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ON STUDY OF GENERALIZED FORM OF CAMASSAHOLM EQUATION AND
DEGASPERIS-PROCESI EQUATIONS BY REDUCED DIFFERENTIAL

TRANSFORM ALGORITHM

JAVED HUSSAIN

ABSTRACT. In this work, we are concerned with approximate explicit closed-form
solutions of the two highly nonlinear evolution equations modeling several physi-
cal phenomena, in particular, the dynamics of shallow water. Therefore the study
is twofold. Firstly, we have constructed the approximate solution to the Cammasa-
Holm equation subject to some suitable choice of initial data from a suitable choice
of initial condition from Sobelov space of initial data. Secondly, we have obtained
an approximate solution to the Degasperis-Procesi equation. To deal with both
equations we have employed an efficient series solution algorithm, known as the
reduced differential transform Algorithm. The graphs of obtained approximate
solutions turned out to be in agreement with the known abstract results in the
literature.

1. INTRODUCTION

This paper aims to demonstrate that how reduced differential transform algo-
rithm, a well-known series solution method to deal with nonlinear PDEs, can be
applied to famously highly nonlinear integrable equations of two last two decades
i.e. Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation. In par-
ticular, the method allows to construct closed form approximate series solution to
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mentioned equations. The key problem of investigation in this paper is going to
be following,

(1− ∂2x)ut = F (u, ux, uxx, uxxx), (t, x) ∈ R+ × R

u(x, 0) = u0 (x) , x ∈ R,(1.1)

where initial data u0 lives in Sobelov space H3(R), and F is a homogeneous poly-
nomial. There are several ways we can look at Problem (1.1). In particular for
following choice of F the initial value problem (1.1). referred as Generalized form
of Camassa-Holm equation,

F (u, ux, uxx, uxxx) = −3uux + 2uxuxx + uuxxx,

and for following choice of F the initial value problem becomes Generalized Form
of the Degasperis-Procesi equation,

F (u, ux, uxx, uxxx) = 4uux − 3uxuxuxx − uuxxx.

This study gets its motivation from [1, 2020], where the authors studied the ab-
stract global weak existence and uniqueness of problem (1.1) by arguing through
viscosity vanishing method, also it was proved the stability of weak solutions when
solutions are of higher integrability. There is a vast literature available for CH
equation in concrete and abstract setting. One of prominent physical interpreta-
tion of the CH equations is that it models the shallow water equation over flat
base/sheet, but CH equation equations also have applications to cellular Biology.
The peakon behaviour of the CH equation makes it an interesting physical model.
In [3, 1993] and [4, 1994] it was shown that CH equations posses a smooth and
travelling peakon solution. Fokas in [5, 1995] shown that CH equation can also be
treated as member of the Bi-Hamiltonian hierarchy of equations. There is a large
literature available on construction of solition solution of the CH equation. In [6,
2017] Rasin employed Backlund transform method, also Constantin in [10, 2009]
used scattering wave method to study the soliton solution of CH equation. Re-
cently, [Rosen 2020] applied the dressing method to construct the global solution
of CH cuspon equation.

The DP equation is basically is closely related CH equation that was derived
by Dega-Processi [7, 1999] using an asymptotic integrability approach. They also
shown that DP equation possess bi-Hamiltonian structure and have smooth peakon
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solution. Physically DP equation can be treated as an approximation to incom-
pressible Euler equation for the dynamics of shallow water. There has been vari-
ety of studies on DP equation. A travelling wave solution was studied in [8, 2005]
and [9, 2002]. In [12, 2006] Liu studied local well-posedness, global existence
and blow up criterion. The long term behaviour of DP equation was studied
in [11, 2018]. Long in [13, 2020] have recently studied the symmetries of solitary
waves of DP equation.

DP and CH equation have several properties in common and differ by several
aspect. Both equations have same asymptotic accuracy and bi-Hamiltonian struc-
ture. CH equation in reformulation of geodesic flow and diffeomorphic group
cf. [14, 1999]. While there is no geometric derivation for the DP equation. An-
other interesting fact that makes DP equation different from CH equations that the
DP equation has shock peakon shock waves, see [15, 2019], where no such result
is available for CH equation.

2. BRIEF DESCRIPTION OF REDUCED DIFFERENTIAL TRANSFORM ALGORITHM

This section is aimed to introduce the reduced differential transform algorithm
to solve nonlinear evolution equation. We will define RDTA and list its some of its
basic definitions and important properties.

