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SOME COMMON FIXED POINT THEOREMS FOR EXPANSIVE MAPPINGS
IN d-COMPLETE TOPOLOGICAL SPACES

S. RATHEE, P. GUPTA1, AND VISHNU NARAYAN MISHRA1

ABSTRACT. In the present paper, we entrenched common fixed point theo-
rems for self mappings satisfying expansive condition in d-complete topological
spaces. Also we prove a fixed point theorem for (ζ, α)-expansive mapping in
the setting of d-complete topological spaces. Our results extend and generalize
the results of Shahi et al. to d-complete topological spaces.

1. INTRODUCTION

Fixed point theory" is a fundamental theory in mathematics. It is an impor-
tant tool in non-linear functional analysis. It has been widely applied to many
branches in pure mathematics and applied mathematics. Fixed point theory is
a beautiful mixture of analysis, topology and geometry. Wang et al. in [10] in
1984 introduced some results on "expansion mappings" in metric spaces. Fur-
ther results of in [10] was generalized by Khan et al. and in [6] by using func-
tions. After that several researchers in [9] introduced the results on expansion
mappings. Shahi et al. in [8] proposed the results on "expansive mappings" in
"generalized metric spaces". Also Shahi et al. in [7] proposed a new concept of
(ξ, α)-expansive mappings and gave fixed point theorems (FPT) for this mapping
in complete metric spaces.
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In 1975, "d-complete topological space (TS)" was proposed by Kashahara,
[4, 5], as a generalization of "complete metric spaces". Hicks in [1], Hicks and
Rhoades in [2] and many other authors in [3] introduced several results in d-
complete topological spaces. Examples of d-complete TS are complete quasi
metric spaces and complete metric spaces.

In this paper, we prove common fixed point theorems for expansion map-
ping and a fixed point theorem for (ζ, α)-expansive mapping in the setting
of d-complete TS. Our results extend and generalize the results of Shahi et
al., [7], [8] to d-complete topological spaces.

2. PRELIMINARIES

Before going to our main results, we state some definitions.

Definition 2.1. [1], Let, for a TS (U, τ), d : U×U → [0,∞) be such that d(s, t) = 0

iff s = t. If
∑∞

n=0 d(sn, sn+1) < ∞ then the sequence < sn > is forenamed to be
d-cauchy sequence.

Definition 2.2. [1], Let, for a TS (U, τ), d : U×U → [0,∞) be such that d(s, t) = 0

iff s = t. If
∑∞

n=0 d(sn, sn+1) <∞ =⇒ the sequence < sn > is convergent in (U, τ)

then the triplet (U, τ, d) is forenamed to be d-complete TS.

Definition 2.3. [9], Two self mappings T and S on a topological space (U, τ) are
forenamed to be weakly compatible if Tu = Su, for u ∈ U =⇒ STu = TSu.

Two compatible mappings are weakly compatible but converse not true.

Definition 2.4. [9], Let for a TS (U, τ), d : U × U → [0,∞) be a mapping such
that d(s, t) = 0 if and only if s = t and T : U → U be a self mapping. The mapping
T is forenamed to be expansive if ∃ h > 1 such that

d(Ts, T t) ≥ hd(s, t),

∀ s, t ∈ U .

Here we are using the notation Γ denoting the class of all non-decreasing
functions ζ : [0,∞)→ [0,∞) which satisfies the subsequent properties:

(i)
∑∞

n=1 ζ
n(a) <∞ for every a > 0, where ζn represents the nth iterate of ζ;
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(ii) ζ(a) + ζ(b) = ζ(a+ b).

Definition 2.5. [7], Let for a TS (U, τ), d : U × U → [0,∞) be a mapping such
that d(s, t) = 0 iff s = t and T : U → U be a self mapping. Then T is an (ζ, α)-
expansive mapping if there exist two functions ζ ∈ Γ and α : U × U → [0,∞) such
that

ζ(d(Ts, T t)) ≥ α(s, t)d(s, t),

for all s, t ∈ U.

Definition 2.6. [7], Let T : U → U and α : U × U → [0,∞) be two mappings for
a non-void set U . The mapping T is forenamed to be α-admissible if α ≥ 1 =⇒
α(Ts, T t) ≥ 1, for s, t ∈ U .

Example 1. [7], Let U = R+ ∪ {0}. Outline the mapping α : U × U → [0,∞) by

α(s, t) =

1 if s ≥ t,

0 if s < t

and the mapping T : U → U by Ts = s2 ∀ s ∈ U . Then T is α-admissible.

