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ESSENTIALLY MULTIPLICATION MODULES

YAHYA TALEBI1 AND MOTAHAREH IRANI

ABSTRACT. In commutative ring theory, the concept of multiplication modules
had been studied extensively. By the way, in this paper we shall introduce a new
generalization of multiplication modules, namely essentially multiplication mod-
ules. We say that over a commutative ring R, a module M is essentially multipli-
cation, provided that for every essential submodule N of M there exists an ideal
I of R such that N = MI.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper R denotes an arbitrary commutative ring with identity
and all modules are unitary R-modules. Let M be an R-module and N a submod-
ule of M . We use N ≤e M and N ≤d M to denote that N is essential in M and
N is a direct summand of M , respectively. Moreover we use End(MR) and rR(m)

to denote the ring of endomorphism of M and the right annihilator in R of an
element of M . For any unexplained terminology we refer to [1], [2], [3], [4], [5]
and [6].

A nonzero submodule N of a module M is said to be essential in M if N ∩K 6= 0

for every nonzero submodule K of M . Dually a proper submodule of M is small
in M in case M = N +K implies that K =M .

Multiplication modules and ideals have been investigated in El-Bast and Smith
[2] and S. Ebrahimi Athani and S. Khojasteh, G. Ghaleh [3] and others.
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Let R be a ring and M an R-module the M is called a multiplication module
provided for every submodule N of M there exist an ideal I of R such that N =

IM .
Our objective is to investigate essential multiplicate.

2. ESSENTIALLY MULTIPLICATION MODULES

In this section we will introduce a new generalization of multiplication modules
using essential submodules.

Definition 2.1. Let M be a module. Then we call M , essentially multiplication
module in case for every essential submodule N of M There is an ideal I of R that
N =MI.

Example 1. Consider the Z-module M = Q. Since for every ideal I of Z we have
MI =M , we conclude that M can not be essentially multiplication.

In general, a divisable Z-module can not be essentially multiplication since for
every n ∈ Z, nM =M . As a consequence:

(1) An injective Z-module can not be essentially multiplication.
(2) Let n ∈ N does not be square-free. Then the Z-module M = Zn is essen-

tially multiplication. To show this, let N ≤e M . Then there is x ∈ M such
that N = (x) (note that every submodule of M is cyclic). It can easily
verified that N = (xZ)M .

(3) Every semisimple module is essentially multiplication module.

The following example introduces a large class of essentially multiplication
modules while they are not multiplication.

Example 2. Let R be a local ring and M a finitely generated semisimple R-module.
Let N be a non-trivial submodule of M . If there is an ideal of R such that IM = N ,
then N = 0. To verify this, note that I ⊆ J(R) and N is finitely generated. Also
N = IM = IN ⊕ IN ′ for a non-trivial submodule N ′ of M since M is semisim-
ple. Therefore, N = IN . Now the Nakayama’s Lemma implies that N = 0, a
contradiction. It follows that M can not be multiplication, but M is an essentially
multiplication module by Example 2.

Lemma 2.1. Let M be a finitely generated R-module and I ≤e R. Then IM ≤e M .
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Proof. Let M =< x1, . . . , xn > and I be an essential ideal of R. Suppose that
0 6= x ∈ M . Now, there are r1, . . . , rn in R such that x =

∑n
i=1 rixi. Without loss

of generality we can assume that each ri is nonzero. Since I ≤e R, there exists
si ∈ R such that siri ∈ I. Set s =

∏n
i=1 si. It is easy to verify that sx ∈ IM . This

completes the proof. �

Note that every ideal of Z is essential in Z.
For a subset X of a module M over a ring R, the ideal {r ∈ R|X.r = 0} is called

the annihilator of X in R; it is denoted by rR(X) or r(X).

Corollary 2.1. Let M be an Z-module which is not essentially multiplication. Then
M is not finitely generated.

Lemma 2.2. If M is an essential multiplication module, then for every ideal I of R
such that I ⊆ r(M), the R

I
module M is an essential multiplication module.

Proof. Let N be an essential submodule of M For every x ∈ M there exists r ∈ R
such that r.x ∈ N . Since for every ideal I ⊆ r(M)such that r+I ∈ R

I
then (r+I)x =

r.x + Ix and finally (r + I)x ∈ N so R
I
-module M is a essential multiplication

module. �

For two subsets X and Y of a module M over a ring R, the subset {r ∈ R|X.r ⊆
Y } of R is denoted by (Y : X). If Y is a submodule of M , then it is directly verified
that for any subset X of M , the set (Y : X) is a ideal of R. For any two submodule
X and Y of M , it is directly verified (Y : X)is an ideal of R.