2.1. Definition and properties of differential transform.
Let us start by defining the 1-D reduced differential transform of a smooth (i.e.

C∞(R) function.

Definition 2.1. [2] Suppose function u(t, x) be C∞(R-function and is analytic, then
then the differential transform of u(t, x) is following,

uk(x) =
1

k!

∂ku

∂tk
(t, x)

∣∣
t=0

, k = 0, 1, 2, 3...,

where uk(x) can be treated as the the t-dimensional spectrum transformed function.
The differential inverse transform of uk(x) is defined as follows:

u(t, x) =
∞∑
k=0

uk(x)t
k =

∞∑
k=0

(
1

k!

∂ku

∂tk
(t, x)

∣∣
t=0

)
tk.

Based on above we have the following theorem listing the basic properties of
reduce differential transform,



10106 J. HUSSAIN

Theorem 2.1. [2] For any smooth functions u, v the reduce differential transform of
u and v satisfies following properties,

(i) Linearity: For any linear combination of u and v, i.e w(t, x) = au(t, x) +

bv(t, x), where a, b ∈ R, the reduced differential transform isWk(x) = aUk(x)+

Vk(x), k ∈ N. where uk, vk and wk are differential transforms of u, v and w
respectively.

(ii) If u(t, x) = xmtn then reduce differential transform of u is uk(x) = xmδ(k −
n),, k ∈ N.

(iii) If v(x, t) = xmtnu(x, t) then reduce differential transform of v is vk(x) =

xmuk−n(x), k ∈ N.
(iv) If w(x, t) = u(x, t)v(x, t) then then reduce differential transform of w is,

Wk(x) =
k∑

r=0

Vr(x)Uk−r(x), k ∈ N.

(v) If v(x, t) = ∂r

∂tr
u(x, t) then then then reduce differential transform of v is,

vk(x) =
(k + r)!

k!
uk+r(x), k ∈ N.

(vi) Space derivative of u is invariant under differential transform, more precisely,
if v(t, x) = ∂u

∂x
(x, t) then reduce differential transform of v is vk(x) = ∂uk

∂x
(x).

2.2. Application of differential transform to nonlinear evolution equations:
A generic algorithm.

Consider the following nonlinear evolution equation,

ut(t, x) = Au(t, x) +Bu(t, x) + f(t, u(t, x)),

u(0, x) = h(x),(2.1)

where A is linear operator, B is nonlinear linear operator and f is some linear
smooth function of x. Suppose that variables can be separated i.e. u(t, x) can
be written as product of functions of x and t i.e., u(t, x) = f(x)g(t), where f(x)
and g(t) smooth functions of space and time variables, respectively. Based on the
properties of one dimensional differential transform, the function u(t, x) can be
represented as follows:

u(t, x) =

(
∞∑
i=0

F (i)xi

)(
∞∑
i=0

G(j)tj

)
=
∞∑
k=0

uk(x)t
k,

where uk(x) is called t-dimensional spectrum function of u(t, x).
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Using Definition 2.1 and suitable properties from Theorem 2.1 we may take
differential transform of problem (2.1) we get the following algorithm consisting
of recursive set of equations,

(k + 1)uk+1(x) = Auk(x) +Buk(x) + F (uk(x)), k = 1, 2, 3, ...

u0(x) = h(x),

where Auk(x), Buk(x), and F (uk(x)) are the transformations of the functions
Au(t, x), Bu(t, x), f(t, x) and respectively. Using the above relation one can com-
pute the uk from uk−1, for all k = 1, 2, 3, .. and get sequence of smooth function
(uk(x))

∞
k=0. Then the series solution of the evolution equation (2.1) can be recov-

ered from the following inverse differential transform

ũn(t, x) =
n∑

k=0

uk(x)t
k.

Therefore, the exact solution of the problem is given by

(2.2) u(t, x) = lim
n→∞

ũn(t, x) =
∞∑
k=0

uk(x)t
k.

2.3. Convergence of RDT Algorithm. We now an interesting recent results from
[16, 2020].

Theorem 2.2. The solution series
∑∞

k=0 uk(x)t
k, described in (2.2), converges, if

there exists γ ∈ (0, 1) such that ‖uk+1(x)t
k+1‖ ≤ γ‖uk(x)tk‖, for all k ∈ N ∪ {0}.

Moreover, if
∑∞

k=0 uk(x)t
k converges to u(t, x) then error between the truncated sum∑n

k=0 uk(x)t
k and u(t, x) can be controlled by following inequality,

‖u(t, x)−
n∑

k=0

uk(x)t
k‖ ≤ γn+1

γ − 1
‖u0‖.

