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SUBMODULE INCLUSION GRAPH OF A MODULE

JITUPARNA GOSWAMI

ABSTRACT. Let R be a commutative ring with unity and M be an R-module.
The Submodule inclusion graph of M , denoted by IS(M), is a (undirected)
graph with vertices as all non-trivial submodules of M and two distinct vertices
N and L are adjacent if and only if N ⊂ L or L ⊂ N . In this paper, it has
been proved that IS(M) is not connected if and only if M is a direct sum of
two simple R-modules. Moreover, it has been shown that IS(M) is a complete
graph if and only if M is a uniserial module. The diameter, girth, clique number,
and chromatic number of IS(M) have been studied. Finally, it has been shown
that Beck’s Conjecture holds in IS(M) under certain condition.

1. INTRODUCTION

The characterization of algebraic structures through association of graphs has
become an exciting research topic in the last two decades, leading to many
fascinating results and questions. Many fundamental papers assigning graphs
to a ring have appeared recently, for instance see, [3,4,6,7,10]. The study of
behaviour of the ideals and their properties is an important aspect in a ring.
Observing this phenomenon Akbari and his co-researchers ([1,2]) have recently
introduced the notion of inclusion ideal graph of a ring. The investigation of
graphs associated to a module over a commutative ring is also an important and
interesting area of research in algebraic graph theory as a module is a general-
ized algebraic structure of a vector space. Many fundamental papers assigning
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graphs to a module have appeared recently, for instance see, [5,12,13]. In this
paper an attempt has been made to provide a module theoretic analogue of the
recent work of Akbari ([1,2]) by introducing submodule inclusion graph of a
module.

Throughout this paper R denotes a commutative ring with unity, M denotes
an R-module and all graphs are simple.

In this paper, J(M) denotes the Jacobson radical of M . A module M is called
uniserial if all the submodules of M are linearly ordered by inclusion. A module
is serial if it is a direct sum of uniserial modules. A module M is said to be
simple if M 6= 0 and it has no non-trivial submodules. A module M is called
semisimple if it is sum of its simple submodules. A chain of submodules of M
of the type 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M such that each factor
Mt/Mt−1(t = 1, 2, . . . , n) is a simple module is defined as a composition series
of length n for M . By Jordan-Holder Theorem ([15], Theorem 6.3.11) any two
composition series ofM must have the same length. The length of a composition
series of M is denoted by `(M). Any other undefined terminology related to
rings and modules can be found in [8,15].

Let G = (V,E) be a graph where V (G) is the vertex set and E(G) is the edge
set of G. For a subset X ⊂ V (G), the induced subgraph of G on X is denoted
by 〈X〉G. The vertices u and v of G are said to be adjacent if they are joined
by an edge and we denote it by u ∼ v. A path in G is an alternating sequence
of vertices and edges. We denote a path with n vertices in G by Pn. A graph
G is connected if there is a path between every two distinct vertices. A graph
which is not connected is called a disconnected graph. For two vertices x and
y in G, the length of the shortest path from x to y is denoted by d(x, y). If
no such path exists, then we define d(x, y) = ∞. The diameter of G denoted
by diam(G) is defined as diam(G)=sup{d(x, y)|x and y are two vertices of G}.
The degree of v ∈ V (G), denoted by d(v) is the number of edges incident with
v. A graph G with n vertices is said to be a complete graph if any two of its
distinct vertices are adjacent and it is denoted by Kn. The chromatic number
of a graph G, denoted by χ(G), is defined to be the minimum number of colors
which can be assigned to the vertices of G such that no two adjacent vertices
have the same color. A maximal complete subgraph of G is called a clique. The
size of the largest clique in G is called the clique number of G and is denoted
by ω(G). Clearly we have χ(G) ≥ ω(G). But, Beck [9] conjectured for a graph
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G, χ(G) = ω(G). A closed path in G is called a cycle. The length of the shortest
cycle in G is called the girth of G and is denoted by gr(G). If G has no cycle,
then we define gr(G) = ∞. A tree is a connected graph without any cycle. A
caterpillar is a tree for which removing the leaves and incident edges produces
a path graph. Any other undefined terminology related to graph theory can be
found in [11,14].

2. SUBMODULE INCLUSION GRAPH AND ITS BASIC PROPERTIES

Let R be a commutative ring with unity and M be an R-module. In this
section, we introduce submodule inclusion graph of a module and investigate
its basic properties.

We begin with the following definition.

Definition 2.1. For an R-module M , submodule inclusion graph of M , IS(M), is
a (undirected graph) whose vertices are all non-trivial submodules of M and two
distinct vertices N and L are adjacent if and only if N ⊂ L or L ⊂ N .