3. MAIN RESULTS

This section includes our main results. Firstly, we find common FPT in d-
complete TS for expansion mappings.

Theorem 3.1. Let C,D, P and Q be self mappings on d-complete TS U satisfying
the conditions:

(i) ϕ(d(Cs,Dt)) ≥ d(Ps,Qt) ∀ s, t ∈ U,
(ii) C and D are surjective,

(iii) the pairs {C,P} and {D,Q} are weakly compatible mappings,
(iv) d(s, t) = d(t, s) ∀ s, t ∈ U

where ϕ : [0,∞) → [0,∞) is a "non-decreasing function" with ϕ(t) < t, ϕ(0) = 0

and
∑∞

n=1 ϕ
n(t) <∞ ∀ t > 0.

Then, C,D, P and Q have exactly one common fixed point (CFP) in U .

Proof. Due to surjective mappings of C and D, one can take a point s1 in U for
an arbitrary point s0 in U such that

Cs1 = Qs0 = t0.
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For a point s1 ∈ U , ∃ a point s2 in U such that

Ds2 = Ps1 = t1.

Inductively, a sequence < tn > in U can be defined such that

Cs2n+1 = Qs2n = t2n,

Ds2n+2 = Ps2n+1 = t2n+1,

∀ n ∈ N ∪ {0}, where N is the set of natural numbers .
Firstly, we will determine that the sequence < tn > constructed above is a

"d-cauchy sequence".
Suppose sn 6= sn+1 ∀ n. By use of (i), we have

ϕ(d(t2n, t2n+1)) = ϕ(d(Cs2n+1, Ds2n+2))

≥ d(Ps2n+1, Qs2n+2)

= (d(t2n+1, t2n+2)

that is,
(d(t2n+1, t2n+2) ≤ ϕ(d(t2n, t2n+1)).

Similarly,

(d(t2n, t2n+1) = (dQs2n, Ps2n+1)

= (d(Ps2n+1, Qs2n)

≤ ϕ(d(Cs2n+1, Ds2n))

= ϕ(d(t2n, t2n−1))

= ϕ(d(t2n−1, t2n))

Thus, in general,
d(tn, tn+1) ≤ ϕn(d(t0, t1)).

So,

Pn =
n∑

i=1

d(ti, ti+1) = d(t0, t1) + d(t1, t2) + ...+ d(tn, tn+1)

≤ d(t0, t1) + ϕ(d(t0, t1)) + ...+ ϕn(d(t0, t1))

=
n∑

i=0

ϕi(d(t0, t1)) <
∞∑
i=0

ϕi(d(t0, t1)) <∞.

Thus < tn > is a d-cauchy sequence.
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Since (U, τ) is a d-complete TS, it yields that < tn > and hence any subse-
quence of it converge to α ∈ U .

So < Cs2n >,< Ds2n+1 >,< Ps2n+1 > and < Qs2n+1 > converge to α ∈ U .
Since (U, τ) is d-complete TS, so we can choose a point p ∈ U such that Cp = α.

Now by use of inequality (i), we have:

ϕ(d(Cp,Ds2n+2) ≥ d(Pp,Qs2n+2).

Letting n→∞, we have

ϕ(d(Cp, α)) ≥ d(Pp, α).

That is,
0 = ϕ(0) ≥ d(Sp, α).

This determines that Pp = α. By reason of mappings D and Q weakly compati-
ble, CPp = PCp implies Cα = Pα.

Now, since D(U) is also a d-complete TS, so one can choose a point p1 ∈ U

such that Dp1 = α.
Now consider,

ϕ(d(Cs2n+1, Dp1)) ≥ d(Ps2n+1, Qp1).

Letting n→∞, we get ϕ(d(α,Dp1)) ≥ d(α,Qp1).
Recalling that Dp1 = α, we obtain 0 = ϕ(0) ≥ d(α,Qp1).
This suggest thatQp = α. By reason of mappingsD andQweakly compatible,

DQp1 = QDp1 implies that Dα = Qα.
Now, we have to prove that Cα = α and Dα = α.

Let us presume that d(Cα, α) > 0. So applying the inequality ϕ(t) < t ∀ t > 0,
we have

d(Cα, α) > ϕ(d(Cα, α)) ≥ d(Pα, α) = d(Cα, α)

which is conflict. So d(Cα, α) = 0 i.e. Cα = Sα = α.
Similarly, let us presume that d(Dα,α) > 0. Accordingly, using the fact d(s, t)

is symmetric and Cα = Pα = α, we get

d(Dα,α) > ϕ(d(Dα,α)) = ϕ(d(Cα,Dα)) ≥ d(Pα,Qα) = d(Cα,Dα) = d(Dα,α)

which is conflict. So,
d(Dα,α) = 0.

