Advances in Mathematics: Scientific Journal **9** (2020), no.12, 10117–10129 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.3

ESSENTIALLY MULTIPLICATION MODULES

YAHYA TALEBI¹ AND MOTAHAREH IRANI

ABSTRACT. In commutative ring theory, the concept of multiplication modules had been studied extensively. By the way, in this paper we shall introduce a new generalization of multiplication modules, namely *essentially multiplication modules*. We say that over a commutative ring R, a module M is essentially multiplication, provided that for every essential submodule N of M there exists an ideal I of R such that N = MI.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper R denotes an arbitrary commutative ring with identity and all modules are unitary R-modules. Let M be an R-module and N a submodule of M. We use $N \leq_e M$ and $N \leq_d M$ to denote that N is essential in M and N is a direct summand of M, respectively. Moreover we use $\text{End}(M_R)$ and $r_R(m)$ to denote the ring of endomorphism of M and the right annihilator in R of an element of M. For any unexplained terminology we refer to [1], [2], [3], [4], [5] and [6].

A nonzero submodule N of a module M is said to be essential in M if $N \cap K \neq 0$ for every nonzero submodule K of M. Dually a proper submodule of M is small in M in case M = N + K implies that K = M.

Multiplication modules and ideals have been investigated in El-Bast and Smith [2] and S. Ebrahimi Athani and S. Khojasteh, G. Ghaleh [3] and others.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 16D10, 16D90.

Key words and phrases. essential submodule, multiplication module, essentially multiplication module.

Let R be a ring and M an R-module the M is called a multiplication module provided for every submodule N of M there exist an ideal I of R such that N = IM.

Our objective is to investigate essential multiplicate.

2. Essentially Multiplication Modules

In this section we will introduce a new generalization of multiplication modules using essential submodules.

Definition 2.1. Let M be a module. Then we call M, essentially multiplication module in case for every essential submodule N of M There is an ideal I of R that N = MI.

Example 1. Consider the \mathbb{Z} -module $M = \mathbb{Q}$. Since for every ideal I of \mathbb{Z} we have MI = M, we conclude that M can not be essentially multiplication.

In general, a divisable \mathbb{Z} -module can not be essentially multiplication since for every $n \in \mathbb{Z}$, nM = M. As a consequence:

- (1) An injective \mathbb{Z} -module can not be essentially multiplication.
- (2) Let $n \in \mathbb{N}$ does not be square-free. Then the \mathbb{Z} -module $M = \mathbb{Z}_n$ is essentially multiplication. To show this, let $N \leq_e M$. Then there is $x \in M$ such that N = (x) (note that every submodule of M is cyclic). It can easily verified that $N = (x\mathbb{Z})M$.
- (3) Every semisimple module is essentially multiplication module.

The following example introduces a large class of essentially multiplication modules while they are not multiplication.

Example 2. Let R be a local ring and M a finitely generated semisimple R-module. Let N be a non-trivial submodule of M. If there is an ideal of R such that IM = N, then N = 0. To verify this, note that $I \subseteq J(R)$ and N is finitely generated. Also $N = IM = IN \oplus IN'$ for a non-trivial submodule N' of M since M is semisimple. Therefore, N = IN. Now the Nakayama's Lemma implies that N = 0, a contradiction. It follows that M can not be multiplication, but M is an essentially multiplication module by Example 2.

Lemma 2.1. Let M be a finitely generated R-module and $I \leq_e R$. Then $IM \leq_e M$.

Proof. Let $M = \langle x_1, \ldots, x_n \rangle$ and I be an essential ideal of R. Suppose that $0 \neq x \in M$. Now, there are r_1, \ldots, r_n in R such that $x = \sum_{i=1}^n r_i x_i$. Without loss of generality we can assume that each r_i is nonzero. Since $I \leq_e R$, there exists $s_i \in R$ such that $s_i r_i \in I$. Set $s = \prod_{i=1}^n s_i$. It is easy to verify that $sx \in IM$. This completes the proof.