Proposition 2.1. For a module M , the following coditions are equivalent:
1) M is an essential multiplication module
2) N ⊆M(N :M) for every essential submodule N of M
3) N =M(N :M) =Mr(M

N
) for every essential submodule N of M .

Proof. (1) =⇒ (2) SinceM is an essential multiplication module, for every essential
submodule N of M there exist an ideal I of R such that N = IM . Hence also
I ⊆ (N :M), so N = IM ⊆ (N :M)M . �

Proposition 2.2. For a right module M over a ring R, the following conditions are
equivalent.

1) M is an essentially multiplication module.
2) For every ideal I of R such that I ⊆ r(M), the R

I
-module M is an essential
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multiplication module.
3) There exist an ideal I of R such that I ⊆ r(M) and M is an essential multipli-

cation R
I
-module.

Let R be a ring and M be an R-module. Recall that a submodule L of M is called
fully invariant provided ϕ(L) ⊆ L for every endomorphism ϕ of M . Clearly 0 and
M are fully invariant submodules of M . Every submodule of the R-module R is
fully invariant.

Proposition 2.3. Every homomorphic image of an essential multiplication module is
an essential multiplication module.

Proof. Let M be an essential multiplication module over a ring R, h : M → M be
am epimorphism and N be an essential submodule of M . Then there exists an
essential submodule N of M with h(N) = N . By assumption, there exists an ideal
I of the ring R such that N = MI. Then N = h(N) = h(MI) = h(M)I = MI and
M is an essential multiplication module. �

Proposition 2.4. For an essential multiplication module M over R the following
assertions hold:

1) Every essential submodule of M is a fully invariant submodule of M .
2) if N is an essential submodule of M such that N

⋂
MI = NI for every ideal I

of R, then N is an essential multiplication module.

Proof.
1) Let N be a essential submodule of M and f be an endomorphism of M . There

exist an ideal I of R such that N =MI. then f(N) = f(IM) = f(M)I ⊆MI = N .
2) let L be an essential submodule of N , since M is essential multiplication

module, there exists an ideal I of R such that L = MI. Therefore, L = MI =

L
⋂
MI ⊆ N

⋂
MI = NI ⊆MI = L. �

Proposition 2.5. Every endomorphic image of an essential multiplication module is
a fully invariant essential multiplication submodule.

Proof. The proof follows from Proposition 2.3 and Proposition 2.4(1). �

Proposition 2.6. Every direct summand of an essential multiplication module is a
fully invariant essential multiplication submodule of the module.
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Proof. Since every direct summand of an essential multiplication module is an
endomorphic image of the module, the assertion follows from Proposition 2.5. �

Let R be a ring, then its center is Cen R = {r ∈ R | rx = xr(x ∈ R)}. We may
say that an element r ∈ R is central in case r ∈ cenR.

Note that if A ⊆ CenR, then the subring generated by A is also in the center of
R.

An idempotent e of R is a central idempotent in case it is in the center of R.

Proposition 2.7. Let M be an essential multiplication module and f be an endomor-
phism of M with kerf≤e M . Then idempotent of End(Imf) is central.

Proof. Let M be an essential multiplication module over a ring R, M be a ho-
momorphic image of M , R = End(M), and f be an idempotent of the ring R.
By Proposition 2.3, M is an essential multiplication module. By Proposition 2.5,
(1−f)R f(M) ⊆ f(M)

⋂
(1−f)(M) = 0 and fR(1−f)(M) ⊆ (1−f)(M)

⋂
f(M) =

0. Therefore, (1− f)R f = f R(1− f) = 0 and f is a central idempotent of R. �

Corollary 2.2. If M is an essential multiplication module over a ring R and P is an
ideal of R such that M 6=MP , then there exists a cyclic submodule X of M such that
P does not contain the annihilator of the module X

M
.

