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DEFENSIVE ALLIANCE DIFFERENCE SECURE SETS OF A PATH

SUNITA PRIYA D’SILVA1, BADEKARA SOORYANARAYANA, AND KUNJARU MITRA

ABSTRACT. Let G = (V,E) be a simple connected graph. A non-empty subset S of
V is called a defensive alliance of G if for every v ∈ S, |N [v] ∩ S| ≥ |N [v]− S|. Let
f : V (G) → {1, 2, 3, . . . , |V |} be a bijection. A subset S ⊆ V is called a difference
secure set of G with respect to f if for all u, v ∈ S, there is a w ∈ S such that
|f(u) − f(v)| = f(w) if and only if uv ∈ E. A defensive alliance S of G which is
also a difference secure set is called defensive alliance difference secure set (ad-set).
In this paper, we initiate the study of various types of ad-sets and compute the
minimum cardinality of each set, particularly for paths.

1. INTRODUCTION

All the graph considered in this paper are simple, connected and finite. For a
graph G = (V,E), S is a non-empty subset of V (G), 〈S〉 denotes the subgraph of
G induced by S and S = V − S. Let a1 be the graph property satisfied by atleast
one subset S among the varieties of subsets of V (G). Using the a1 graph property
4 different types of sets are obtained and is defined in Table 1:
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TABLE 1. Varieties of sets with a1 property

Sets Condition for the sets
a1-set S should satisfies the a1-property.
a∗1-set Both S and S should satisfies the a1-property.

A1-set
S should satisfies the a1-property and
S should not satisfies the a1- property.

A∗1-set Both S and S should not satisfies the a1-property.

Let a2 be one more property satisfied by any subset of varieties of subsets of
V (G). If any subset has to satisfy both a1 and a2 property then we get 42 varieties
of a1a2-sets of G as shown in Table 1:

TABLE 2. Varieties of sets with a1 and a2 properties

a1a2-set a1a
∗
2-set a1A2-set a1A

∗
2-set.

a∗1a2-set a∗1a
∗
2-set .a∗1A2-set a∗1A

∗
2-set

A1a2-set A1a
∗
2-set A1A2-set A1A

∗
2-set

A∗1a2-set A∗1a
∗
2-set A∗1A2-set A∗1A

∗
2-set.

Similarly, with a1, a2 and a3 properties we will have 43 different types of a1a2a3-
sets of G. In general, with a1, a2, a3, . . . , ak properties we will get 4k different types
of a1a2a3 . . . ak-sets of G. The properties are studied for 2n subsets of V (G) of G
having order n. We make the study more meaningful by excluding null set and
whole set from the subsets of V (G). Hence, we study the properties for 2n − 2

subsets of V (G). A a1a2-set is said to be a minimal a1a2-set of G if none of its
proper subsets are a1a2-set of G. The minimum cardinality of a minimal a1a2-set
of G is called lower a1a2 number and is denoted by la1a2(G).

Let G = (V,E) be a graph. If v ∈ V and S ⊆ V , then N(v) = {u ∈ V : uv ∈
E}, N [v] = N(v)∪{v}, N(S) =

⋃
v∈S

N(v) and N [S] = N(S)∪S. A defensive alliance

is a subset S of V such that v ∈ S implies |N [v] ∩ S| ≥ |N [v]− S|. The vertices of
N [v]−S as attackers of v and those of N [v]∩S as defenders of v. Thus, for any v in
a defensive alliance, there are atleast as many defenders as there are attackers, and
any attack on a single vertex can be defended. The studies on defensive alliance
are included in [2,3,5]. We recall the following for the immediate reference:
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Theorem 1.1. [5] The subgraph induced by a minimal defensive alliance set of a
connected graph G is connected.

Theorem 1.2. [5] For any graph G, a(G) = 1 if and only if there exists a vertex
v ∈ V such that deg(v) ≤ 1.

Remark 1.1. For a path Pn, any vertex vi ∈ V (G) with deg(vi) = 2 and a subset
S ⊂ V (G), then S = {vi} is not defensive alliance.

