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STOCHASTIC FRACTIONAL MODELS OF THE DIFFUSION OF COVID-19

MAHMOUD M. EL-BORAI1 AND KHAIRIA EL-SAID EL-NADI

ABSTRACT. Some different stochastic and deterministic mathematical models of
coronavirus disease (COVID-19) are studied. We study a nonlinear stochastic dif-
fusion system that model of the dynamics of infections disease in particular the
case of (COVID-19). Also a nonlinear deterministic fractional diffusion system re-
lated to (COVID-19) is considered. The asymptotic stability is proved for every
system. In the field of infection disease, modeling, evaluating and predicting the
rate of disease transmission is very important epidemic prevention and control.
Our models are suitable for the considered prediction..

1. INTRODUCTION

There are different kinds of coronaviruses, most of which circulate in animals.
Only seven of these viruses infect humans. But three times in the last twenty
years, a corona viruses has jumped from animals to humans to cause severe disease
COVID-19, a new and sometimes deadly respiratory is believed to have originated
in a live animal market in China, has spread rapidly throughout that country and
the world. Mathematical modeling can be used to understanding how a virus
spreads within a population. The essence of mathematical modeling lies in writing
down a set of mathematical equations that mimic reality. These are then solved
for certain values of the parameters within the equations. The solution of the
mathematical model can be refined when we use information that we already
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know about the virus spread, for example, available data on reported number
of infections, the reported number of hospitalizations or the confirmed number
of deaths due to the infection. This process of model refinement can be done a
number of times until the solutions of the mathematical equations agree with that
we already know about the virus spread. Here we consider stochastic nonlinear
diffusion model and a deterministic nonlinear fractional diffusion model. Our
models represent generalizations of all the previous models.

This paper is prepared as follows. In section 2, we study a nonlinear stochastic
diffusion system that model of the dynamics of infections disease in particular
the case of (COVID-19). In section 3, we study nonlinear deterministic fractional
diffusion system related to (COVID-19) and we give sufficient conditions to prove
the asymptotic stability for this system.

2. SPATIAL STOCHASTIC MODEL

Let (Ω,=,=t,P) be a filtered probability space and let {Wi(t) : t ≥ 0} be
standard independent Wiener processes adapted to the filtration {=t : t ≥ 0},
i = 1, 2, . . . ,m.

In this section, we study the stochastic general epidemic model with spatial
diffusion in the following form:

(2.1) dui(x, t) = [ai∇2ui(x, t)− ciui(x, t) + fi(u)]dt+ σiui(x, t)dWi(t),

where (x, t) ∈ G × (0, b], x = (x1, x2, . . . , xn), b > 0 and G is a bounded domain in
the n-dimensional Euclidean space with smooth boundary ∂G, ∇2 is the Laplace
operator:

∇2 ≡ ∂2

∂x21
+ · · ·+ ∂2

∂x2n
,

and a1, . . . , am, c1, . . . , cm are positive constants, σ1, . . . , σm are constants. It is
supposed that f = (f1, . . . , fm) satisfies the Lipschitz condition:

(2.2)
m∑
i=1

|fi(u)− fi(v)| ≤M

m∑
i=1

|ui − vi|
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for all u = (u1, . . . , um) and v = (v1, . . . , vm), where M is a positive constant. The
system (2.1) can be written in the form:

ui(x, t) = ϕi +

∫ t

0

[ai∇2ui(x, t)− ciui(x, t) + fi(u)]dt

+

∫ t

0

σiui(x, t)dWi(t).(2.3)

Let us assume also that u = (u1, . . . , um) satisfy the following Neumann homoge-
neous conditions:

(2.4)
∂ui(x, t)

∂ν
|∂G= 0,

where ν is the direction of the outward normal at any point on the the surface ∂G
and ϕ1, . . . , ϕm are given continuous nonnegative functions defined on G ∪ ∂G.
However, our model is the generalization of the following important models:

(1) Let m = 4, σ1 = . . . = σ4 = 0, u1, . . . , u4 depend only on t, f1(u) =

γ − δu1u2, f2(u) = δu1u2, f3(u) = c2u2, f4(u) = c3u3 where δ > 0 is
the infection coefficient, c1 is the natural death rate of population, c2 =

c1 + λ1 + λ2, λ1 ≥ 0 is the death rate due to disease and λ2 is the recovery
rate of the infection individuals, c3 = λ2, c4 = c1.

