 3.1, we have as per mentioned below Corollary:

Corollary 3.2. Let C, D be surjective self mappings on d-complete TS U satisfying the inequality

$$\varphi(d(Cs, Dt)) \ge d(s, t),$$

 $\forall s,t \in U$, where $\varphi : [0,\infty) \to [0,\infty)$, a "non-decreasing function" satisfying $\varphi(t) < t, \varphi(0) = 0$ and $\sum_{1}^{\infty} \varphi^{n}(t) < \infty \forall t > 0$. Then C and D have exactly one CFP.

If we put $\varphi(t) = \frac{t}{h}$, h > 1 and P = Q = I in Theorem 3.1, we obtain the subsequent result:

Corollary 3.3. Let C and D be surjective self mappings on a d-complete TS U. Assuming that $\exists h > 1$ to the extent that

$$d(Cs, Dt)) \ge hd(s, t)$$

for all $s, t \in U$. Then, C and D have exactly one CFP.

Theorem 3.2. Let C and D be surjective self mappings on d-complete TS U satisfying the inequalities

- (3.1) $\varphi(d(CDs, Ds)) \ge d(Ds, s),$
- (3.2) $\varphi(d(DCs, Cs)) \ge d(Cs, s)$

 $\forall s \in U$, where $\varphi : [0, \infty] \to [0, \infty]$, a "non-decreasing continuous function" with

$$\sum_{n=1}^{\infty} \varphi^n(t) < \infty,$$

then C and D have a CFP.

Proof. Because of the surjective mappings C and D, for an arbitrary point $s_0 \in U$, one can choose points $s_1 \in f^{-1}(s_0)$ and $s_2 \in g^{-1}(s_1)$. Pursuing like this, we attain the sequence $\langle s_n \rangle$ with $s_{2n+1} \in C^{-1}(s_{2n})$ and $s_{2n+2} \in D^{-1}(s_{2n+1})$.

If $s_n = s_{n+1}$ for some n, then s_n is a FP of C and D. And if $s_{2n} = s_{2n+1}$ for some $n \ge 0$, then s_{2n} is a FP of C. And from inequality (*i*), we get

(3.3) $\varphi(d(s_{2n}, s_{2n+1})) = \varphi(d(Cs_{2n+1}, Ds_{2n+2}))$

(3.4)
$$= \varphi(d(CDs_{2n+2}, Ds_{2n+2}))$$

$$(3.5) \geq d(Ds_{2n+2}, s_{2n+2})$$

$$(3.6) = d(s_{2n+1}, s_{2n+2})$$

that is,

$$d(s_{2n+1}, s_{2n+2}) \le \varphi(d(s_{2n}, s_{2n+1})).$$

Similarly,

$$\varphi(d(s_{2n+1}, s_{2n+2})) = \varphi(d(Ds_{2n+2}, Cs_{2n+3}))$$

= $\varphi(d(DCs_{2n+3}, Cs_{2n+3}))$
 $\geq d(Cs_{2n+3}, s_{2n+3})$
= $d(s_{2n+2}, s_{2n+3})$

that is,

$$d(s_{2n+2}, s_{2n+3}) \le \varphi(d(s_{2n+1}, s_{2n+2})).$$

Thus, we obtain

$$d(s_n, s_{n+1}) \le \varphi(d(s_{n-1}, s_n)),$$

for n = 1, 2, 3, ... Thus,

$$d(s_n, s_{n+1}) \le \varphi^n(d(s_0, s_1)),$$

for $n = 1, 2, 3, \dots$ So,

$$P_n = \sum_{i=1}^n d(s_i, s_{i+1})$$

= $d(s_0, s_1) + d(s_1, s_2) + \dots d(s_n, s_{n+1})$
 $\leq d(s_0, s_1) + \varphi(d(s_0, s_1)) + \dots + \varphi^n(d(s_0, s_1))$
= $\sum_{i=0}^n \varphi^n(d(s_i, s_{i+1})).$

Since

$$\sum_{n=0}^{\infty}\varphi^n(t)<\infty$$

 $\forall t > 0$, therefore

$$P_n \le \sum_{i=0}^{\infty} \varphi^k(d(s_i, s_{i+1})) < \infty.$$

In this way, $< s_n >$ is a "*d*-cauchy sequence".

