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STUDY OF THE DYNAMIC RESPONSE OF THE SOIL-PILE BEHAVIORAL
MODEL UNDER AXIAL AND LATERAL LOAD COUPLING

IBRAHIMA MBAYE1, MAMADOU DIOP, ALIOU SONKO, AND MALICK BA

ABSTRACT. This work aims to extend and improve our previous study on mathe-
matical and numerical analysis of stationary Winkler model under axial and lateral
load coupling. In this paper a dynamic response of Winkler model is considered.
On the one hand we establish the existence and the uniqueness of the solution of
the problem by using the results of spectral theory and the Lax-Milgram theorem
and on the other hand the finite element method is used to determinate the nu-
merical results. Furthermore, the influence of soil parameter Kp and the length l

of the pile on the displacement is studied numerically at any time tn.

1. INTRODUCTION

Deep foundations on piles, widely used in the construction of structures, are ex-
periencing increasing development. The progress made in dimensioning methods,
technological innovations in the construction of piles, the increasingly mediocre
quality of the land left to builders and the large dimensions of the structures are
at the origin of this development. In practice, these structures are dimensioned
in order to take both axial and lateral forces and moments. Nowadays, although
complex, the study of the mechanical behavior of piles has already been the sub-
ject of several research works [1–8]. These have resulted in modeling and cal-
culation methods used for the design of such structures. Numerical methods by
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finite elements or by finite difference make it possible to solve soil-pile interaction
problems with more rigor while including the effects of loadings on the interface,
of the inclination of the piles and of the stiffness of the soil. In our previous
studies [6,7], we worked on stationary behavioral models of soil-pile interaction.
So, this present contribution on a dynamic model of soil-pile interaction aims pri-
marily to establish first by appropriate mathematical tools ( the results of spectral
theory and the Lax-Milgram theorem) the existence and uniqueness of the solution
of the problem posed and then to present a rigorous numerical method based on
the finite element method and Newmark’s method in order to determine the dis-
placements of the structure at each instant by taking into account a large number
of parameters relative to piles and soils.

2. PRESENTATION OF THE MODEL

The dynamic response of Winkler model is defined as follows.
Find: u : Ω =]0, l[×R∗+ → R such that:

(2.1)



m
∂2u(z, t)

∂t2
+ EpIp

∂4u(z, t)

∂z4
+Kpu(z, t) = P (z, t) ∀t > 0,∀z ∈]0, l[,

u(z, 0) = u0(z) ∀ z ∈]0, l[,

∂u(z, 0)

∂t
= u1(z) ∀ z ∈]0, l[,

u(0, t) =
∂u(0, t)

∂z
= 0 ∀t > 0,

∂2u(l, t)

∂z2
= M

EpIp
∀t > 0,

∂3u(l, t)

∂z3
= H

EpIp
∀t > 0.

Here, u(z, t) is the longitudinal deflection of the beam in terms of m, z is the space
coordinate measured along the length of the beam in m, t is the time in s, EpIp

is the flexural rigidity of the beam in (N.m2), m is the mass per unit length of
the beam in (kg/m), P (z, t) is the applied external load per unit length in (N/m),
Kp is the spring constant (the first parameter) of the soil per unit beam length in
terms of (N/m2 ), H the head trenchant effort of the free pious in (N) and M the
bending moment in (N.m). We see the description of the soil-pile interaction in
the following figure 1.
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FIGURE 1. Pile under combined loading (axial and lateral).

First, we are interested in the existence and uniqueness of the solutions to the
problem (2.1).

2.1. Existence of a Hilbert basis of L2(Ω). Since the (2.1) problem can be asso-
ciated with an eigenvalue problem, we will solve it using a Hilbert basis of L2(Ω).
Thus demonstrating the existence of a Hilbert basis of L2(Ω) amounts to verifying
the hypotheses of the [9, Theorem 7.2.8].

Consider the following problem:

(2.2)



EpIp
d4u(z)

dz4
+Kpu(z) = P (z) ,∀z ∈]0, l[,

u(0) =
du(0)

dz
= 0,

d2u(l)

dz2
= M

EpIp
,

d3u(l)

dz3
= H

EpIp
.
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We pose w(z) = u(z)− H
6EpIp

z3 + ( Hl
2EpIp

− M
2EpIp

)z2 and (2.2) becomes the following
homogenous boundary problem:

(2.3)



EpIp
d4w(z)

dz4
+Kpw(z) = G(z) , ∀z ∈]0, l[,

w(0) =
dw(0)

dz
= 0,

d2w(l)

dz2
= 0,

d3w(l)

dz3
= 0.

with G(z) = P (z)−Kp

(
H

6EpIp
z3 − ( Hl

2EpIp
− M

2EpIp
)z2
)
. First we prove that (2.3) ad-

mits a unique solution.