A graph G is a difference graph if there is a bijection f from V to a set of positive
integers S such that xy ∈ E if and only if |f(x) − f(y)| ∈ S. The more research
work on difference graphs can be found in [1, 4, 7]. Now we define difference
secure number as follows: Let f : V (G)→ {1, 2, 3, . . . , |V |} be a bijection. A subset
S ⊆ V is called a difference secure set of G with respect to f if for all u, v ∈ S, there
is a w ∈ S such that | f(u)− f(v) |= f(w) if and only if uv ∈ E. Among all such f
the maximum cardinality of a difference secure set is called difference secure number
of G and it is denoted by DSN(G).

B. Sooryanarayana et.al in [6] introduced the neighbourhood resolving sets of
a graph and studied various types of nr-set. Likewise, for a graph G we define
ad-set if S is defensive alliance difference secure set. In alliances the number of
defendable members who are able to defend immediately is decided by the codes
assigned to them. The difference of the codes assigned to them also occurs if the
members of the alliance are neighbours and those members will always be able
to defend without delay in time. If not, codes does not exist and members do not
defend.

Remark 1.2. For any graph G = (V,E), the singleton subset S = {v}, v ∈ V is
always difference secure set.

Remark 1.3. For a connected graph G with order n ≥ 2, the subset S ⊂ V (G) with
|S| = 2 is always a difference secure set.

Proof. Let S = {v1, v2} be a subset of V (G) and f : V → {1, 2, 3, . . . , n} be the
labeling function. We have two possibilities, either v1 is adjacent to v2 or not. If v1
is adjacent to v2, then take f(v1) = 2f(v2) or else take f(v1) 6= 2f(v2). In both the
ways S is a difference secure set. �

Remark 1.4. For any a > 0, the difference secure set S ⊂ V (G) for any triangle free
graph G(n ≥ 3), cannot contain a subset with labels {a, 2a, 3a}.
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Proof. If possible, let f(vi) = a, f(vj) = 2a and f(vk) = 3a for some vi, vj, vk ∈
S, then 〈{vi, vj, vk}〉 ∼= C3, a contradiction to the fact that G is a triangle free
graph. �

Remark 1.5. For any path Pn with difference secure set S, if d ∈ f(S), then the set
{x, x+ d, x+ 2d} * f(S), for x > d.

Proof. Let f : V (Pn) → {1, 2, 3, . . . , n} be the labeling function and S ⊂ V (Pn).
Consider the subset {vi, vj, vk, vl} ⊂ S. Let f(vi) = x, f(vj) = x+d, f(vk) = x+2d,
f(vl) = d. Suppose, if the set {x, x+ d, x+ 2d} ⊆ f(S), then |f(vj)− f(vi)| = d =

f(vl) = |f(vk)− f(vj)| ⇒ the vertices vi, vk, vl are adjacent to vj; a contradiction to
the fact that deg(vj) ≤ 2 in Pn. �

Theorem 1.3. [8] For a path Pn of order n, DSN(Pn) =
⌈
n
2

⌉
+ 1.

Theorem 1.4. [8] For n ≥ 11, the graph Pn cannot have both sets S and S as
difference secure simultaneously.

Observation 1.5. For a graph Pn, 2 ≤ n ≤ 10, there exits a set S for which both S
and S are difference secure.

2. ad-sets OF DIMENSION ONE

Theorem 2.1. For any integer n, lad(G) = la∗d(G) = 1 if, and only if, δ(G) = 1.

Proof. Let S be a subset of V (G). From Remark 1.2, the singleton set is always
difference secure set and hence a d-set. From Theorem 1.2, S = {v} is a defensive
alliance whenever deg(v) = 1. Then S is a set of remaining n − 1 vertices also
form a defensive alliance. The minimum cardinality of minimal a-set, a∗-set is
one. Hence, lad(G) = la∗d(G) = 1. On the otherhand, let G be a graph with
lad(G) = la∗d(G) = 1. Then there exist singleton set S = {v} which satisfies a-set,
a∗-set and d-set properties. If S is defensive alliance then {v} must be a pendant
vertex. Hence, δ(G) = 1. �

Theorem 2.2. For any integer n,

laD(G) = la∗D(G) =

{
does not exist, for n = 2

1, for n ≥ 3

if, and only if, G is a triangle free graph with δ(G) = 1.
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Proof. Let G be a triangle free graph with δ(G) = 1 and S ⊂ V (G). From Theo-
rem 2.1, we proved that for any graph G, S = {v1}, where v1 is a pendant vertex
is a a-set and a∗-set. Consider a labeling function f : V (G) → {1, 2, 3, . . . , n}. For
n = 2, S = {v1} with f(v1) = 1 and f(v2) = 2. For n = 3, G ∼= P3. Take S = {v1}
with f(v1) = 1 and f(S) = {2, 3}. For n ≥ 4, if S = {v1}, then from Remark 1.4
and Remark 1.5, C3 ⊆ 〈S〉. Therefore, S is not a difference secure set since G is a
triangle free graph. Hence, S is a D-set. Therefore, laD(G) = la∗D(G) = 1.

Conversely, let G be a graph with laD(G) = la∗D(G) = 1. Then there exist
singleton set S = {v} which is a a-set, a∗-set and D-set. If S is a defensive alliance
then {v} must be a pendant vertex. Hence, δ(G) = 1. Since |S| = n − 1, it will
contain a labels of the form {a, 2a, 3a} for any a > 0. As S is not a difference
secure set, the vertices of 〈S〉 cannot be labeled {a, 2a, 3a} for any a > 0. This
implies G must be a triangle free graph. �

3. ad-sets OF A PATH

From Theorem 2.1 and Theorem 2.2, the path Pn is a triangle free graph and
δ(Pn) = 1. Hence, we have the following corollary:

Corollary 3.1. For any integer n, lad(Pn) = la∗d(Pn) = laD(Pn) = la∗D(Pn) = 1.

Theorem 3.1. For integer n,

lad∗(Pn) = la∗d∗(Pn) =


1, for 2 ≤ n ≤ 5⌊
n
2

⌋
− 1, for 6 ≤ n ≤ 8⌊

n
2

⌋
, for 9 ≤ n ≤ 10

does not exist, for n ≥ 11.

Proof. From Theorem 2.1, minimum cardinality of a-set, a∗-set is one. Consider the
labeling function f : V (Pn) → {1, 2, 3, . . . , n} and S ⊂ V (Pn). When 2 ≤ n ≤ 5,
from Remark 1.2 the set S = {v1} is difference secure set. Consider f(S) = {2},
f(S) = {1, 2}, f(S) = {1, 2, 4} and f(S) = {4, 2, 5, 3} for which S are difference
secure for n = 2, 3, 4, 5 respectively. We also observe that, as v1 is an end vertex
of Pn, S is a ad∗-set and a∗d∗-set. Also, S is a minimal set and hence, lad∗(Pn) =

la∗d∗(Pn) = 1.
When 6 ≤ n ≤ 8, S = {v1} with f(v1) 6= 2. Then S will contain vertices with

labels {1, 2, 3} or {2, 4, 6}. By Remark 1.4, S is not a difference secure set. Also, if
S = {v1} with f(v1) = 2, then S will contain vertices with labels {1, 3, 4, 5, 6}. This
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implies from Remark 1.5, S is not a difference secure set. Therefore, for n ≥ 6,
the singleton set is not d∗-set. So, we take |S| ≥ 2. Also, from Theorem 1.3,
we have DSN(Pn) =

⌈
n
2

⌉
+ 1. If |S| <

⌊
n
2

⌋
− 1, then |S| >

⌈
n
2

⌉
+ 1. Hence, S

cannot become a difference secure set. Therefore,
⌊
n
2

⌋
− 1 ≤ |S| ≤

⌈
n
2

⌉
+ 1. When

n = 6, 7, by Remark 1.3 the subsets S1 = {v1, v6} and S2 = {v2, v3} respectively,
are difference secure. We also observe that the subsets f(S1) = {1, 4, 3, 6} and
f(S2) = {5, 4, 7, 3, 6} are difference secure. For P8, consider S = {v1, v7, v8} with
f(v1) = 5, f(v7) = 1, f(v8) = 2 and S = {v2, v3, v4, v5, v6, } with f(v2) = 8,
f(v3) = 4, f(v4) = 7, f(v5) = 3 and f(v6) = 6. From Theorem 1.2 and Remark 1.1,
S is an a-set and a∗-set. Hence, lad∗(Pn) = la∗d∗(Pn) =

⌊
n
2

⌋
− 1.