The parameter γ ≥ 0 represents recruitment rate of population. The
functions u1, . . . , u4 satisfy equation (2.1).

In this case we get the model of Hethcote ( [5], [6]) see also ( [36]). It is
also represents the MERS-COV (Middle East Repiratory Syndrome Corona
Virus) model. The functions u1, . . . , u4 will represent the susceptible, ex-
posed, infections and recovered, respectively. The MERS-COV describes
a chronic disease for respiration was reported in Saudi-Arabia, in 2012.
Mostly it linked to the Arabian countries. This virus perhaps come from
animals, like camels. Still MERS-COV have no cure or vaccination devel-
oped, so why it is fatal disease and considered pandemic.

(2) Let m = 4, σ1 = · · · = σ4 = 0, u1, . . . , u4 depend only on t and satisfy
system (2.1), with f1(u) = γ − g(u),

g(u) =
δu1u2

1 + b1u1 + b2u2 + b3u1u2

and f2(u) = g(u), f3(u) = c2u2, f4(u) = c3u3. In this model the function
g(u) represents the incidence rate. For different choices of the nonnegative



10270 M. EL-BORAI AND K. EL-NADI

parameters b1, b2 and b3, we get important models due to Beddington, De
Angelis and Mehdi ( [1,3,8]).

(3) Let m = 4, σ1 = · · · = σ4 = 0, u1, . . . , u4 depend only on t and satisfy
system (2.1), with
f1(u) = γ − g(u), f2(u) = g(u), where

g(u) =
1

N
[δu1(ku2 + u3)], δ, k > 0.

whereN is the total population, N = u1+· · ·+u4 and f3(u) = c2u2, f4(u) =

c3u3. This system represents a model of COVID-19 based on mobility data
in Anhui, china. The model of COVID-19 studied the spread of the disease,
( [2,4,7], [9]- [11], [33]- [35]) in Wuhan Hubei, China.

The mixed problem ((2.1), (2.3), (2.4)) is well-posed if there exists a vector
u = (u1, . . . , um) such that:

(1) All the sample paths of the processes ui, i = 1, 2, . . . ,m are continuous on
Ḡ× [0, b] where Ḡ = G ∪ ∂G, for almost all w ∈ Ω, (abbreviated a.s.).

(2) All the sample paths of the functions ∂ui
∂xr

, i = 1, 2, . . . ,m and r = 1, 2, . . . , n

are continuous on Ḡ× [0, b] a.s.
(3) All the sample paths of the stochastic processes u1, . . . , um have continuous

partial derivatives with respect to the variables x1, . . . , xn up to order two
on G× [0, b] a.s.

(4) The sample paths of the stochastic processes u1, . . . , um satisfy system (2.3)
on G× [0, b] and the boundary conditions (2.4) a.s.

(5) The sample path of the vector u is unique, a.s. and all the sample paths of
the stochastic processes u1, . . . , um depending continuously on ϕ1, . . . , ϕm
a.s.

Theorem 2.1. The mixed problem ((2.1)), (2.3), (2.4)) is well-posed.

Proof. Let

Xi = e−σiWi(t),

Yi = eσiWi(t), i = 1, . . . ,m.

Thus,

(2.5) dXi(t) =
1

2
σ2
iXi(t)− σiXi(t)dWi(t)
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Set vi(x, t) = Xi(t)ui(x, t). Then from ((2.3),(2.4),(2.5)) and Itô formula, we get:

∂vi(x, t)

∂t
= ai∇2vi(x, t)− βivi(x, t) +Xi(t)fi(u)(2.6)

vi(x, 0) = ϕi(x),(2.7)

vi(x, t) |∂G = 0,(2.8)

where βi = ci + σ2
i /2 and i = 1, 2, . . . ,m.