Note that every ideal of \mathbb{Z} is essential in \mathbb{Z} .

For a subset X of a module M over a ring R, the ideal $\{r \in R | X.r = 0\}$ is called the annihilator of X in R; it is denoted by $r_R(X)$ or r(X).

Corollary 2.1. Let M be an \mathbb{Z} -module which is not essentially multiplication. Then M is not finitely generated.

Lemma 2.2. If M is an essential multiplication module, then for every ideal I of R such that $I \subseteq r(M)$, the $\frac{R}{I}$ module M is an essential multiplication module.

Proof. Let N be an essential submodule of M For every $x \in M$ there exists $r \in R$ such that $r.x \in N$. Since for every ideal $I \subseteq r(M)$ such that $r+I \in \frac{R}{I}$ then (r+I)x = r.x + Ix and finally $(r + I)x \in N$ so $\frac{R}{I}$ -module M is a essential multiplication module.

For two subsets X and Y of a module M over a ring R, the subset $\{r \in R | X.r \subseteq Y\}$ of R is denoted by (Y : X). If Y is a submodule of M, then it is directly verified that for any subset X of M, the set (Y : X) is a ideal of R. For any two submodule X and Y of M, it is directly verified (Y : X) is an ideal of R.

Proposition 2.1. For a module *M*, the following coditions are equivalent:

- 1) *M* is an essential multiplication module
- 2) $N \subseteq M(N : M)$ for every essential submodule N of M
- 3) $N = M(N:M) = Mr(\frac{M}{N})$ for every essential submodule N of M.

Proof. (1) \implies (2) Since M is an essential multiplication module, for every essential submodule N of M there exist an ideal I of R such that N = IM. Hence also $I \subseteq (N : M)$, so $N = IM \subseteq (N : M)M$.

Proposition 2.2. For a right module M over a ring R, the following conditions are equivalent.

- 1) *M* is an essentially multiplication module.
- 2) For every ideal I of R such that $I \subseteq r(M)$, the $\frac{R}{I}$ -module M is an essential

multiplication module.

3) There exist an ideal I of R such that $I \subseteq r(M)$ and M is an essential multiplication $\frac{R}{I}$ -module.

Let *R* be a ring and *M* be an R-module. Recall that a submodule *L* of *M* is called fully invariant provided $\varphi(L) \subseteq L$ for every endomorphism φ of *M*. Clearly 0 and *M* are fully invariant submodules of *M*. Every submodule of the R-module *R* is fully invariant.

Proposition 2.3. Every homomorphic image of an essential multiplication module is an essential multiplication module.

Proof. Let M be an essential multiplication module over a ring R, $h: M \to \overline{M}$ be an epimorphism and \overline{N} be an essential submodule of \overline{M} . Then there exists an essential submodule N of M with $h(N) = \overline{N}$. By assumption, there exists an ideal I of the ring R such that N = MI. Then $\overline{N} = h(N) = h(MI) = h(M)I = \overline{M}I$ and \overline{M} is an essential multiplication module.

Proposition 2.4. For an essential multiplication module *M* over *R* the following assertions hold:

1) Every essential submodule of M is a fully invariant submodule of M.

2) if N is an essential submodule of M such that $N \cap MI = NI$ for every ideal I of R, then N is an essential multiplication module.

Proof.

1) Let *N* be a essential submodule of *M* and f be an endomorphism of *M*. There exist an ideal *I* of *R* such that N = MI. then $f(N) = f(IM) = f(M)I \subseteq MI = N$.

2) let *L* be an essential submodule of *N*, since *M* is essential multiplication module, there exists an ideal *I* of *R* such that L = MI. Therefore, $L = MI = L \bigcap MI \subseteq N \bigcap MI = NI \subseteq MI = L$.

Proposition 2.5. Every endomorphic image of an essential multiplication module is a fully invariant essential multiplication submodule.

Proof. The proof follows from Proposition 2.3 and Proposition 2.4(1). \Box

Proposition 2.6. Every direct summand of an essential multiplication module is a fully invariant essential multiplication submodule of the module.