When n = 9, 10, the sets S1 = {v2, v3, v4, v5} with f(S1) = {2, 1, 9, 8} and S2 =

{v1, v2, v3, v4, v5} with f(S2) = {5, 10, 9, 1, 2} respectively, are difference secure.
Simultaneously, the subsets S1 = {v1, v6, v7, v8, v9} with f(S1) = {5, 4, 7, 3, 6} and
S2 = {v6, v7, v8, v9, v10} with f(S2) = {6, 3, 7, 4, 8} will also becomes difference
secure. Since |N [S1] ∩ S1| ≥ |N [S1] − S1| and |N [S2] ∩ S2| ≥ |N [S2] − S2| holds
for S1 and S2, they are a-sets. Also, as the subsets S1 and S2 hold |N [S1] ∩ S1| ≥
|N [S1] − S1| and |N [S2] ∩ S2| ≥ |N [S2] − S2|, S1 and S2 are a∗-sets. Hence,
lad∗(Pn) = la∗d∗(Pn) =

⌊
n
2

⌋
. When n ≥ 11, by Theorem 1.4, lad∗(Pn) does not

exist. �

Theorem 3.2. For any path Pn, lAd(Pn)=


does not exist, for n = 2

2, for n = 3

3, for n ≥ 4.

Proof. For any singleton subset S = {v} of V (Pn), if v is a pendant vertex, then
both S and S will be defensive alliance, otherwise S itself will not be defensive
alliance. Hence, S is not a A-set. It is obvious from Theorem 1.2 that P2 does
not have a A-set. For n = 3, the set S = {v1, v3} is a defensive alliance, where
as S = {v2} is not defensive alliance. Hence, S is a A-set. Also, for a labeling
function f : V (Pn) → {1, 2, 3, . . . , n}, take f(v1) = 1, f(v3) = 3 and f(v2) = 2.
Then S = {v1, v3} is a d-set. Therefore, lAd(P3) = 2.

Consider the set S = {vi, vj}, 1 ≤ j ≤ n, with vi as one of the end vertex of
Pn. If vj is adjacent to vi, then both S and S will be defensive alliance. And if
vj is not adjacent to vi then S itself is not defensive alliance. Hence, we take
|S| > 2. Let S = {vi, vj, vk}, 1 ≤ j, k ≤ n, with vi as end vertex. We cannot have
〈S〉 disconnected, otherwise S will not be a defensive alliance. So, to have S as a
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defensive alliance and S as a non-defensive alliance, take vi not adjacent to vj and
vk, also vj and vk adjacent to each other. Now define a labeling function f : V →
{1, 2, 3, . . . , n} as follows: f(vj) = 2f(vk) where+ f(vk) = a ∈ {1, 2, 3, . . . ,

⌊
n
2

⌋
}

and f(vi) � 0(mod a). Hence, S is a Ad-set. Therefore, lAd(Pn) = 3. �

Theorem 3.3. For any path Pn,

lAd∗(Pn) =


2, for n = 3

3, for 4 ≤ n ≤ 8

does not exist, for n = 2 and n ≥ 9.

Proof. It is obvious that P2 does not have a A-set. Let S ⊂ V (Pn). For P3, the
subset S = {v1, v3} is a A-set. But for a path Pn, n ≥ 4, the set S is the minimal set
A-set if it is of the form {v1, v3, v4} or {vn−3, vn−2, vn}. Now if this set S has to be a
d∗-set then there should exit some labeling function f such that both S and S are
difference secure. Define f : V (Pn)→ {1, 2, 3, . . . , n} as follows:

For n = 3, f(S) = {1, 3} and f(S) = {2}. Here, S is a A-set and d∗-set. Hence,
lAd∗(P3) = 2. We consider for different n the labeling where both S and S are
difference secure. In the set S = {v1, v3, v4} are adjacent so that we can label
f(v3) = 2f(v4) and the pendant vertex v1 can be chosen such that f(v1) 6= 2f(v3)

and f(v1) 6= 2f(v4). Then S is difference secure. Similarly, the set {vn−3, vn−2, vn}
is a difference secure. For the above set S and for each 4 ≤ n ≤ 8, label S as f(S) =
{1}, f(S) = {1, 5}, f(S) = {5, 1, 2}, f(S) = {5, 3, 7, 4} and f(S) = {5, 6, 3, 7, 4}.
We observe that the above S are difference secure. Hence, S is a d∗-set. Therefore,
lAd∗(Pn) = 3.