This proves that
Dα = Qα = α.
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Therefore,
Cα = Dα = Pα = Qα = α.

It follows that α is the exactly one CFP of C,P,D and Q. �

By taking ϕ(t) = t
h
, for h > 1 in theorem 3.1, we get as per mentioned below

Corollary:

Corollary 3.1. Let C,D, P and Q be self mappings on d-complete TS U satisfying
the conditions:

(i) d(Cs,Dt) ≥ hd(Ps,Qt) ∀ s, t ∈ U and h > 1;
(ii) C and D are surjective;

(iii) the pairs {D,Q} and {C,P} are "weakly compatible" mappings;
(iv) d(s, t) = d(t, s) ∀ s, t ∈ U .

Then, C,D, Pand Q have exactly one CFP in U .

If we take P = Q = I in theorem 3.1, we have as per mentioned below
Corollary:

Corollary 3.2. Let C,D be surjective self mappings on d-complete TS U satisfying
the inequality

ϕ(d(Cs,Dt)) ≥ d(s, t),

∀ s, t ∈ U , where ϕ : [0,∞) → [0,∞), a "non-decreasing function" satisfying
ϕ(t) < t, ϕ(0) = 0 and

∑∞
1 ϕn(t) <∞ ∀ t > 0.

Then C and D have exactly one CFP.

If we put ϕ(t) = t
h
, h > 1 and P = Q = I in Theorem 3.1, we obtain the

subsequent result:

Corollary 3.3. Let C and D be surjective self mappings on a d-complete TS U .
Assuming that ∃ h > 1 to the extent that

d(Cs,Dt)) ≥ hd(s, t)

for all s, t ∈ U . Then, C and D have exactly one CFP.

Theorem 3.2. Let C and D be surjective self mappings on d-complete TS U satis-
fying the inequalities

ϕ(d(CDs,Ds)) ≥ d(Ds, s),(3.1)

ϕ(d(DCs,Cs)) ≥ d(Cs, s)(3.2)
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∀ s ∈ U , where ϕ : [0,∞]→ [0,∞], a "non-decreasing continuous function" with

∞∑
n=1

ϕn(t) <∞,

then C and D have a CFP.

Proof. Because of the surjective mappings C andD, for an arbitrary point s0 ∈ U ,
one can choose points s1 ∈ f−1(s0) and s2 ∈ g−1(s1). Pursuing like this, we attain
the sequence < sn > with s2n+1 ∈ C−1(s2n) and s2n+2 ∈ D−1(s2n+1).

If sn = sn+1 for some n, then sn is a FP of C and D. And if s2n = s2n+1 for
some n ≥ 0, then s2n is a FP of C. And from inequality (i), we get

ϕ(d(s2n, s2n+1)) = ϕ(d(Cs2n+1, Ds2n+2))(3.3)

= ϕ(d(CDs2n+2, Ds2n+2))(3.4)

≥ d(Ds2n+2, s2n+2)(3.5)

= d(s2n+1, s2n+2)(3.6)

that is,

d(s2n+1, s2n+2) ≤ ϕ(d(s2n, s2n+1)).

Similarly,

ϕ(d(s2n+1, s2n+2)) = ϕ(d(Ds2n+2, Cs2n+3))

= ϕ(d(DCs2n+3, Cs2n+3))

≥ d(Cs2n+3, s2n+3)

= d(s2n+2, s2n+3)

that is,

d(s2n+2, s2n+3) ≤ ϕ(d(s2n+1, s2n+2)).

Thus, we obtain

d(sn, sn+1) ≤ ϕ(d(sn−1, sn)),

for n = 1, 2, 3, . . .. Thus,

d(sn, sn+1) ≤ ϕn(d(s0, s1)),
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for n = 1, 2, 3, . . .. So,

Pn =
n∑

i=1

d(si, si+1)

= d(s0, s1) + d(s1, s2) + ...d(sn, sn+1)

≤ d(s0, s1) + ϕ(d(s0, s1)) + ...+ ϕn(d(s0, s1))

=
n∑

i=0

ϕn(d(si, si+1)).