After all, (U, τ, d) is "*d*-complete", it gives that $\langle s_n \rangle$ and hence any subsequence of it converge to $\alpha \in U$.

Now, we suppose that C is continuous. As $s_{2n} = Cs_{2n+1}$, it pursues that

$$\alpha = \lim_{n \to \infty} s_{2n} = \lim_{n \to \infty} C s_{2n+1} = C \alpha.$$

Thus α is a FP of *C*. Because of the surjective mapping D, one can choose a point $t \in U$ such that $Dt = \alpha$. Thus, from inequality (3.1) ,we have

$$0 = \varphi(0) = \varphi(d(\alpha, \alpha)) = \varphi(d(C\alpha, D\alpha)) = \varphi(d(CDt, Dt)) \ge d(Dt, t) = d(\alpha, t)$$

which implies $d(\alpha, t) = 0$ and so $t = \alpha$. Thus, $D\alpha = \alpha$. Therefore, we have proven that α is a CFP of *C* and *D*. Similarly, it can be seen by considering the continuity of *D* that *C* and *D* have a CFP.

This finalizes the proof.

Taking $\varphi(t) = \frac{t}{h}$, where $h = \max\{a, b\} > 1$ in Theorem 3.2, we get as per mentioned below Corollary:

Corollary 3.4. Let C and D be surjective self mappings on d-complete TS U satisfying the inequalities

$$\begin{split} & d(CDs, Ds) \geq ad(Ds, s) \\ & d(DCs, Cs) \geq bd(Cs, s) \end{split}$$

9856

for all $s \in U$, where a, b > 1. If either C or D is continuous, then C and D have a CFP.

Putting C = D in Theorem 3.2, we get the subsequent Corollary:

Corollary 3.5. Let C be a continuous surjective self mapping on d-complete TS U satisfying the inequality

$$\varphi(d(C^2s, Cs)) \ge d(Cs, s),$$

 $\forall s \in U$, where $\varphi : [0, \infty] \to [0, \infty]$, a non-decreasing function with the position

$$\sum_{n=1}^{\infty}\varphi^n(t)<\infty$$

 $\forall t > 0$. Then C has a "fixed point".

Set $k = \min\{a, b\}$ and C = D in Corollary 3.4, we get the subsequent Corollary:

Corollary 3.6. Let C be a surjective self mapping on d-complete TS U satisfying the inequality

$$d(C^2s, Cs) \ge kd(Cs, s),$$

 $\forall s \in U$, where k > 1. Then continuity of $C \implies C$ has a FP.

Now, we prove fixed point theorem by using (ζ, α) -expansive mapping in the setting of *d*-complete TS.

Theorem 3.3. Let C be a continuous bijective, (ζ, α) -expansive mapping on a d-complete TS U gratifying the situations:

- (i) C^{-1} is an " α -admissible" mapping;
- (ii) $\exists s_0 \in U \text{ s.t. } \alpha(s_0, C^{-1}s_0) \ge 1.$

Then C has a FP.

Proof. Outline a sequence $< s_n >$ in U as

$$s_n = Cs_{n+1}$$

 $\forall n \in N$. Here s_0 is such that $\alpha(s_0, Q^{-1}s_0) \ge 1$. If $s_n = s_{n+1}$ for any $n \in N$, then clearly s_n is a FP of *C*. Suppose that $s_n \neq s_{n+1}$ for $n \in N$. From given condition (*ii*),

$$\alpha(s_0, s_1) = \alpha(s_0, C^{-1}s_0) \ge 1,$$

therefore

$$\alpha(C^{-1}s_0, C^{-1}s_1) = \alpha(s_1, s_2) \ge 1,$$

because C^{-1} is $\alpha\text{-admissible}$ mapping. Thus by induction,

$$\alpha(s_n, s_{n+1}) \ge 1, \forall n \in N.$$

Using inequality (3.3) and the condition of (ζ, α) -expansive mapping, we have

$$d(s_n, s_{n+1}) \le \alpha(s_n, s_{n+1}) d(s_n, s_{n+1}) \le \zeta(d(Cs_n, Cs_{n+1})) = \zeta(d(s_{n-1}, s_n)).$$