3. GENERALIZED FORM OF CAMASSA–HOLM EQUATION

In this we aim to deal with the following Camassa-Holm equation,

ut = utxx − 3uux + 2uxuxx + uuxxx.

u(0, x) = u0(x).
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3.1. RDT Algorithm for Generalized Form of Camassa–Holm Equation.
Consider,

ut = utxx − 3uux + 2uxuxx + uuxxx.

On application of properties of reduced differential transform we get the following
infinite recursive sequence of second order ordinary differential equations,

(3.1) (k + 1)uk+1 = (k + 1)
∂2uk+1

∂x2
− 3Ak + 2Bk + Ck,

where t is dimensional spectrum function and uk(x) is transformed function. Ak, Bk

and Ck are transformed for nonlinear terms, can be given as,

Ak =
k∑

r=0

ur (x)
∂uk−r
∂x

(x) , Bk =
k∑

r=0

∂ur
∂x

∂2uk−r
∂x2

, Mk =
k∑

r=0

ur(x)
∂3uk−r
∂x3

(x) .

Solving this sequence of sequence of differential equations subject to some initial
condition of Sobelov space H3(R) would reveal the solution of the Camassa-Holm
equation.

3.2. Numerical Example.
To explicity construct a solution we propose following initial condition to follow,

u0 = x (4 + 2 sin(x)).

Indeed, u0 ∈ C∞0 (R) (space of smooth function with compact support) so its weak
and strong derivative agree. Hence u and all partial derivatives upto order 3, are
square integrable, therefore, u ∈ H3(R). Using proposed initial condition above
let us compute the first, second and third partial derivatives of it,

∂u0
∂x

= 4 + 2 sin(x) + 2x cos(x),

∂2u0
∂x2

= 4 cos(x)− 2x sin(x),

∂3u0
∂x3

= −6 sin(x)− 2x cos(x).

(3.2)

Let start running algorithm (3.1).
Step k = 0: On substituting k = 0 in relation (3.1)

u1 =
∂2u1
∂x2

− 3A0 + 2B0 + C0.
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From (3.2) and partial derivatives (3.2) we reach at the following second order
differential equations satisfied by u1 as,

u1 =
∂2u1
∂x2

− 3u0
∂u0
∂x

+ 2
∂u0
∂x

∂2u0
∂x2

+ u0
∂3u0
∂x3

u1 =
∂2u1
∂x2

− 3
(
4x(sin(x) cos(x)x− cos2(x) + 2x cos(x) + 4 sin(x) + 5)

)
+

+ 2
(
−4 sin(x) cos(x)x2 + 12 cos2(x)x+ 8 sin(x) cos(x)

−8x sin(x) + 16 cos(x)− 4x)

+
(
−4x(sin(x) cos(x)x− 3 cos2(x) + 2x cos(x) + 6 sin(x) + 3)

)
.

For sake the sake of simplicity we will always take arbitrary constants in the solu-
tion of differential equation equal to 1. On solving (3.2) we get u1 as solution as
follows,

u1 = −16 cos(x)x2 − 12

5
x2 sin(2x)− 12x sin(x) +

24

25
x cos(2x)

−12 cos(x)− 16

125
sin(2x)− 56x+ ex + e−x.

Step k = 1: On substituting k = 1 in (3.1) it follows that u2 satisfies following
differential equation,

(3.3) 2u2 = 2
∂2u2
∂x2

− 3A1 + 2B1 + C1.

To compute solution u2 from above o.d.e, and for this we need to compute A1, B1

and C1 using (3.2). On substituting A1, B1 and C1, in differential equation (3.3),
and solving o.d.e we get following solution,

u2 =
816

25
x3 cos(2x)− 338

5
sin(x)x3 − 22

625
cos(3x) + ex + e−x

+
18

5
x3 sin(3x)− 18

5
x2 cos(3x)− 48

125
x sin(3x) + x2e−x

+x2ex − 2xex cos(x)− 2xe−x cos(x) +
192

5
x2 sin(2x) +

5288

625
x cos(2x)

+
2008

3125
sin(2x)− 7984

125
x sin(x) + 736x+

6125

25
cos(x)x2 + 14 cos(x).