Consider S = {v2, v3, v4, v5} with f(S) = {2, 1, 9, 8} for n = 9. Then we get
S = {v1, v6, v7, v8, v9} with f(S) = {5, 4, 7, 3, 6}. Similarly, for n = 10, consider
S = {v1, v2, v3, v4, v5} with f(S) = {5, 10, 9, 1, 2} and S = {v6, v7, v8, v9, v10} with
f(S) = {6, 3, 7, 4, 8}. This set S is a unique d∗-set but not a A-set (since both S and
S are defensive alliance). From Theorem 1.4, Pn, n ≥ 11 has no d∗-set. �

Theorem 3.4. For any path Pn, lAD(Pn) =

{
does not exist, for 2 ≤ n ≤ 7

3, for n ≥ 8.

Proof. For n = 2, it is trivial that lAD(P2) does not exist. Let f : V → {1, 2, 3, . . . , n}
be the labeling function and S be a subset of V (Pn). For n = 3, the set S = {v1, v3}
is a minimal A-set, but there exist a labeling function with f(S) = {1, 3} and
f(S) = {2} where both S and S becomes difference secure. Hence, S fails to be
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a D-set. For a path Pn the set S = {v1, v3, v4} is a minimal defensive alliance and
S = {v2, v5, v6, . . . , vn} is not a defensive alliance. Hence, S is a A-set. By the
argument done in the Theorem 3.3, the set S = {v1, v3, v4} is difference secure.
Also, for each 4 ≤ n ≤ 7, the sets with label f(S) = {1}, f(S) = {1, 5}, f(S) =

{5, 1, 2} and f(S) = {5, 3, 7, 4} respectively, are difference secure. Hence, S is not
a D-set. Therefore, lAD(Pn) does not exist. We also observed that, for n = 8, the
label f(S) = {6, 3, 7, 4, 8} makes S not a difference secure set S (since v2 is not
adjacent to v5). Further, for n ≥ 9, {3, 6, 9} ⊆ f(S) from Remark 1.4, S is not a
difference secure set. Hence, n ≥ 8, S is a D-set. Therefore, S is a AD-set and
|S| = 3. �

Theorem 3.5. For any integer n ≥ 4, lA∗d(Pn) = 2.

Proof. Let S be a subset of V (Pn). We know that singleton set S = {v}, where v is
a pendant vertex, is always a defensive alliance. Also, if v is not a pendant vertex,
then S becomes defensive alliance. Hence, S is not a A∗-set. Therefore, we must
have |S| ≥ 2. Let S = {vi−1, vi+1} for 2 ≤ i ≤ n − 1 contains one pair of non-
adjacent vertices. Then obviously S will contain atleast one pair of non-adjacent
vertices. From Remark 1.1, both S and S are A∗-sets. Let f : V → {1, 2, 3, . . . , n}
be a labeling function. Suppose if f(vi−1) = 1 and f(vi+1) = 3, then S will be
difference secure (since |f(vi−1) − f(vi+1)| = 2 /∈ S). Hence, S is both defensive
alliance and difference secure. Therefore, lA∗d(Pn) = 2. �

Theorem 3.6. For any path Pn,

lA∗d∗(Pn) =


2, for n = 4, 5

3, for n = 6, 7, 8

does not exist, for n = 2, 3 and n ≥ 9.

Proof. Let f : V → {1, 2, 3, . . . , n} be a labeling function and S ⊂ V (Pn). Consider
the set S and S which contains atleast one vertex other than pendant vertex which
is not adjacent to other vertices. Clearly, S is a A∗-set. From Remark 1.1, for P2

and P3 there exists no set S which is a A∗-set. Therefore, lA∗d∗(P2) and lA∗d∗(P3)

does not exist.
We take a set S which is a A∗-set and define the labeling f so that S is also a

d∗-set as below:
Case 1: For n = 4, 5, we take,
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(i) S = {v1, v3} with labeling f(v1) = 1, f(v3) = 4, f(v2) = 2 and f(v4) = 3, for
n = 4.