Thus, by repeating the inequality (3.4), we have

$$d(s_n, s_{n+1}) \le \zeta^n(d(s_0, s_1)),$$

for all $n \in N$.

$$P_n = d(s_1, s_2) + d(s_2, s_3) + \dots + d(s_n, s_{n+1})$$

= $\zeta(d(s_0, s_1)) + \zeta^2(d(s_0, s_1)) + \dots + \zeta^n(d(s_0, s_1))$
= $\sum_{i=1}^n \zeta^i(d(s_0, s_1)).$

When $n \to \infty$,

$$\sum_{i=1}^{\infty} \zeta^i(d(s_0, s_1)) < \infty$$

since

$$\sum_{n=1}^{\infty} \zeta^n(a) < \infty$$

for each a > 0.

Hence, $\langle s_n \rangle$ is a d-cauchy sequence. So, there exists $\alpha \in U$ such that $s_n \to \alpha$ as $n \to \infty$. Using the continuity of C, $s_n = Cs_{n+1} \to C\alpha$ as $n \to \infty$. Using the uniqueness of limit, we get $\alpha = C\alpha$. Thus α is a FP of C.

This finalizes the proof.

d-COMPLETE TOPOLOGICAL SPACES

References

- [1] T. L. HICKS: *Fixed point theorems for d-complete topological spaces*, I. Int. J. Math. Math. Sci., **15** (1992), 435–439.
- [2] T. L. HICKS, B. E. RHOADES: Fixed point theorems for d-complete topological spaces II, Math. Japonica, 37 (1992), 847–853.
- [3] H. KARAYILAN, M. TELCI: Common fixed point theorems for pairs of mappings in *d*-complete topological spaces, Vietnam J.Math., **43** (2015), 621–627.
- [4] S. KASAHARA: On some generalizations of the Banach contraction theorem, Math. Semin. Notes Kobe Univ., 3 (1975), 161–169.
- [5] S. KASAHARA: Some fixed point and coincidence theorems in L-spaces, Math. Semin. Notes Kobe Univ., 3 (1975), 181–187.
- [6] M. A. KHAN, M.S. KHAN, S. SESSA: Some theorems on expansion mappings and their fixed points, Demonstr. Math., **19** (1986), 673–683.
- [7] P. SHAHI, J. KAUR, S. S. BHATIA: Fixed point theorems for (ξ, α) -expansive mappings in complete metric spaces, Fixed Point Theory and Applications, **157** (2012), 12 pages.
- [8] P. SHAHI, J. KAUR, S. S. BHATIA: Common fixed points of expansive mappings in generalized metric spaces, Journal of Applied Research and Technology, **12** (2014), 607–614.
- [9] T. TANIGUCHI: Common fixed point theorems on expansion type mappings on complete metric spaces, Math. Jpn., **34** (1989), 139–142.
- [10] S. Z. WANG, B. Y. LI, Z. M. GAO, K. ISEKI: Some fixed point theorems on expansion mappings, Math. Jpn., 29 (1984), 631–636.

DEPARTMENT OF MATHEMATICS MAHARSHI DAYANAND UNIVERSITY ROHTAK-124001, HARYANA, INDIA. *Email address*: dr.savitarathee@gmail.com

DEPARTMENT OF MATHEMATICS, PT CLS GOVT. COLLEGE KARNAL-132001, HARYANA, INDIA. *Email address*: gupta.priyanka989@gmail.com

DEPARTMENT OF MATHEMATICS, INDIRA GANDHI NATIONAL TRIBAL UNIVERSITY LALPUR, AMARKANTAK, ANUPPUR, MADHYA PRADESH-484887, INDIA. *Email address*: vishnunarayanmishra@gmail.com