Step k = 2: On substituting k = 2 in (3.1) it follows that u2 satisfies following
differential equation,

(3.4) 3u3 = 2
∂2u3
∂x2

− 3A2 + 2B2 + C2.
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On substituting A2, B2 and C2, in differential equation (3.4), and solving differen-
tial equations we get following solution,

u3

=
4

3
xe−x sin(x)− 1

3
x2 sin(2x)e−x +

14528

75
cos(x)x4 +

28992

125
sin(2x)x4

− 4

3
xex sin(x) +

28

3
xex cos(x) +

7

2
x2 cos(2x)ex +

8

3
x sin(2x)ex

+
1

3
x2 sin(2x)ex − 16x2ex sin(x) +

8

3
x2ex cos(x)− 77

6
x2ex − 1

3
cos(2x)e−x

+
8

3
e−x cos(x)− 19188712112318825041

82463372
x2 sin(2x)− 8

3
ex cos(x) +

5

9
x3e−x

+
8510219998986239

257698037760000
x2 cos(3x)− 1079016733103425529

82433720832000
x3 sin(3x)− 4

3
x3e−x cos(x)

− 4

3
x3ex cos(x) +

29614860501655403

82463372088832
x sin(x)− 752540942421983317

1030792151040000
cos(2x)x3

+
33833072298295297

20615843020800
sin(x)x3 − 354737283648905411

164926744166400
cos(x)x2

− 11780666025263261977

274877906944000000
x cos(2x)− 77

6
x2e−x +

8

3
e−x sin(x)

+
8

3
ex sin(x)− 3

2
xe−x +

4129920485163846803

1080382697600012545
+ x2 sin(4x) +

75456

7225
x3 cos(4x)

− 77814038786637548273

275469319904378880000
x cos(4x)− 528

85
x4 sin(4x) +

4620880867666611294

2199023255552000000
cos(3x)

− 21831199193678856571

4123168604160000000
sin(2x) +

228073544291101107

351843720888200
cos(x) +

1

4
e−x

+
290421834767264544259

117086196
sin(4x) +

1

4
ex +

1

6
x cos(2x)e−x +

8

3
x sin(2x)e−x

− 16x2e−x sin(x) +
7

2
x2 cos(2x)e−x +

28

3
xe−x cos(x)− 487481674314023017

51539552000
x

− 1728

25
cos(3x)x4 +

1

3
x4e−x − 8

5

9
x3ex − 1

6
x cos(2x)ex +

79164837199869

1374385347200
x3.

On substituting the values of u0, u1, u2 and u3 in the series of inverse differential
transform, we recover the exact series solution of the problem (2.1) as follows,
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u(t, x) =
∞∑
k=0

uk(x)t
k,

= x (4 + 2 sin(x)) +

(
−16 cos(x)x2 − 12

5
x2 sin(2x)− 12x sin(x) +

24

25
x cos(2x)

)
t

+

 816
25
x3 cos(2x)− 338

5
sin(x)x3 − 22

625
cos(3x) + ex + e−x + 18

5
x3 sin(3x)

−18
5
x2 cos(3x)− 18

5
x2 cos(3x)− 48

125
x sin(3x) + x2e−x + 5288

625
x cos(2x)

+2008
3125

sin(2x)− 7984
125

x sin(x) + 736x+ 6125
25

cos(x)x2 + 14 cos(x)

 t2

+



4
3
xe−x sin(x)− 1

3
x2 sin(2x)e−x + 14528

75
cos(x)x4 + 28992

125
sin(2x)x4

−4
3
xex sin(x) + 28

3
xex cos(x) + 7

2
x2 cos(2x)ex + 8

3
x sin(2x)ex

+1
3
x2 sin(2x)ex − 16x2ex sin(x) + 8

3
x2ex cos(x)− 77

6
x2ex − 1

3
cos(2x)e−x

+8
3
e−x cos(x)− 19188712112318825041

82463372
x2 sin(2x)− 8

3
ex cos(x) + 5

9
x3e−x

+8510219998986239
257698037760000

x2 cos(3x)− 1079016733103425529
82433720832000

x3 sin(3x)− 4
3
x3

e−x cos(x)− 4
3
x3ex cos(x) + 29614860501655403

82463372088832
x sin(x)− 752540942421983317

1030792151040000

cos(2x)x3 + 33833072298295297
20615843020800

sin(x)x3 − 354737283648905411
164926744166400

cos(x)x2

−11780666025263261977
274877906944000000

x cos(2x)− 77
6
x2e−x + 8

3
e−x sin(x)

+8
3
ex sin(x)− 3

2
xe−x + 4129920485163846803

1080382697600012545
+ x2 sin(4x) + 75456

7225
x3 cos(4x)