(ii) S = {v1, v3} with labeling f(v1) = 1, f(v3) = 3, f(v2) = 5, f(v4) = 2 and
f(v5) = 4, for n = 5.
Hence, lA∗d∗(P4) = lA∗d∗(P5) = 2.

From Theorem 1.3, for n > 6, if |S| = 2 then, S is not a difference secure set.
When n = 6, for the set {vi, vi+2}, 1 ≤ i ≤ n − 2, S is not a difference secure set.
Hence, we take |S| > 2 for the following case.

Case 2: For 6 ≤ n ≤ 8, we define the labeling as follows:

(i) S = {v2, v4, v5} with labeling f(v2) = 6, f(v4) = 1, f(v5) = 2, f(v1) = 3,
f(v3) = 4 and f(v6) = 5, when n = 6.

(ii) S = {v2, v4, v5} with labeling f(v2) = 7, f(v4) = 1, f(v5) = 2, f(v1) = 5,
f(v3) = 4, f(v6) = 3 and f(v7) = 6, When n = 7.

(iii) S = {v1, v2, v4} with labeling f(v1) = 1, f(v2) = 2, f(v4) = 8, f(v3) = 5,
f(v5) = 6, f(v6) = 3, f(v7) = 7 and f(v8) = 4, When n = 8.
Therefore, lA∗d∗(P6) = lA∗d∗(P7) = lA∗d∗(P8) = 3.

Case 3: For n ≥ 9,
When n = 9, 10, there exist unique set S is a d∗-set but fails to be a A∗-set. The
only d∗-set S is shown below:

(i) When n = 9, we get a unique set S = {v1, v6, v7, v8, v9} with labeling f(v1) =
5, f(v6) = 4, f(v7) = 7, f(v8) = 3, f(v9) = 6, f(v2) = 2, f(v3) = 1, f(v4) = 9

and f(v5) = 8.
(ii) For n = 10, we get a unique set S = {v1, v7, v8, v9, v10}with labeling f(v1) = 7,

f(v7) = 5, f(v8) = 8, f(v9) = 3, f(v10) = 6, f(v2) = 9, f(v3) = 10, f(v4) = 1,
f(v5) = 2 and f(v6) = 4.

Also, by Theorem 1.4, for n ≥ 11, d∗-set does not exist for Pn. Hence, n ≥ 9,
lA∗d∗(Pn) does not exist. �

Theorem 3.7. For any path Pn, lA∗D(Pn)=

{
does not exist, for n = 2, 3

2 for n ≥ 4.

Proof. The set S = {vi, vi+2}, 1 ≤ i ≤ n− 2, is a minimum subset of V (Pn) which is
a A∗-set (since S and S are not a defensive alliance). For n = 2, 3, we cannot have
any A∗-set. Therefore, lA∗D(P2) and lA∗D(P3) does not exist.



10322 S. P. D’SILVA, B. SOORYANARAYANA, AND K. MITRA

Consider a labeling function f : V → {1, 2, 3, . . . , n}. For Pn to have a D-
set, there must exist atleast one difference secure set S, for which S is not a
difference secure set. From Remark 1.3, the set S = {v2, v4} is difference secure.
For n ≥ 4, S is not difference secure. When n = 4, 5, we label S as f(S) = {2, 4},
f(S) = {2, 4, 5} respectively, which is clearly not difference secure. When n = 6, 7,
there exist no labeling for S which is difference secure and for n ≥ 8, S = {v2, v4},
we get |S| >

⌈
n
2

⌉
+1 which implies from Theorem 1.3, S is not a difference secure

set. Hence, lA∗D(Pn) = 2. �

Lemma 3.1. For any path Pn of order n, D∗-set does not exist.

Proof. The maximal difference secure set for a path Pn is
⌈
n
2

⌉
+1. Hence, for n upto⌈

n
2

⌉
+1 there exist atleast one set S which is difference secure. When n >

⌈
n
2

⌉
+1,

we get S as difference secure. Therefore, both S and S cannot be difference secure
sets simultaneously. Hence, Pn does not have D∗-set. �

From Lemma 3.1 we have the following Theorem.

Theorem 3.8. For integer n ≥ 3, laD∗(Pn) = la∗D∗(Pn) = lAD∗(Pn) = lA∗D∗(Pn) does
not exist.
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