Proof. SinceM 6=MP , there exist a cyclic submoduleX ofM that is not contained
in the module MP . Since M is an essential multiplication module, there exists an
ideal I of R such that X = MI. Then I is not contained in P , since X is not
contained in MP . Since X = IM then I is contained in r(X/M). It follows that P
can not be contained in rM(X/M). �

Definition 2.2. A non empty set L together with two binary operations ∨ and ∧ (read
join and meet) on L is called a lattice if it satisfies the following identities:
L1 : (a)x ∨ y ≈ y ∨ x

(b) x ∧ y ≈ y ∧ x
L2: (a) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z

(b) x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z
L3: (a) x ∨ x ≈ x

(b) x ∧ x ≈ x

L4 : (a)x ≈ x ∨ (x ∧ y)
(b) x ≈ x ∧ (x ∨ y)
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3. GENERAL PROPERTIES OF ESSENTIAL MULTIPLICATION MODULE

In this section we study some properties of essential multiplication module.

Proposition 3.1. For a R-module M over a ring R, the following conditions are
equivalent.

(1) M is an essential multiplication module.
(2) For every cyclic essential submodule X of M , there exists a right ideal B of the

ring R such that X =MB.
(3) For every essential submodule X of M , there exists a set {Xi}i∈I of submodules

of X and a set {Bi}i∈I of ideals of R such that X =
∑

i∈I Xi and Xi =MBi for each
i ∈ I.

Proof. The implication (1) ⇒ (2) is obvious. (2) ⇒ (3) let X be an essential
submodule of M , {Xi}i∈I be the set of all essential cyclic submodule of X, and
Bi = (Xi :M)(i ∈ I). By assumption, Xi ⊆MBi ⊆ Xi for all i. Since X =

∑
i∈I Xi

we have that {Xi} and Bi are the required sets.
(3)⇒ (1) let X be an essential submodule of M and a set {Bi}i∈I of ideals of R

such that X =
∑

i∈I Xi and Xi = MBi for each i ∈ I. we denote by B the ideal∑
i∈I Bi of R. Then X =

∑
i∈I Xi =

∑
i∈IMBi =M(

∑
i∈I Bi) =MB, and M is an

essential multiplication module. �

Proposition 3.2. Let M be an essential multiplication module and K ≤e M then
M/K is essential multiplication.

Proof. let N/K be an essential submodule of M/K. Since K ≤e M , we conclude
that N ≤e M(see [1,proposition 5.16 (1)]). Now there is an ideal I of R such
that IM = N . It is not hard to check that I(M/K) = N/K which completes the
proof. �

Remark 3.1. Let M be an essential multiplication module and N an essential sub-
module of M . Then IM = N for an ideal I. If I is nilpotent, then N is small in
M . Generally if R is a ring with all ideals nilpotent. Then every essential submodule
of an essentially multiplication module is small. Recall from [6] that a module M is
uniform, provided that each submodule of M is essential in M . Examples of uniform
modules include Z-modules Z and Zp∞. It is clear that, for an uniform module two
concepts multiplication and essentially multiplication coincide.
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Proposition 3.3. Every direct summand of an essential multiplication module is es-
sential multiplication.

Proof. Let M = N
⊕

N ′ and K be an essential submodule of N. then by [1, propo-
sition 5.20(2)], K

⊕
N ′ is an essential submodule of M. now by assumption, there

is an ideal I of R such that K
⊕

N ′ = IM . Hence (K
⊕

N ′)
⋂
N = IM

⋂
N =

I(N
⊕

N ′)
⋂
N. By modularity, K = IN , as required. �

The following gives an easy characterization of essentially multiplication mod-
ules.

Lemma 3.1. An R-module M is essentially multiplication if and only if for every
essential submodule N of M and each m ∈ M , there is an ideal I of R such that
N +Rm = IM .

Proof. let M be an essentially multiplication, N ≤e M and m ∈ M . Then N + Rm

is an essential submodule of M by [1, proposition 5.16(1)]. So that IM = N+Rm

for an ideal of R. For the converse, let N ≤e M . Then for each m ∈ N , there is an
ideal I of R such that IM = N +Rm = N . This completes the proof. �

Remark 3.2. Let R be a ring with just one non-trivial ideal I. Let M be an essentially
multiplication R-module. Then every essential submodule of M is maximal in M . To
show this, let N ≤e M , then for every m ∈MN, we have N + Rm ≤e M . Therefore,
either N +Rm = IM or N +Rm =M . Fist one implies that N +Rm = N which is
a contradiction, otherwise N + Rm = M . It follows that N is maximal submodule.
Recall that a submodule N of M fully invariant in M if for every endomorphism f of
M , f(N)⊆ N . A module M is called a duo module, in case every submodule of M is
fully invariant in M . It is well-known that if N is fully invariant and M =M1

⊕
M2,

then N = (N
⋂
M1)

⊕
(N

⋂
M2).