− 77814038786637548273
275469319904378880000

x cos(4x)− 528
85
x4 sin(4x) + 4620880867666611294

2199023255552000000
cos(3x)

−21831199193678856571
4123168604160000000

sin(2x) + 228073544291101107
351843720888200

cos(x) + 1
4
e−x

+290421834767264544259
117086196

sin(4x) + 1
4
ex + 1

6
x cos(2x)e−x + 8

3
x sin(2x)e−x

−16x2e−x sin(x) + 7
2
x2 cos(2x)e−x + 28

3
xe−x cos(x)− 487481674314023017

51539552000
x

−1728
25

cos(3x)x4 + 1
3
x4e−x − 85

9
x3ex − 1

6
x cos(2x)ex + 79164837199869

1374385347200
x3



t3...·

4. GENERLIZED FORM OF DEGASPERIS-PROCESI EQUATION

In this section we aim to deal with following version of Degasperis-Procesi Equa-
tion

(1− ∂x)2 ut = 4uux − 3uxuxuxx − uuxxx
u(0, x) = u0(x),(4.1)

where u0 ∈ H3(R).
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4.1. RDT Algorithm for Generalized form of Degasperis-Procesi Equation.
Let us rewrite evolution equation (4.1), in following following form,

ut = 4utxx + uux − 3uxuxx − uuxxx
u(0, x) = u0(x).(4.2)

On application of reduced differential transform properties, we get the following
infinite set of recursive second order differential equations,

(4.3) (k + 1)uk+1 = (k + 1)
∂2uk+1

∂x2
+ 4Ak − 3Bk − Ck.

uk(x) is transformed function and dimensional spectrum function is t, and

Ak =
k∑

r=0

uruk−r, Bk =
k∑

r=0

∂

∂x
ur

∂2

∂x2
uk−r, Sk =

k∑
r=0

ur
∂3

∂x3
uk−r.

4.2. Numerical Example. Let us consider the following initial condition,

u0 = (x+ 1) ex.

Its not difficult to verify u0 ∈ C∞0 (R) so the weak and strong derivatives of u0
agree. Hence u0 and its partial derivatives up to order 3 are square integrable,
therefore, u0 ∈ H3(R). Using proposed initial condition above let us compute the
first, second and third partial derivatives of it,

∂u0
∂x

= (x+ 2) ex,
∂2u0
∂x2

= (x+ 3) ex,
∂3u0
∂x3

= (x+ 4) ex.(4.4)

Step k = 0: On substituting k = 0 and above partial derivatives of u0 from (4.4),
in (4.3) it follows that u1 satisfies following 2nd order o.d.e.

u1 =
∂2u1
∂x2

+ 4A0 − 3B0 − S0 =
∂2u1
∂x2

+ 4u0
∂u0
∂x
− 3

∂u0
∂x

∂2u0
∂x2

− u0
∂3u0
∂x3

=
∂2u1
∂x2

+ 4e2x(x+ 1)(2 + x)− 3e2x(2 + x)(3 + x)− e2x(x+ 1)(4 + x)

=
∂2u1
∂x2

− 2(4x+ 7)e2x.(4.5)

As previously, for sake simplicity we will take all arbitrary constants as in solution
of o.d.es equal to 1. On solving o.d.e (4.5) we get following

u1 = ex + e−x +
8

3
e2xx+

10

9
e2x.
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Step k = 1: On substituting k = 1 in relation (4.3) we get following o.d.e satisfied
by u2,

(4.6) 2u2 = 2
∂2u2
∂x2

+ 4A1 − 3B1 − C1.

In order to compute u2 explicitly we need to compute A1, B1 and C1 respectively.
To do so let use the set of equations (4.4),

A1 =u0
∂u1
∂x

+ u1
∂u0
∂x

=

(
16

3
x2 +

34

3
x+

64

9

)
e3x +

(
11

3
x+ 1

)
e2x + ex + e−x − 1

B1 =
∂u0
∂x

∂2u1
∂x2

+
∂u1
∂x

∂2u0
∂x2

=

(
16x2 +

172

3
x+

404

9

)
e3x + (2x+ 1) e2x − 1

S1 =u0
∂3u1
∂x3

+ u1
∂3u0
∂x3

=

(
72

3
x2 +

222

3
x+

136

3

)
e3x + (6x+ 15) e2x + 3.