Example 1.

(1) If M is a simple R-module, then IS(M) is an empty graph.
(2) For a prime p, IS(Zp) is empty graph.
(3) IS(Z4) contains a single isolated vertex.
(4) IS(Z6) is the graph which is a disjoint union of two K1’s.

Proposition 2.1. Let M be an R-module. If K is a submodule of M , then IS(K)

is a subgraph of IS(M).

Proof. It is clear from the definition of IS(M) and the fact that every non-trivial
submodule of K is also a non-trivial submodule of M . �

Proposition 2.2. Let M be an R-module. Then IS(M) is a complete graph if and
only if M is a uniserial module.

Proof. First, assume that M is a uniserial module. Let P and Q be a pair of non-
trivial submodules of M . then we have P ⊂ Q or Q ⊂ P which yields P and Q
are adjacent in IS(M) and we are done.
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Conversely, suppose that that IS(M) is a complete graph. Then any two non-
trivial submodules of M are adjacent in IS(M). Thus, all submodules of M are
in one chain of inclusion and the proof is complete. �

Corollary 2.1. Let M be an R-module. If M is a serial module, then IS(M) is a
disjoint union of complete graphs.

Proof. It is clear from Proposition 2.2 and the fact that a serial module is a direct
sum of uniserial modules. �

In the following two propositions we investigate some particular types of mod-
ules whose submodule inclusion graphs are complete.

Proposition 2.3. Let M be an Artinian R-module. Then IS(M) is a complete
graph if and only if M contains a unique minimal submodule.

Proof. Since M is Artinian, so M has atleast one minimal submodule. Moreover,
every non-trivial submodule of M contains a minimal submodule. Therefore, if
M possesses a unique minimal submodule, say L, then L is contained in every
non-trivial submodule of M . This implies that IS(M) is a complete graph. The
converse is straightforward. �

Similarly, we have the following proposition.

Proposition 2.4. Let M be a Noetherian R-module. Then IS(M) is a complete
graph if and only if M contains a unique maximal submodule.

we now study the connectedness and diameter of submodule inclusion graph
of M .

Proposition 2.5. Let M be an R-module. Then IS(M) is a disconnected graph if
and only if M is a direct sum of two simple R-modules. Moreover, if IS(M) is a
connected graph, then diam(IS(M)) ≤ 3.

Proof. Suppose that IS(M) is disconnected. Let C1 and C2 be two components
of IS(M) such that P ∈ C1 and Q ∈ C2 for a pair of non-trivial submodules P
and Q of M . We first claim that M = P ⊕ Q. SinceIS(M) is disconnected so
there is no P −Q path which yields d(P,Q) =∞. Therefore, we have P ∩Q = 0.
Now, if M 6= P +Q, then P ∼ P +Q ∼ Q is a path from P to Q, a contradiction.
Hence, we have M = P ⊕Q.
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Next, we claim that both P and Q are minimal submodules of M . Assume that
0 6= R ⊂ P is another submodule of M . Then R and P are adjacent vertices in
IS(M), which implies that R ∈ C1. Hence there is no R −Q path and so by the
same argument as above we have M = R +Q. Now, let x ∈ P . Then x = y + z

for some y ∈ R and z ∈ Q which yields x − y ∈ P ∩ Q = 0 and so x = y,
which implies that P ⊆ R, a contradiction. Thus, P is a minimal submodule of
M . Similarly, Q is also a minimal submodule of M . The same argument shows
that P and Q are also maximal submodules of M . But, the minimality of P and
Qimplies that they are simple R-modules and since M = P ⊕Q we are done.

Conversely, assume that M = N ⊕ L, where N and L are simple R-modules.
Then each non-trivial submodule of M is minimal, and so no pair of non-trivial
submodules are adjacent in IS(M). Therefore, IS(M) is a union of isolated
vertices, and we are done.

Now, assume that IS(M) is a connected graph. Then M 6= N ⊕ L for any
two simple R-modules N and L. By the above argument, for every two non-
trivial submodules P and Q of M , we obtain an P −Q path P ∼ P +Q ∼ Q or
P ∼ P ∩Q ∼ Q in IS(M). So, diam(IS(M)) ≤ 3, and the proof is complete. �

Next, we study the girth of submodule inclusion graph of M . We start with
the following proposition.

Proposition 2.6. Let M be an R-module. If IS(M) contains a cycle of length 4 or
5, then IS(M) contains a triangle.