Proof. Since every direct summand of an essential multiplication module is an endomorphic image of the module, the assertion follows from Proposition 2.5. \Box

Let R be a ring, then its center is Cen $R = \{r \in R \mid rx = xr(x \in R)\}$. We may say that an element $r \in R$ is central in case $r \in cenR$.

Note that if $A \subseteq CenR$, then the subring generated by A is also in the center of R.

An idempotent e of R is a central idempotent in case it is in the center of R.

Proposition 2.7. Let M be an essential multiplication module and f be an endomorphism of M with kerf $\leq_e M$. Then idempotent of End(Imf) is central.

Proof. Let M be an essential multiplication module over a ring R, \overline{M} be a homomorphic image of M, $R = End(\overline{M})$, and f be an idempotent of the ring R. By Proposition 2.3, \overline{M} is an essential multiplication module. By Proposition 2.5, $(1-f)R f(\overline{M}) \subseteq f(\overline{M}) \bigcap (1-f)(\overline{M}) = 0$ and $fR(1-f)(\overline{M}) \subseteq (1-f)(\overline{M}) \bigcap f(\overline{M}) = 0$. Therefore, (1-f)R f = f R(1-f) = 0 and f is a central idempotent of R. \Box

Corollary 2.2. If *M* is an essential multiplication module over a ring *R* and *P* is an ideal of *R* such that $M \neq MP$, then there exists a cyclic submodule *X* of *M* such that *P* does not contain the annihilator of the module $\frac{X}{M}$.

Proof. Since $M \neq MP$, there exist a cyclic submodule X of M that is not contained in the module MP. Since M is an essential multiplication module, there exists an ideal I of R such that X = MI. Then I is not contained in P, since X is not contained in MP. Since X = IM then I is contained in r(X/M). It follows that Pcan not be contained in $r_M(X/M)$.

Definition 2.2. A non empty set *L* together with two binary operations \lor and \land (read join and meet) on *L* is called a lattice if it satisfies the following identities:

$$L1 : (a)x \lor y \approx y \lor x$$

(b) $x \land y \approx y \land x$

$$L2: (a) x \lor (y \lor z) \approx (x \lor y) \lor z$$

(b) $x \land (y \land z) \approx (x \land y) \land z$

$$L3: (a) x \lor x \approx x$$

(b) $x \land x \approx x$

$$L4: (a)x \approx x \lor (x \land y)$$

(b) $x \approx x \land (x \lor y)$

3. GENERAL PROPERTIES OF ESSENTIAL MULTIPLICATION MODULE

In this section we study some properties of essential multiplication module.

Proposition 3.1. For a *R*-module *M* over a ring *R*, the following conditions are equivalent.

(1) *M* is an essential multiplication module.

(2) For every cyclic essential submodule X of M, there exists a right ideal B of the ring R such that X = MB.

(3) For every essential submodule X of M, there exists a set $\{X_i\}_{i \in I}$ of submodules of X and a set $\{B_i\}_{i \in I}$ of ideals of R such that $X = \sum_{i \in I} X_i$ and $X_i = MB_i$ for each $i \in I$.

Proof. The implication $(1) \Rightarrow (2)$ is obvious. $(2) \Rightarrow (3)$ let X be an essential submodule of M, $\{X_i\}_{i \in I}$ be the set of all essential cyclic submodule of X, and $B_i = (X_i : M)(i \in I)$. By assumption, $X_i \subseteq MB_i \subseteq X_i$ for all i. Since $X = \sum_{i \in I} X_i$ we have that $\{X_i\}$ and B_i are the required sets.

 $(3) \Rightarrow (1)$ let X be an essential submodule of M and a set $\{B_i\}_{i \in I}$ of ideals of R such that $X = \sum_{i \in I} X_i$ and $X_i = MB_i$ for each $i \in I$. we denote by B the ideal $\sum_{i \in I} B_i$ of R. Then $X = \sum_{i \in I} X_i = \sum_{i \in I} MB_i = M(\sum_{i \in I} B_i) = MB$, and M is an essential multiplication module.