Substituting A1, B1 and C1 in (4.6) and solving the corresponding o.d.e gives fol-
lowing solution u2,

2u2 = 2
∂2u2
∂x2

+ 4A1 − 3B1 − S1

u2 =

(
91

288
x2 +

59

8
x+

817

288

)
e3x +

(
79

27
− 32

57
x

)
e2x + (1− x)ex + (1 + x)e−x + 1.

Step k = 2: Let us switch k = 2 in (4.3). Indeed, it follows that u3 satisfies
following 2nd order o.d.e

3u3 = 3
∂2u3
∂x2

+ 4A2 − 3B2 − C3.

To compute u3 explicitly, let first compute A2, B2 and C2 from (4.4),

A2 =u0
∂u2
∂x

+ u1
∂u1
∂x

+ u2
∂u0
∂x

=

(
91

72
x3 +

13229

288
x2 +

32483

432
x+

32483

432

)
e4x + 2 (4x+ 3) e3x + e2x + ex − e−2x,

B2 =
∂u0
∂x

∂2u2
∂x2

+
∂u1
∂x

∂2u1
∂x2

+
∂u2
∂x

∂2u0
∂x2

=

(
91

24
x3 +

5067

32
x2 +

21060588

49248
x+

12920665

49248

)
e4x + 4 (4x+ 5) e3x + e2x
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−
(
112

19
x+

2036

171

)
ex − e−2x

S2 =u0
∂3u2
∂x3

+ u1
∂3u1
∂x3

+ u2
∂3u0
∂x3

=

(
637

72
x3 +

83591

288
x2 +

32635236

49248
x+

16654963

49248

)
e4x + 6 (4x+ 7) e3x + e2x

−
(
32

57
x2 − 2036

171
x− 1390

27

)
ex − e−2x

Using A2, B2 and C2 in 4.2 and solving the corresponding o.d.e, we get the follow-
ing solution,

3u3 =3
∂2u3
∂x2

+ 4A2 − 3B2 − S2

u3 =

(
91

270
x3 +

1715292450

138510000
x2 +

33214478520

138510000
x+

594700171

138510000

)
e4x +

(
5

3
x+ 2

)
e3x

−
(

16

513
x3 +

223

513
x2 − 194

81
x− 1

)
ex + e−x.

Finally, substituting the u0, u1, u2 and u3 in inverse differential transform series,
we recover the following solution of Degasperis-Procesi equation (4.2),

u (x, t) =
n∑

k=0

uk(x)t
k = (x+ 1) ex +

(
ex + e−x +

8

3
e2xx+

10

9
e2x
)
t

+

((
91

288
x2 +

59

8
x+

817

288

)
e3x +

(
79

27
− 32

57
x

)
e2x + (1− x)ex + (1 + x)e−x + 1

)
t2

+

( (
91
270
x3 + 1715292450

138510000
x2 + 33214478520

138510000
x+ 594700171

138510000

)
e4x +

(
5
3
x+ 2

)
e3x

−
(

16
513
x3 + 223

513
x2 − 194

81
x− 1

)
ex + e−x

)
t3... ·

4.3. Discussion on Graphs of solution of Degasperis-Procesi and CAMASSA-
HOLM Equation.
Consider the graph of u(t, x) for (t, x) ∈ [0, 1] × [0, 1] (i.e. unit rectangle) up to

order 3. Let us treat the Degasperis-Procesi and CAMASSAHOLM Equations as
model for dynamics of shallow water over flowing through cross section of rect-
angular of channel. Moreover, we treat u(t, x) as trajectory of velocity of flow of
shallow, where x denotes the space coordinate/ location along the channel axis
and t denotes the time. We may also assume that there is no friction and Cori-
olis forcing factor in flow. The graphs shows that as time passes the velocity of
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the flow is increasing/ accelerating smoothly, physically water might experience
smooth splashes.

If we observe u(t, x) for (t, x) ∈ [ − 100, 100]2. Keeping in view the notation
and interpretation same as above, the following second Figure (right) can be in-
terpreted as that the solution blow up in finite time i.e., velocity flow is smoother
in channel initially then it became singular in finite period of time. This result/
observation is in complete agreement with the conclusion of Proposition 3.1 of
[1]. Moreover, well-known peakon and shock wave behaviour is also observed for
both equations.

FIGURE 1. Behaviour of Solution of CAMASSAHOLM on small (left)
and larger domains (right)

FIGURE 2. Behaviour of Solution of DEGASPERIS-PROCESI on small
(left) and larger domains (right)
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