Lemma 2.1. According to the Lax-Milgram theorem the problem (2.3) admits a
unique solution w ∈ V = {v ∈ H2(Ω); v(0) = v′(0) = 0} verifying the following
variational formulation:

a(w, v) = L(v) ∀ v ∈ V

with

a(w, v) = EpIp

∫ l

0

d2w(z)

dz2

d2v(z)

dz2
dz +Kp

∫ l

0

w(z)v(z)dz

and

L(v) =

∫ l

0

G(z)v(z)dz.

Proof. We define the space L2(Ω) provided with the scalar product:

〈f, v〉 =

∫ l

0

f(z)v(z)dz for all f, v ∈ L2(Ω).

and the space V with the reduced norm

‖w‖V = ‖w(2)‖L2(Ω) for allw ∈ V.

Space V is a closed subspace of H2(Ω) therefore it is a sobolev space in addition

|a(u, v)| ≤ (EpIp +Kpl
4)‖u‖V ‖v‖V

implies a is continuous, we also have

a(u, u) ≥ EpIp‖u‖2
V
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then a is coercive and L is linear by definition and the inequality

|L(v)| ≤ l2‖G‖L2(Ω)‖v‖V

shows it is continuous. Therefore, the problem (2.3) admits a unique solution
according to Lax-Milgram theorem. �

So we can define our operator as follows:

(2.4)
L : L2(Ω) → V

g 7→ Lg

with Lg the solution of the equation (2.3). In other words, the operator L is
defined by:

(2.5) Lg ∈ V such that a(Lg, v) = 〈g, v〉L2(Ω) for all v ∈ V.

Now, the objective is to show that the operator L thus defined is linear continuous,
self-adjoint, compact and definite-positive.

Lemma 2.2. The operator L defined in (2.4) is continuous linear, self-adjoint, com-
pact and definite-positive.

Proof.

I) Linearity of L
The linearity of L defined in (2.4) is a consequence of lemma 2.1.

II) Continuity of L
By taking v = Lg in (2.5), we obtain thanks to the coercivity of a and the
continuous injection of V into L2(Ω) and from L2(Ω) to L1(Ω):

EpIp‖Lg‖2
V ≤ a(Lg,Lg) = 〈g,Lg〉L2(Ω)

now

〈g,Lg〉L2(Ω) ≤ ‖g‖L2(Ω)‖Lg‖L2(Ω) ≤ l2‖g‖L2(Ω)‖Lg‖V

and so we get

EpIp‖Lg‖2
V ≤ l2‖g‖L2(Ω)‖Lg‖V

=⇒ ‖Lg‖V ≤
l2

EpIp
‖g‖L2(Ω)

hence the continuity of L.
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III) Self-adjoint of L
By taking v = Lh with g, h ∈ L2(Ω) in (2.5), we obtain thanks to the sym-
metry of a:

〈g,Lh〉L2(Ω) = a(Lg,Lh)

= a(Lh,Lg) = 〈h,Lg〉L2(Ω).

IV) Compactness of L
Let I : V → L2(Ω), g 7→ Ig = g the injection operator and Lg the operator
defined in (2.4). So we have: I ◦ L defined from L2(Ω) to value in L2(Ω).

Lg ∈ V, ∀g ∈ L2(Ω)⇒ Lg = (I ◦ L)g, ∀g ∈ L2(Ω)

and since I is compact then L is compact as a compound of compact and
continuous operator.

V) L is definite-positive
It comes from the coercivity of a, indeed:

〈g,Lg〉L2(Ω) = a(Lg,Lg) ≥ EpIp‖Lg‖2
V > 0,∀0 6= g ∈ L2(Ω).

�

The hypotheses of the [9, Theorem 7.2.8] are verified therefore the eigenvalues
of L form a sequence (λk)k≥1 of real numbers strictly positive which tend to 0, and
there exists a Hilbertian basis (uk)k≥1 of V formed by eigenvectors of L. Therefore,
we get the spectral decomposition of any element v of V .