Proposition 3.2. Let M be an essential multiplication module and $K \leq_e M$ then M/K is essential multiplication.

Proof. let N/K be an essential submodule of M/K. Since $K \leq_e M$, we conclude that $N \leq_e M$ (see [1,proposition 5.16 (1)]). Now there is an ideal I of R such that IM = N. It is not hard to check that I(M/K) = N/K which completes the proof.

Remark 3.1. Let M be an essential multiplication module and N an essential submodule of M. Then IM = N for an ideal I. If I is nilpotent, then N is small in M. Generally if R is a ring with all ideals nilpotent. Then every essential submodule of an essentially multiplication module is small. Recall from [6] that a module M is uniform, provided that each submodule of M is essential in M. Examples of uniform modules include Z-modules Z and $Z_{p^{\infty}}$. It is clear that, for an uniform module two concepts multiplication and essentially multiplication coincide.

Proposition 3.3. Every direct summand of an essential multiplication module is essential multiplication.

Proof. Let $M = N \bigoplus N'$ and K be an essential submodule of N. then by [1, proposition 5.20(2)], $K \bigoplus N'$ is an essential submodule of M. now by assumption, there is an ideal I of R such that $K \bigoplus N' = IM$. Hence $(K \bigoplus N') \bigcap N = IM \bigcap N = I(N \bigoplus N') \bigcap N$. By modularity, K = IN, as required.

The following gives an easy characterization of essentially multiplication modules.

Lemma 3.1. An *R*-module *M* is essentially multiplication if and only if for every essential submodule *N* of *M* and each $m \in M$, there is an ideal *I* of *R* such that $N + R_m = IM$.

Proof. let M be an essentially multiplication, $N \leq_e M$ and $m \in M$. Then N + Rm is an essential submodule of M by [1, proposition 5.16(1)]. So that $IM = N + R_m$ for an ideal of R. For the converse, let $N \leq_e M$. Then for each $m \in N$, there is an ideal I of R such that IM = N + Rm = N. This completes the proof. \Box

Remark 3.2. Let R be a ring with just one non-trivial ideal I. Let M be an essentially multiplication R-module. Then every essential submodule of M is maximal in M. To show this, let $N \leq_e M$, then for every $m \in M\mathbb{N}$, we have $N + Rm \leq_e M$. Therefore, either N + Rm = IM or N + Rm = M. Fist one implies that N + Rm = N which is a contradiction, otherwise N + Rm = M. It follows that N is maximal submodule. Recall that a submodule N of M fully invariant in M if for every endomorphism f of M, $f(N) \subseteq N$. A module M is called a duo module, in case every submodule of M is fully invariant in M. It is well-known that if N is fully invariant and $M = M_1 \bigoplus M_2$, then $N = (N \bigcap M_1) \bigoplus (N \bigcap M_2)$.

Theorem 3.1. Let M be a right module over a ring R and let $M = \bigoplus_{i \in I} M_i$ then the following conditions are equivalent:

1) *M* is an essential multiplication module.

2) Evry essential submodule of M is fully invariant in M, and all modules M_i are essential multiplication modules such that there exist ideals B_i of R with $M_i = MB_i(i\epsilon I)$.

3) $N = \bigoplus_{i \in I} (N \cap M_i)$ for every essential submodule N of M, and all modules M_i are essential multiplication modules such that there exist ideals B_i of R with $M_i = MB_i(i\epsilon I)$.

4) For every finite subset J of I the module $\bigoplus_{i \in J} M_j$ is a essential multiplication module such that $\bigoplus_{j \in I} M_j = MB_j$ for some ideal B_j of R.

Proof. The implication $(1) \Rightarrow (2)$ follows from corollary 2.9 (1), corollary (2.12).