Proof. Suppose that C1 : N1 ∼ N2 ∼ N3 ∼ N4 ∼ N5 ∼ N1 is a cycle of length 5

in IS(M). This produces a chain Ni ⊂ Nj ⊂ Nk in M , where 1 ≤ i, j, k ≤ 5 and
hence IS(M) possesses a triangle.

Again, let C2 : N1 ∼ N2 ∼ N3 ∼ N4 ∼ N1 be a cycle of length 4 in IS(M).
Suppose that N1 is not adajcent to N3 and N2 is not adjacent to N4.

So, N2, N4 ⊃ N1 + N3 or N2, N4 ⊂ N1 ∩ N3. Hence N1 ∩ N3, N1 + N3 /∈
{N1, N2, N3, N4}. Thus, N2 ∼ N1 ∼ N1 + N3 ∼ N2 or N2 ∼ N1 ∼ N1 ∩ N3 ∼ N2

is a triangle in IS(M), and we are done. �

Lemma 2.1. ([8], Proposition 10.15) For an R-module M , M is semisimple and
finitely generated if and only if M is Artinian and J(M) = 0.

Lemma 2.2. ([8], Corollary 10.16) For a semisimple R-module M , M is Artinian
if and only if M is finitely generated.
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Proposition 2.7. Let M be an R-module such that IS(M) is a tree. Then the
following hold:

(1) IS(M) is a caterpillar with diam(IS(M)) ≤ 3.
(2) J(M) 6= 0.
(3) If M has a unique maximal submodule, then IS(M) is a star graph.

Proof.
(1) It follows from Proposition 2.5.
(2) First, we show that M is an Artinian R-module. Note that, if a chain of

non-trivial submodules of M has more than two elements, then IS(M) has a
triangle, a contradiction. So, M is an Artinian R-module. Now, we claim that
J(M) 6= 0. To the contrary, suppose that J(M) = 0. Then by Lemma 2.1 and
2.2, we have M is a semisimple module. Therefore by Proposition 2.5, we have
IS(M) is not connected and so IS(M) is not a tree, a contradiction. Hence, we
must have J(M) 6= 0.

(3) Note that if N1 ⊂ N2 ⊂ N3 are three non-trivial submodules of M , then
IS(M) contains a triangle, a contradiction. Therefore, we can assume that every
submodule of M is a minimal submodule or a maximal submodule of M . Now,
if M has a unique maximal submodule then every non-trivial submodule of M
will be adjacent to J(M). On the other hand, since IS(M) has no cycle, each
non-trivial submodule(6= J(M)) is minimal. Thus, IS(M) is a star graph. �

Lemma 2.3. ([8], Proposition 9.16) If M is a semisimple R-module, then J(M) =

0.

Proposition 2.8. Let M be an R-module. Then gr(IS(M)) ∈ {3, 6,∞}.

Proof. First we see that, if there exist three non-trivial submodules N1,N2 and
N3 such that N1 ⊂ N2 ⊂ N3, then IS(M) contains a triangle and so gr(IS(M)) =

3. Thus we can assume that every non-trivial submodule of M is minimal or
maximal and so M is an Artinian R-module.

Now, let us assume that J(M) 6= 0. Then by Lemma 2.3, we have M is not
semisimple. Therefore, by Proposition 2.5, we have IS(M) is connected. If M
has a unique maximal submodule, then J(M) is the unique maximal submodule
of M . Thus every other non-trivial submodule of M is minimal. Therefore,
IS(M) is a star graph and so gr(IS(M)) = ∞. If M has no unique maximal
submodule, then J(M) is a minimal submodule of M . If J(M) is the unique
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minimal submodule of M , then IS(M) is a star graph and so gr(IS(M)) = ∞.
Hence suppose that N 6= J(M) is a minimal submodule of M . If there are
two maximal submodules of M containing N , say L1 and L2, then L1 = N +

J(M) = L2, a contradiction. Thus each minimal submodule of M , except J(M),
is contained in a unique maximal submodule of M . Therefore, IS(M) is a tree
and so gr(IS(M)) =∞.

Moreover, if IS(M) has a cycle of length 4 or 5, then by Proposition 2.6, IS(M)

has a triangle and so gr(IS(M)) = 3. Also, if IS(M) has a cycle of length ≥ 6,
then gr(IS(M)) = 6, and the proof is complete. �

3. CLIQUE NUMBER AND CHROMATIC NUMBER OF SUBMODULE INCLUSION

GRAPH

In this section, the clique number and chromatic number of submodule inclu-
sion graph have been studied.