3. VARIATIONAL FORMULATION OF THE PROBLEM

We obtain the following variational formulation of the problem (2.1), find u(t) :

]0, T [→ V such that:

(3.1)

{
d2

dt2
〈u(t), v〉L2(Ω) + a(u(t), v) = 〈P (t), v〉L2(Ω),∀v ∈ V, 0 < t < T

u(t = 0) = u0; du
dt

(t = 0) = u1

with

V = {v ∈ H2(Ω); v(0) = v′(0) = 0};

P (t) :]0, T [→ L2(Ω);

a(u(t), v) = EpIp

∫
Ω

u′′(z, t)v′′(z) dz +Kp

∫
Ω

u(z, t)v(z) dz;



STUDY OF THE DYNAMIC RESPONSE OF THE SOIL-PILE. . . 10287

L(v) = 〈P (t), v〉L2(Ω) =

∫
Ω

P (z, t)v(z) dz − H

EpIp
v(l) +

M

EpIp
v′(l).

Remark 3.1. We denote by u(z, t) the value u(t)(z), P (z, t) the value P (t)(z).

3.1. Semi-discretization in space. Let Nh be the number of interior points of the
discretization and h = l

Nh+1
the discretization step. We construct an internal vari-

ational approximation by introducing a subspace Vh of V of finite dimension. Vh
will be a finite element subspace P3 on the discretization. The semi-discretization
of (3.1) is therefore the following variational approximation: We look for uh(t)

function of ]0, T [ with values in Vh such that:

(3.2)

{
d2

dt2
〈uh(t), vh〉L2(Ω) + a(uh(t), vh) = 〈Ph(t), vh〉L2(Ω),∀vh ∈ Vh, 0 < t < T

uh(t = 0) = u0,h; duh

dt
(t = 0) = u1,h

,

where u0,h ∈ Vh is an approximation of the initial data u0 and u1,h ∈ Vh is also an
approximation of the initial data u1.

We introduce the basis (w(i), z(j)) of Vh [7] for all 1 ≤ i, j ≤ Nh + 1. We are
looking for uh(t) in the form

uh(t) =

Nh+1∑
i=1

Uh
i w

(i)(z) +

Nh+1∑
j=1

(Uh
j )′z(j)(z).

We denote by Uh the vector of coordinates of uh in the same way we have:

u0,h(t) =

Nh+1∑
i=1

U0,h
i w(i)(z) +

Nh+1∑
j=1

(U0,h
j )′z(j)(z),

u1,h(t) =

Nh+1∑
i=1

U1,h
i w(i)(z) +

Nh+1∑
j=1

(U1,h
j )′z(j)(z),

where, U0,h denotes the vector of coordinates of u0,h and U1,h denotes the vector
of coordinates of u1,h and (3.2) becomes for all 1 ≤ i, j ≤ Nh + 1

(3.3)

{
d2

dt2
〈uh(t), w(i)〉L2(Ω) + a(uh(t), w(i)) = 〈fh(t), w(i)〉L2(Ω),∀0 < t < T

d2

dt2
〈uh(t), z(j)〉L2(Ω) + a(uh(t), z(j)) = 〈fh(t), z(j)〉L2(Ω),∀0 < t < T

.
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Hence, according to (3.3) the variational approximation (3.2) is equivalent to
the following linear system of ordinary differential equations with constant coeffi-
cients:

(3.4)

{
Mh

d2Uh

dt2
+KhU

h = Bh

Uh(0) = U0,h; dUh

dt
(0) = U1,h

.

The mass matrix is defined by:

Mh =

(
M11 M12

M21 M22

)

with

M11 = (〈w(i), w(j)〉)1≤i,j≤Nh+1;M12 = (〈z(i), w(j)〉)1≤i,j≤Nh+1;

M21 = (〈w(i), z(j)〉)1≤i,j≤Nh+1;M22 = (〈z(i), z(j)〉)1≤i,j≤Nh+1.