 $(2) \Rightarrow (3)$ let N be an essential submodule of M and let $\varphi_i : M \to M_i$ be natural projections. Since N is a fully invariant essential submodule of M, we have $\varphi_i(N) \subseteq N$ for all $i \epsilon I$. Therefore, $N \subseteq \bigoplus_{i \epsilon I} \varphi_i(N) \subseteq N$. Thus, $N = \bigoplus_{i \epsilon I} \varphi_i(N)$ and $N = \bigoplus_{i \epsilon I} N \bigcap M_i$.

 $(3) \Rightarrow (1)$ let N be an essential submodule of M and $N_i = N \bigcap M_i(i\epsilon I)$. By assumption, all modules M_i are essential multiplication modules, $N = \bigoplus_{i \in I} N_i$ and for every $i\epsilon I$, there exist ideals B_i and C_i of such that $M_i = MB_i$ and $N_i = M_iC_i$. Since $N_i = MB_iC_i$ and $N = \sum_{i \in I} N_i$ it follows from Proposition 3.1 that M is a essential multiplication module.

 $(1) \Rightarrow (4)$ since M is a essential multiplication module, $\bigoplus_{j \in J} M_j = MB_j$ for some ideal B_j of R. By Corollary 2.2, the direct summand $\bigoplus_{j \in J}$ of the essential multiplication module M is an essential multiplication module.

 $(4) \Rightarrow (1)$ let N be an essential cyclic submodule of M. There exists a finite subset J of I such that $N \subseteq \bigoplus_{j \in J} M_J$. By assumption $\bigoplus_{j \in J}$ is an essential multiplication module such that $\bigoplus_{j \in J} M_j = MB_j$ for some ideal B_j of R. Since $\bigoplus_{j \in J} M_j$ is an essential multiplication, there exists an ideal Cj of R such that $(\bigoplus_{j \in J} M_j)C_j = N$. then $N = MB_jC_j$. By Proposition 3.1. M is an essential multiplication module.

Lemma 3.2. Let R be a ring, M be an essential multiplication module and $M = X \bigoplus Y$. Then the following assertions hold.

(1) $Z = X \bigcap Z \bigoplus Y \bigcap Z$ for any essential submodule Z of the module M.

(2) if there exist a module P and epimorphisms $\alpha : P \to X$ and $\beta : P \to Y$, then the homomorphism $\alpha + \beta : P \to M$ is an epimorphism.

(3) If the modules X and Y are cyclic then M is a cyclic

Proof.

(1) The proof follows from Theorem 3.1.

(2) We denote by Z the essential submodule $(\alpha + \beta)(P)$ of $M = X \bigoplus Y$. Let $\pi_X : M \to X$ and let $\pi_Y : M \to Y$ be natural projections. We have $\pi(Z) = \alpha(P) = X$ and $\pi_Y(Z) = \beta(\rho) = Y$; in addition, $Z = X \bigcap Z \bigoplus Y \bigcap Z$ by (1).

Therefore, $X = \pi_X(Z) = X \bigcap Z \subseteq Z$ and $Y = \pi_Y(Z) = Y \bigcap Z \subseteq Z$. Therefore, $M = X \bigoplus Y = Z$ and $\alpha + \beta$ is an epimorphism.

(3) Since X and Y are cyclic essential multiplication modules, there exist epimorphisms $R_R \to X$ and $R_R \to Y$. By (2), there exists an epimorphism $R_R \to M$; therefore M is a cyclic essential multiplication module.

Corollary 3.1. Let M be an essential multiplication module that is a direct sum of finitely many cyclic essential multiplication modules, then M is a cyclic essential multiplication module.

Proof. The proof follows from Lemma 3.2.(3).

A submodule N of a module M is called a superfluous submodule if $N + M \neq M$ for every proper submodule X of M. A ring R is said to be semilocal if the factor ring R/J(R) is an Artinian ring.

A ring is semiprimitive if and only if it has a faithful semisimple left module.

A ring R is said to be quasi-invariant if each of its maximal ideals is an ideal of R. A module M is called an invariant (resp.quasi-invariant) if each of its submodules (resp.each of its maximal submodules) is a fully invariant submodule of M. It is directly verified that a ring R is invariant (resp.quasi-invariant) if and only if R is an invariant (quasi-invariant) R-module.