Let Vk(x) ,−λ2k be the eigenfunctions and eigenvalues respectively of the Laplace
equation:

∇2Vk(x) = −λ2kVk(x), x ∈ G
∂Vk(x)

∂ν
|∂G = 0.

The eigenfunctions Vk, k = 1, 2, . . . are orthonormal and the sequence of eigenval-
ues {λk} tends to infinity as k tends to infinity. Thus the solution of ((2.6))-(2.8))
can be represented by

(2.9) eβitvi(x, t) =
∞∑
k=0

Tki(t)Vk(x).

It is easy to prove that

Tki(t) = eaiλ
2
ktγki

+

∫ t

0

∫
G

e−aiλ
2
k(t−θ)Vk(x)eβiθXi(θ)fi(u(y, θ))dydθ,(2.10)

where γki =
∫
G
ϕi(y)Vk(y)dy.

Let Z(·) and Z̃(·) be two stochastic processes. we call Z̃(·) is the version of Z(·)
if

P(Z(t) = Z̃(t)) = 1, ∀t ≥ 0.

Any Wiener process has a version with continuous sample path a.s. Thus X(·) and
Y (·) have versions with continuous sample paths a.s. on [0, b]. Now equation (2.9)
with the help of (2.10) is of the type Volterra integral equation.

Remembering that the functions f1, . . . , fm satisfy Lipschitz condition (2.2), thus
with the properties of X(·) and Y (·), the considered Volterra integral equation
(2.9) can be solved in the space (C(Ḡ), ‖ · ‖), where C(Ḡ) is the set of all vectors
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h = (h1, . . . , hm) such that h1, . . . , hm are continuous on Ḡ and ‖ h(·) ‖=
∑m

i=1 sup |
hi(x) |, (the supremum is taken on Ḡ).

It is easy to see that

u1(x, t) = Y1(t)v1(x, t), u2(x, t) = Y2(t)v2(x, t), . . . , um(x, t) = Ym(t)vm(x, t),

satisfy the conditions (1 − 4). To prove condition 5, (the stability of solutions),
let v = (v1, . . . , vm), v∗ = (v∗1, . . . , v

∗
m) be two solutions of (2.6) with the boundary

conditions
∂vi(x, t)

∂ν
|∂G=

∂v∗i (x, t)

∂ν
|∂G= 0

and the initial conditions

vi(x, 0) = ϕi(x), v∗i (x, 0) = ϕ∗i ,

such that

sup
x
| ϕi(x)− ϕ∗i |≤ ε, i = 1, 2, . . . ,m

for sufficiently small ε > 0.
From ((2.2),(2.9)) and (2.10), we get:

‖ v(·, t)− v∗(·, t) ‖≤M1ε+M2

∫ t

0

‖ v(·, θ)− v∗(·, θ) ‖ dθ

for some constants M1,M2 > 0, (M2 depends on ω ∈ Ω). Thus

‖ v(·, t)− v∗(·, t) ‖≤M1εe
M2t.

This completes the proof of the theorem. �

Theorem 2.2. Let u be the solution of the mixed problem ((2.3),(2.4)). If ϕi ≥ 0 on
Ḡ and fi(0, 0, . . . , 0) ≥ 0, i = 1, 2, . . . ,m, then ui(x, t) ≥ 0 on Ḡ× [0, b] a.s.

Proof. Let Zi(x, t) be the functions defined by

Zi(x, t) =

{
fi(u)−fi(0,0,...,0)

ui(x,t)
, for x such that ui(x, t) 6= 0

0 , for x such that ui(x, t) = 0.

According to the Lipschitz condition (2.2), one gets

| Zi(x, t)ui(x, t) |≤M

m∑
r=1

| ur(x, t) |

on Ḡ× [0, b], for some constant M > 0.
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Moreover,

fi(u)− fi(0, 0, . . . , 0) = Zi(x, t)ui(x, t), i = 1, 2, . . . ,m.