Proposition 3.1. Let M1 and M2 be two R-modules. Then

ω(IS(M1)) + ω(IS(M2)) + 1 ≤ χ(IS(M1 ×M2)) ≤ χ(IS(M1)) + χ(IS(M2)) + 1.

Proof. Let c1 : V (IS(M1))→ {1, 2, . . . , n} be a proper coloring for IS(M1), where
n = χ(IS(M1)) and X1,X2,. . . ,Xn be the color classes. First, we claim that one
can define c1 such that for every edge e = NL ∈ E(IS(M1)), N ⊂ L, where
N ∈ Xi, L ∈ Xj and 1 ≤ i < j ≤ n. To prove it, let us suppose that H is a
connected component of the induced subgraph 〈X1 ∪ X2〉 and N ⊃ L, where
N ∈ H1 = X1 ∩H and L ∈ H2 = X2 ∩H. Therefore, for every edge e′ = N ′L′ ∈
E(H) with N ′ ∈ H1 and L′ ∈ H2, we have N ′ ⊃ L′. Otherwise, it is easy to
see that there exists submodules P1, P2 ∈ H1 and Q ∈ H2 such that P1 ⊂ Q and
Q ⊂ P2, which implies that P1 ⊂ P2, a contradiction. So, one can replace H1

and H2. By continuing this procedure on 〈X2 ∪X3〉, 〈X3 ∪X4〉,. . . ,〈Xn−1 ∪Xn〉,
the claim is proved.

Now, suppose that c2 : V (IS(M2)) → {1, 2, . . . ,m} is a proper coloring for
IS(M2), where m = χ(IS(M2)) and Y1,Y2,. . . ,Ym are the color classes. Simi-
lar to the previous argument, we can assume that for every edge e = NL ∈
E(IS(M2)), N ⊂ L, where N ∈ Yi, L ∈ Yj and 1 ≤ i < j ≤ m.
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Now, we define a coloring c : V (IS(M1 × M2)) → {1, 2, . . . , n + m + 1} as
follows:

c(N × L) =



c1(N) + c2(L) N < M1andL < M2,

c1(N) N < M1andL = 0,

c2(L) N = 0andL < M2,

c1(N) +m+ 1 N < M1andL =M2,

c2(L) + n+ 1 N =M1andL < M2.

It is easy to check that c is a proper coloring and so χ(IS(M1 × M2)) ≤
χ(IS(M1)) +χ(IS(M2)) + 1. To prove the lower bound of the chromatic number,
suppose that N1 ⊂ N2 ⊂ . . . ⊂ Nn and L1 ⊂ L2 ⊂ . . . ⊂ Lm are the chains of
submodules of M1 and M2 respectively. Then N1×0 ⊂ . . . ⊂ Nn×0 ⊂ Nn×L1 ⊂
. . . ⊂ Nn × Lm ⊂ Nn ×M2 is a chain of M1 ×M2, and we are done. �

Proposition 3.2. Let M be an R-module. Then ω(IS(M)) = `(M).

Proof. It is obvious that every chain of submodules corresponds to a clique in
IS(M). Let us assume that H is the largest clique in IS(M). Then we have a
tournament from H concerning inclusion which implies that H has a Hamilton-
ian path corresponding to a chain of M . �

The following proposition shows that Beck’s conjecture holds for the submod-
ule inclusion graph IS(M).

Proposition 3.3. LetM be anR-module with a finite number of submodules. Then
χ(IS(M)) = ω(IS(M)).

Proof. We show that IS(M) and its complement do not contain induced odd
cycle of length at least 5. To the contrary, first assume that

N1 ∼ N2 ∼ . . . ∼ N2n+1 ∼ N1,

is an induced subgraph of G and n ≥ 2.It is easy to see that there are three
submodules Ni,Nj and Nk such that Ni ⊂ Nj ⊂ Nk,where 1 ≤ i, j, k ≤ 2n +

1.So,〈Ni, Nj, Nk〉G forms a triangle, a contradiction. Now, assume that H =

〈N1, N2, . . . , N2n+1〉G be the complement of the above cycle.Consider the cycle

N1 ∼ Nn+1 ∼ N2n+1 ∼ Nn ∼ . . . ∼ N2 ∼ Nn+2 ∼ N1,
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as a subgraph of H.Similarly, it is easy to see that there are three submodules
Ni,Nj and Nk such that Ni ⊂ Nj ⊂ Nk,where 1 ≤ i, j, k ≤ 2n + 1,j ≡ i +

n(mod2n + 1) and k ≡ j + n ≡ i − 1(mod2n + 1).So, 〈Ni, Nj, Nk〉G is a triangle
and Ni ∼ Nk, a contradiction. Thus the result follows. �
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