The stiffness matrix is defined by:

Kh =

(
K11 K12

K21 K22

)

with

K11 = (a(w(i), w(j)))1≤i,j≤Nh+1;K12 = (a(z(i), w(j)))1≤i,j≤Nh+1;

K21 = (a(w(i), z(j)))1≤i,j≤Nh+1;K22 = (a(z(i), z(j)))1≤i,j≤Nh+1;

and the matrix of the second member is defined by:

Bh =

(
B1

B2

)

with

B1 = (L(w(i)))1≤i≤Nh+1andB2 = (L(z(j)))1≤j≤Nh+1.
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3.2. Total discretization in space-time. We decompose the time interval [0, T ]

into N time step ∆t = T
N

, we set tn = n∆t for n ∈ {0, 1 . . . , N} and we denote by
Uh
n the approximation of Uh(tn). To calculate numerically approximate solutions

of (3.4) we use the following Newmark time-stepping method:

(3.5)


MhÜ

h
n+1 +KhU

h
n+1 = Bh

n+1

U̇h
n+1 = U̇h

n + ∆t
(

(1− δ)Üh
n + δÜh

n+1

)
Uh
n+1 = Uh

n + ∆tU̇h
n + (∆t)2

2

(
(1− 2θ)Üh

n + 2θÜh
n+1

) .

Here, the real parameters δ and θ will be fixed as follows 0 ≤ δ ≤ 1; 0 ≤ θ ≤ 1
2

[9],
∆t is the time-step fixed later. So inserting the formula for Un+1 into MhÜ

h
n+1 +

KhU
h
n+1 = Bh

n+1 at time tn+1 we obtain from (3.5) the following scheme
Üh
n+1 = (Mh + θ(∆t)2Kh)

−1
(
Bh

n+1 −Kh[Uh
n + ∆tU̇h

n + (∆t)2

2
(1− 2θ)Üh

n ]
)

U̇h
n+1 = U̇h

n + ∆t
(

(1− δ)Üh
n + δÜh

n+1

)
Uh
n+1 = Uh

n + ∆tU̇h
n + (∆t)2

2

(
(1− 2θ)Üh

n + 2θÜh
n+1

)
.

The acceleration

Üh
n =M−1

h (Bh
n −KhU

h
n )

follows from the equation MhÜ
h
n + KhU

h
n = Bh

n. Knowing Uh
n , U̇

h
n , Ü

h
n we find

Uh
n+1, U̇

h
n+1, Ü

h
n+1.

4. NUMERICAL SIMULATION

the calculation of the coefficients of the matricesMh, Kh and Bh is carried out
in the same way as in [7]. The parameters of simulation [8,10] are as follows:

TABLE 1. Parameters of simulation

l(m) EpIp(MN.m2) Kp(kN/m
2) P (kN/m) m(kg/m)

20 3000 100 200 48.2
20 3000 552 200 48.2
20 3000 1103 200 48.2
40 3000 87 200 48.2
40 3000 437 200 48.2
40 3000 874 200 48.2
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And we choose T = 1s, dt = 0.01s, δ = 0.6 and θ = 0.4 for the Newmark Scheme.
We obtain the following responses of the pile:
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FIGURE 2
Behaviour of the pile of length l = 20m

at t25,t50, t75 and t100 for Kp = 100
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FIGURE 3
Behaviour of the pile of length l = 20m

at t25,t50, t75 and t100 for Kp = 552
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FIGURE 4
Behaviour of the pile of length l = 20m

at t25,t50, t75 and t100 for Kp = 1103
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FIGURE 5
Behaviour of the pile of length l = 40m

at t25,t50, t75 and t100 for Kp = 87
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FIGURE 6
Behaviour of the pile of length l = 40m

at t25,t50, t75 and t100 for Kp = 437
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FIGURE 7
Behaviour of the pile of length l = 40m

at t25,t50, t75 and t100 for Kp = 874

5. RESULTS AND DISCUSSIONS

We observe from figures 2,3 and 4 that the deformation of the pile depends on
soil parameter Kp at any time tn. And the deformation at the head of the pile is
more important than inside. Figures 5,6 and 7 show that if l increases and Kp

decreases the shape of the deflection changes slightly but we still note a decrease
in displacement when the number of iterations N in time increases. In addition,
the deformation is significant throughout the pile. In the previous studies [6,7] we
have established in the case of the stationary model of pile under axial and lateral
load coupling that to reduce the deformations of the pile it is necessary to increase
the parameter Kp of the soil. In this work, we also establish that at each moment
by increasing the parameter of the soil the deformation of the pile decreases.

6. CONCLUSION

In this work, we use on the one hand the tools of spectral theory and Lax-
Milgram theorem to prove the existence and uniqueness of the solution and on
the other hand we use finite element method to determine an approximate so-
lution to partial differential equation. We observe that when the soil parameter
Kp increases then the displacement of pile decreases even if the number of itera-
tions N in time increases. This work confirms and reinforces the previous results
obtained in the analysis of the deflection in the stationary case.
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