Thus equation (2.6) can be written in the form

∂vi(x, t)

∂t
= ai∇2vi(x, t)− βivi(x, t) + Zi(x, t)vi(x, t)

+Xi(t)fi(0, 0, . . . , 0).

From the strong maximum principle for linear parabolic inequalities, we get

vi(x, t) ≥ 0, Ḡ× [0, b], i = 1, 2, . . . ,m

So,

ui(x, t) = Yi(t)vi(x, t) ≥ 0, Ḡ× [0, b], i = 1, 2, . . . ,m

From Theorems (2.1) and (2.2) we can say that the stochastic model (2.3) with
the homogeneous Neumann boundary conditions (2.4) is suitable for predictions.

Let E(ξ) denote the expectation of the random variable ξ. Suppose that fi(0,
0, . . . , 0) ≥ 0 and ϕi ≥ 0, for all i = 1, 2, . . . ,m, x ∈ Ḡ. �

Theorem 2.3. If the Wiener processes W1, . . . ,Wm are independent, then

m∑
i=1

sup
x

E[ui(x, t)] ≤ e−(c0−M)t

m∑
i=1

‖ ϕi ‖

+
1

c0 −M
[1− e−(c0−M)t]

m∑
i=1

fi(0, 0, . . . , 0),(2.11)

where c0 = min(c1, . . . , cm) and ‖ ϕi ‖= supx | ϕi(x) |. The supremum is taken over
Ḡ.

Proof. We have,

E[

∫ t

0

ui(x, θ)dWi(θ)] = 0, ∀x ∈ Ḡ, t ≥ 0 i = 1, 2, . . . ,m.

Consequently,

∂

∂t
E[ui(x, t)] = ai∇2E[ui(x, t)]− ciE[ui(x, t)] + E[fi(u)].
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The expectations E[u1(x, t)], . . . ,E[um(x, t)] are given by:

ecitE[ui(x, t)] =
m∑
i=1

e−aiλ
2
ktγkiVk(x)

+

∫ t

0

∫
G

e−aiλ
2
k(t−θ)Vk(x)Vk(y)eciθE[fi(u(y, θ))dydθ.

Consider the following simple problem:

dZ(t)

dt
= −(c0 −M)Z(t) +

m∑
i=1

fi(0, 0, . . . , 0)

Z(0) =
m∑
i=1

‖ ϕi ‖ .

It is easy to see that

Z(t) = e−(c0−M)t

m∑
i=1

‖ ϕi ‖ +
1

c0 −M
[1− e−(c0−M)t]

m∑
i=1

fi(0, 0, . . . , 0).

Remembering that the vector f satisfies the Lipschitz condition (2.2), we get the
required result. �

If c0 > M , we can establish the asymptotic stability of the expectations E[ui(x, t)],
i = 1, 2, . . . ,m. In fact, using (2.11), we get

m∑
i=1

sup
x

E[ui(x, t)− u∗i ] ≤ e−(c0−M)t

m∑
i=1

‖ ϕi − ϕ∗i ‖,

where ui and u∗i are solutions of (2.3), with the initial conditions ui(x, 0) = ϕi(x),
u∗i (x, 0) = ϕ∗i (x) and the homogeneous boundary conditions (2.4).

We notice also that the zero solutions of the expectations are also asymptotically
stable, (In this case fi(0, . . . , 0) = 0, i = 1, 2, . . . ,m).

3. FRACTIONAL EPIDEMIC MODEL

In this section, we shall study a fractional epidemic diffusion system of the form:

∂αui(x, t)

∂tα
= ai∇2ui(x, t)− ciui(x, t) + fi(u)

with the boundary conditions (2.4), where 0 < α ≤ 1, ( [12]- [15], [32]). Com-
pare also ( [16]- [19]).
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The integral form of system (12) is given in the form:

ui(x, t) = ϕi(x)

+
1

Γ(α)

∫ t

0

[ai∇2ui(x, t)− ciui(x, t) + fi(u)](t− θ)α−1dθ,(3.1)

where (x, t) ∈ G × [0, b], u = (u1, . . . , um), Γ(·) is the gamma function, 0 < α ≤ 1

and

(3.2)
∂ui(x, t)

∂ν
|∂G= 0, i = 1, 2, . . . ,m.