Theorem 3.1. Let M be a right module over a ring R and let M =
⊕

iεIMi then the
following conditions are equivalent:

1) M is an essential multiplication module.
2) Evry essential submodule of M is fully invariant in M , and all modules Mi

are essential multiplication modules such that there exist ideals Bi of R with Mi =

MBi(iεI).
3) N =

⊕
iεI(N ∩ Mi) for every essentiol submodule N of M , and all modules

Mi are essential multiplication modules such that there exist ideals Bi of R with
Mi =MBi(iεI).
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4) For every finite subset J of I the module
⊕

iεJMj is a essential multiplication
module such that

⊕
jεIMj =MBj for some ideal Bj of R.

Proof. The implication (1)⇒ (2) follows from corollary 2.9 (1), corollary (2.12).
(2) ⇒ (3) let N be an essential submodule of M and let ϕi : M → Mi be

natural projections. SinceN is a fully invariant essential submodule ofM , we have
ϕi(N) ⊆ N for all iεI. Therefore, N ⊆

⊕
iεI ϕi(N) ⊆ N . Thus, N =

⊕
iεI ϕi(N)

and N =
⊕

iεI N
⋂
Mi.

(3) ⇒ (1) let N be an essential submodule of M and Ni = N
⋂
Mi(iεI). By

assumption, all modulesMi are essential multiplication modules, N =
⊕

iεI Ni and
for every iεI, there exist ideals Bi and Ci of such that Mi = MBi and Ni = MiCi.
Since Ni = MBiCi and N =

∑
iεI Ni it follows from Proposition 3.1 that M is a

essential multiplication module.
(1) ⇒ (4) since M is a essential multiplication module,

⊕
jεJMj = MBj for

some ideal Bj of R. By Corollary 2.2, the direct summand
⊕

jεJ of the essential
multiplication module M is an essential multiplication module.

(4)⇒ (1) let N be an essential cyclic submodule of M . There exists a finite sub-
set J of I such that N ⊆

⊕
jεJMJ . By assumption

⊕
jεJ is an essential multiplica-

tion module such that
⊕

jεJMj =MBj for some ideal Bj ofR. Since
⊕

jεJMj is an
essential multiplication, there exists an ideal Cj of R such that (

⊕
jεJMj)Cj = N .

then N = MBjCj. By Proposition 3.1. M is an essential multiplication mod-
ule. �

Lemma 3.2. Let R be a ring, M be an essential multiplication module and M =

X
⊕

Y . Then the following assertions hold.
(1) Z = X

⋂
Z
⊕

Y
⋂
Z for any essential submodule Z of the module M .

(2) if there exist a module P and epimorphisms α : P → X and β : P → Y , then
the homomorphism α + β : P →M is an epimorphism.

(3) If the modules X and Y are cyclic then M is a cyclic

Proof.
(1) The proof follows from Theorem 3.1.
(2) We denote by Z the essential submodule (α + β)(P ) of M = X

⊕
Y . Let

πX : M → X and let πY : M → Y be natural projections. We have π(Z) = α(P ) =

X and πY (Z) = β(ρ) = Y ; in addition, Z = X
⋂
Z
⊕

Y
⋂
Z by (1).

Therefore, X = πX(Z) = X
⋂
Z ⊆ Z and Y = πY (Z) = Y

⋂
Z ⊆ Z. Therefore,

M = X
⊕

Y = Z and α + β is an epimorphism.



ESSENTIALLY MULTIPLICATION MODULES 10125

(3) Since X and Y are cyclic essential multiplication modules, there exist epi-
morphisms RR → X and RR → Y . By (2), there exists an epimorphism RR → M ;
therefore M is a cyclic essential multiplication module. �

Corollary 3.1. Let M be an essential multiplication module that is a direct sum
of finitely many cyclic essential multiplication modules, then M is a cyclic essential
multiplication module.

Proof. The proof follows from Lemma 3.2.(3). �

A submodule N of a module M is called a superfluous submodule if N+M 6=M

for every proper submodule X of M . A ring R is said to be semilocal if the factor
ring R/J(R) is an Artinian ring.

A ring is semiprimitive if and only if it has a faithful semisimple left module.
A ringR is said to be quasi-invariant if each of its maximal ideals is an ideal ofR.

A module M is called an invariant (resp.quasi-invariant) if each of its submodules
(resp.each of its maximal submodules) is a fully invariant submodule of M . It is
directly verified that a ring R is invariant (resp.quasi-invariant) if and only if R is
an invariant (quasi-invariant) R-module.