Since
∞∑
n=0

ϕn(t) <∞

∀ t > 0, therefore

Pn ≤
∞∑
i=0

ϕk(d(si, si+1)) <∞.

In this way, < sn > is a "d-cauchy sequence".

After all, (U, τ, d) is "d-complete", it gives that < sn > and hence any subse-
quence of it converge to α ∈ U .

Now, we suppose that C is continuous. As s2n = Cs2n+1, it pursues that

α = lim
n→∞

s2n = lim
n→∞

Cs2n+1 = Cα.

Thus α is a FP of C. Because of the surjective mapping D, one can choose a
point t ∈ U such that Dt = α. Thus, from inequality (3.1) ,we have

0 = ϕ(0) = ϕ(d(α, α)) = ϕ(d(Cα,Dα)) = ϕ(d(CDt,Dt)) ≥ d(Dt, t) = d(α, t),

which implies d(α, t) = 0 and so t = α. Thus, Dα = α. Therefore, we have
proven that α is a CFP of C and D. Similarly, it can be seen by considering the
continuity of D that C and D have a CFP.

This finalizes the proof. �

Taking ϕ(t) = t
h
, where h = max{a, b} > 1 in Theorem 3.2, we get as per

mentioned below Corollary:

Corollary 3.4. Let C and D be surjective self mappings on d-complete TS U satis-
fying the inequalities

d(CDs,Ds) ≥ ad(Ds, s)

d(DCs,Cs) ≥ bd(Cs, s)
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for all s ∈ U , where a, b > 1. If either C or D is continuous, then C and D have a
CFP.

Putting C = D in Theorem 3.2, we get the subsequent Corollary:

Corollary 3.5. Let C be a continuous surjective self mapping on d-complete TS U
satisfying the inequality

ϕ(d(C2s, Cs)) ≥ d(Cs, s),

∀ s ∈ U , where ϕ : [0,∞]→ [0,∞], a non-decreasing function with the position
∞∑
n=1

ϕn(t) <∞

∀ t > 0. Then C has a "fixed point".

Set k = min{a, b} and C = D in Corollary 3.4, we get the subsequent Corol-
lary:

Corollary 3.6. Let C be a surjective self mapping on d-complete TS U satisfying
the inequality

d(C2s, Cs) ≥ kd(Cs, s),

∀ s ∈ U , where k > 1. Then continuity of C =⇒ C has a FP.

Now, we prove fixed point theorem by using (ζ, α)-expansive mapping in the
setting of d-complete TS.

Theorem 3.3. Let C be a continuous bijective, (ζ, α)-expansive mapping on a d-
complete TS U gratifying the situations:

(i) C−1 is an "α-admissible" mapping;
(ii) ∃ s0 ∈ U s.t. α(s0, C

−1s0) ≥ 1.

Then C has a FP.

Proof. Outline a sequence < sn > in U as

sn = Csn+1

∀ n ∈ N . Here s0 is such that α(s0, Q
−1s0) ≥ 1. If sn = sn+1 for any n ∈ N , then

clearly sn is a FP of C. Suppose that sn 6= sn+1 for n ∈ N . From given condition
(ii),

α(s0, s1) = α(s0, C
−1s0) ≥ 1,
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therefore

α(C−1s0, C
−1s1) = α(s1, s2) ≥ 1,

because C−1 is α-admissible mapping. Thus by induction,

α(sn, sn+1) ≥ 1,∀n ∈ N.

Using inequality (3.3) and the condition of (ζ, α)-expansive mapping, we have

d(sn, sn+1) ≤ α(sn, sn+1)d(sn, sn+1) ≤ ζ(d(Csn, Csn+1)) = ζ(d(sn−1, sn)).

Thus, by repeating the inequality (3.4), we have

d(sn, sn+1) ≤ ζn(d(s0, s1)),

for all n ∈ N .

Pn = d(s1, s2) + d(s2, s3) + ....+ d(sn, sn+1)

= ζ(d(s0, s1)) + ζ2(d(s0, s1)) + ...+ ζn(d(s0, s1))

=
n∑

i=1

ζ i(d(s0, s1)).

When n→∞,
∞∑
i=1

ζ i(d(s0, s1)) <∞

since
∞∑
n=1

ζn(a) <∞

for each a > 0.
Hence, < sn > is a d-cauchy sequence. So, there exists α ∈ U such that

sn → α as n → ∞. Using the continuity of C, sn = Csn+1 → Cα as n → ∞.
Using the uniqueness of limit, we get α = Cα. Thus α is a FP of C.

This finalizes the proof. �
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