To solve the problem ((3.1),(3.2)), we set

(3.3) ui(x, t) =
∞∑
k=0

ηki(t)Vk(x),

where

ηki(t)Vk(x) =

∫
G

ui(y, t)Vk(y)dy.

Thus,
dαηki(t)

dtα
= −(aiλ

2
k + ci)ηki(t) +

∫
G

fi(u(y, t))Vk(y)dy.

Using ( [9]), one gets

(3.4) ηki(t) =

∫ ∞
0

ζα(θ)Qik(t
αθ)γkidθ +

∫ t

0

∫ ∞
0

∫
G

Udydθdη,

where
U = αθ(t− η)α−1ζα(θ)Qik((t− η)αθ)Vk(y)fi(u(y, η))

and
Qik(t

αθ) = e−(aiλ
2
k+ci)t

αθ

and ζα(θ) is a probability density function, with the Laplace transform

(3.5)
∫ ∞
0

e−ptζα(t)dt = Eα(−p),

where

Eα(p) =
∞∑
j=0

pj

Γ(1 + αj)

is the Mittag-Lefler function,

γki =

∫
G

ϕi(y)Vk(y)dy.
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Using (3.5), equation (3.4) can be written in the form

ηki(t) = γkiEα[−(aiλ
2
k + ci)t

α]

+

∫ t

0

∫
G

(t− η)α−1Vk(y)fi(u(y, η))Eα[−(aiλ
2
k + ci)t

α]dydη.(3.6)

Substituting (3.6) into (3.3) and remembering that f satisfies the Lipschitz con-
dition (2.2), we get an equation of the type Volterra, which can be solved in the
space (C(Ḡ), ‖ · ‖), see ( [10]).

Let us prove the stability of the solutions of the problem ((3.1),(3.2)).

Theorem 3.1. Let u and u∗ be two solutions of (3.1), with the initial conditions
ui(x, 0) = ϕi(x), u∗i (x, 0) = ϕ∗i (x). Suppose that u and u∗ satisfy the boundary
conditions (3.2). If

m∑
i=1

‖ ϕi(·)− ϕ∗i (·) ‖≤ ε,

then,
m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖≤Mεeλt

for some positive constants M and λ, ‖ ui(·, t) ‖= supx | ui(x, t) |, ε is sufficiently
small positive number.

Proof. According to the Lipschitz condition (2.2) and the properties of the eigen-
functions, eigenvalues and the properties of the Mittag-Lifler function, we get

m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖≤Mε+M

∫ t

0

(t− η)α−1
m∑
i=1

‖ ui(·, η)− u∗i (·, η) ‖ dη

for some constant M > 0. Set

ρ = max
t∈J

[e−λt]
m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖ .

Thus,
m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖ ≤Mε+Mρ

∫ t− 1
λ

0

(t− η)α−1eληdη

+Mρ

∫ t

t− 1
λ

(t− η)α−1eληdη.
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So,

e−λt
m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖≤M [
1

λ
]α[1 +

1

α
]ρ.

Choose λ sufficiently large such that M [ 1
λ
]α[1 + 1

α
] < 1, we get ρ ≤ Mε, for some

constant M > 0. Thus
m∑
i=1

‖ ui(·, t)− u∗i (·, t) ‖≤Mεeλt.

Hence the required result. �

If for some i, say i = 1, | f1(u) |≤ M , for all u = (u1, . . . , um). Then from (3.4),
we can see that

‖ u1(·, t) ‖≤‖ ϕ1(·) ‖ Eα(−c1tα) +
γ

c1
[1− Eα(−c1tα)].

If the recruitment γ = 0 in the model of COVID-19, then it can be proved that

‖ u1(·, t) ‖≤‖ ϕ1(·) ‖ Eα(−c1tα),

which tends to zero as t tends to infinity, ( [20]- [31]).
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