Theorem 3.2. Let M be an artinian essential multiplication module and J is jacob-
son radical. Thn the following assertions hold.

(1) The module M/JM is cyclic module.
(2) If JM is supperfluous essential submodule of M , then M is a cyclic module.
(3) If M is a finitely generated module, then M is a cyclic module.

Proof.
(1) The homomorphic imageM/JM of the essential multiplication moduleM is

an essential multiplication module by Proposition 2.3. Since M/JM is a smiprim-
itve Artinian module, M/JM is a finitely generated semisimple module. By Corol-
lary 3.1. The factor module M/JM is a cyclic module.

(2) Since M/JM is cyclic R-module, there exists a cyclic submodule X of M
such that M = X + JM . By assumption JM is a superfluous submodule of M .
therefor, M = X.

(3) Since M is a finitely generated module, J(M) is a supperflues submodule of
M . By(2), M is a cyclic module. �

Proposition 3.4. For a ring R, the following conditions are equivalent.
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1) R is an invariant ring.
2) All cyclic R-modules are essential multiplication module.
3) The free principal ideal I of R is an essential multiplication ideal.

Proof.
(1) ⇒ (2) Let M be a cyclic R-module with generator m, N be an essential

submodule of M = mR and I = (N : m). Since N ⊆ mR, we have N ⊆ m(N :

m) ⊆ N ; therefore, N = mI. In addition, I is an idea of R, since the ring R is
an invariant. Therefore, N = mI = m(RI) = (mR)I = MI and M is an essential
multiplication module.

The implication (2)⇒ (3) is obvious.
(3)⇒ (1) Let N be an ideal of the ring R. Since RR is an essential multiplication

module, there exist an ideal I of R such that N = RI. Therefore, N = RI =

R(RI) = RN and N is an ideal ring R. �

Lemma 3.3. For a ring R, the following assertion hold.
1) If B1, ..., Bu, C1, ..., Cv are ideals of R such that R = Bs + Ct for all s and t,

then R = (∩us=1Bi) + (∩vy=1Cj).

2) If B and C are ideals of R and M is a R-module such that M/MB and M/MC

are finitely generated modules, then M/M(BC) is a finitely generated module.
3) If B1, ..., Bn are ideals of R and M is a R-module such that all modules M/MBi

are finitely generated, then M/M(B1, ..., Bn), M/M(B1 ∩ ... ∩ Bn) and M(MB1 ∩
... ∩MBn) are finitely generated modules.

Note that in the next theorem M is R-module where R is invariant ring.

Theorem 3.3. For a module M over an invariant ring R, the following conditions
are equivalent.

1) M is an essential multiplication module which is direct sum of finitely many
cyclic modules.

2) M is a cyclice module.
3) There exist elementsm1, ...,mn ofM such thatM =

⊕n
i=1miR andR = r(mi)+

r(mj) for all i 6= j.

Proof. The implication (1)⇒ (2) follows from Corollary 3.9.
The implication (2)⇒ (1) follows from Proposition 3.4.
(2) ⇒ (3) Let M = m1R we set m2 = 0. Then M = m1R

⊕
m2R and R =

r(m1) + r(m2).



ESSENTIALLY MULTIPLICATION MODULES 10127

(3) ⇒ (2) we set m = m1 + ... +mn ∈ M . Let i ∈ {1, 2, ..., n}. Since r(mi) is an
ideal of the invariant ring R and R = r(mi) + r(mj) for all j 6= i, Lemma 3.3(1)
implies R = r(mi) +

⋂
j 6=i r(mj).

Therefore, there exist an element ai ∈ r(mi) such that 1 − ai ∈
⋂
j 6=i r(mj).

Therefore, m(1− ai) = (m1 + ...+mn)(1− ai) = mi(1− ai) = mi.

Thus miR ⊆ mR for every i. Therefore, M = mR. �

Corollary 3.2.
(1) Every simple module is an essential multiplication module.
(2) Every nonzero essential multiplication module over a simple ring is an simple

module.

Corollary 3.3. Let M be an essential multiplication module, P be an maximal ideal
of R.

1)If M 6= MP , then the module M
MP

is simple and there exists a cyclic essential
submodule N of M such that R = P + r(M

N
). is a cyclic module with at most two

essential submodules of M . 2) M
MP

is a cyclic essential multiplication module with at
most two submodules and either M =MP or MP is a maximal submodule of M .

Proof. 1) By Proposition 2.3, M/MP is an essential multiplication module over the
simple ring R

P
. Since M

MP
6= 0, it follows from Proposition 3.4(2) that the module

M/MP is simple. By Proposition 2.3, there exists a cyclic essential submodule
N of M such that P does not contain r(M

N
); in addition, P is a maximal ideal.

Therefore, R = P + r(M
N
).

2) By Proposition 2.3, M/MP is an essential multiplication module over the
simple ring R

P
. If M

MP
= 0, then the zero module M

MP
is a cyclic module with

exactly one submodule. If M/MP 6= 0, then by (1), MP is an essential maximal
submodule of M and M/MP is a cyclic module with exactly two submodules. �

Corollary 3.4. Let M be an essential multiplication module and R be a ring with
commutative multiplication of ideals, P be a maximal ideal of R. Then the following
conditions are equivalent.

1) M =MP

2) N = NB for every essential submodule N of M .
3) X = XP for every cyclic essential submodule of M .
4) P does not condition the annihilator of any cyclic essential submodule of M .
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Proof. The implication (1) ⇒ (2) follows from Lemma 3.3(1) the implications
(2)⇒ (3) and (3)⇒ (1) are obvious.

(3) ⇒ (4) assume that P contains the annihilator of some essential cyclic sub-
module X of M . By assumption X = Xp = 0. Then R = r(X) ⊆ P ; this is a
contradiction.

(4) ⇒ (3) Let X be a cyclic essential submodule of M . Since r(X) is not con-
tained in P and the ideal P is maximal, R = P + r(M). Therefore, X = XR =

X(P + r(X)) = XP +Xr(X) = XP. �

Corollary 3.5. Let M be an R-module, R an invariant ring with essential commuta-
tive multiplication of ideals. The following conditions are equivalent.

1) M is an essential multiplication module.
2) For any maximal ideal P of R, either M =MP or M 6=MP and there exists a

cyclic essential submodule N of M such that R = P + r(M |N).
3) For any maximal ideal P of R, either P does not contain the annihilator of any

cyclic essential submodule N of M such that P does not contain r(M/N).
4) For any maximal ideal P of R, either P does not contain the annihilator of any

element of M or there exist elements p ∈ P and x ∈M such that M(1− P ) ⊆ xR.

Proof. (1) ⇒ (2) Assume that M = MP . Let N be a cyclic essential submodule of
M . Since M =MP , we have N = NP by Theorem 3.3(1). Therefore, P does not
contain r(N).

Now assume that M 6= MP . By Corollary 2.2(1), there exists a cyclic essential
submodule N of M such that R = P + r(M/N). The implication (2)⇒ (1) follows
from Corollary 3.2.

(3)⇒ (4) Assum that there exists an element m ∈M such that r(m) ⊆ P . Since
R is an invariant ring, P contains the annihilator of the cyclic essential submodule
mR ∈ M . It follows from (3) that there exist a cyclic essential submodule N

of M such that the maximal ideal P does not contain r(M/N). Therefore, R =

P + r(M/N) and there exists an element p ∈ P such that M(1− p) ⊆ N.

(4) ⇒ (1) Let Y be a cyclic essential submodule of M . By Proposition 3.1, it is
enough to prove that Y ⊆ M(Y : M).if(M(Y : M) : Y ) = R, then Y = Y (M(Y :

M) : Y ) ⊆ M(Y : M). Assume that (M(Y : M) : Y ) 6= R. Then there exists
a maximal ideal P of R such that (M(Y : M) : Y ) ⊆ P . By assumption, either
P doesn’t contain the annihilator of any cyclic essential submodule of M or there
exist a cyclic essential submodule N of M such that P does not contain r(M/N).
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Since r(Y ) ⊆ (M(Y :M) : Y ) ⊆ P , it follows from the assumption that there exist
an element p ∈ P and a cyclic essential submoduleN ofM such thatM(1−p) ⊆ N.

It follows that Y (1−P )R is a submodule of the cyclic module N over the invariant
ring R. Therefore, there exists an ideal D of R such that Y (1 − P )R = ND. We
have MD(1− P )R = M(1− P )D ⊆ ND ⊆ Y . Therefore, D(1− P )R ⊆ (Y : M).
It follows that Y (1 − P 2) ⊆ Y (1 − P )R(1 − P )R = ND(1 − P )R ⊆ M(Y : M).

Therefore, (1 − P 2) ∈ (M(Y : M) : Y ) ⊆ P and 1 ∈ pR + P = P ; this is a
contradiction. �
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