Theorem 3.2. Let M be an artinian essential multiplication module and J is jacobson radical. Thus the following assertions hold.

(1) The module M/JM is cyclic module.

(2) If JM is supperfluous essential submodule of M, then M is a cyclic module.

(3) If M is a finitely generated module, then M is a cyclic module.

Proof.

(1) The homomorphic image M/JM of the essential multiplication module M is an essential multiplication module by Proposition 2.3. Since M/JM is a smiprimitve Artinian module, M/JM is a finitely generated semisimple module. By Corollary 3.1. The factor module M/JM is a cyclic module.

(2) Since M/JM is cyclic R-module, there exists a cyclic submodule X of M such that M = X + JM. By assumption JM is a superfluous submodule of M. therefor, M = X.

(3) Since *M* is a finitely generated module, J(M) is a supperflues submodule of *M*. By(2), *M* is a cyclic module.

Proposition 3.4. For a ring *R*, the following conditions are equivalent.

1) R is an invariant ring.

2) All cyclic R-modules are essential multiplication module.

3) The free principal ideal I of R is an essential multiplication ideal.

Proof.

 $(1) \Rightarrow (2)$ Let M be a cyclic R-module with generator m, N be an essential submodule of M = mR and I = (N : m). Since $N \subseteq mR$, we have $N \subseteq m(N : m) \subseteq N$; therefore, N = mI. In addition, I is an idea of R, since the ring R is an invariant. Therefore, N = mI = m(RI) = (mR)I = MI and M is an essential multiplication module.

The implication $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$ Let N be an ideal of the ring R. Since R_R is an essential multiplication module, there exist an ideal I of R such that N = RI. Therefore, N = RI = R(RI) = RN and N is an ideal ring R.

Lemma 3.3. For a ring R, the following assertion hold.

1) If $B_1, ..., B_u, C_1, ..., C_v$ are ideals of R such that $R = B_s + C_t$ for all s and t, then $R = (\bigcap_{s=1}^u B_i) + (\bigcap_{y=1}^v C_j)$.

2) If B and C are ideals of R and M is a R-module such that M/MB and M/MC are finitely generated modules, then M/M(BC) is a finitely generated module.

3) If $B_1, ..., B_n$ are ideals of R and M is a R-module such that all modules M/MB_i are finitely generated, then $M/M(B_1, ..., B_n)$, $M/M(B_1 \cap ... \cap B_n)$ and $M(MB_1 \cap ... \cap MB_n)$ are finitely generated modules.

Note that in the next theorem M is R-module where R is invariant ring.

Theorem 3.3. For a module M over an invariant ring R, the following conditions are equivalent.

1) *M* is an essential multiplication module which is direct sum of finitely many cyclic modules.

2) M is a cyclice module.

3) There exist elements $m_1, ..., m_n$ of M such that $M = \bigoplus_{i=1}^n m_i R$ and $R = r(m_i) + r(m_j)$ for all $i \neq j$.

Proof. The implication $(1) \Rightarrow (2)$ follows from Corollary 3.9.

The implication $(2) \Rightarrow (1)$ follows from Proposition 3.4.

(2) \Rightarrow (3) Let $M = m_1 R$ we set $m_2 = 0$. Then $M = m_1 R \bigoplus m_2 R$ and $R = r(m_1) + r(m_2)$.

 $(3) \Rightarrow (2)$ we set $m = m_1 + ... + m_n \in M$. Let $i \in \{1, 2, ..., n\}$. Since $r(m_i)$ is an ideal of the invariant ring R and $R = r(m_i) + r(m_j)$ for all $j \neq i$, Lemma 3.3(1) implies $R = r(m_i) + \bigcap_{j \neq i} r(m_j)$.

Therefore, there exist an element $a_i \in r(m_i)$ such that $1 - a_i \in \bigcap_{j \neq i} r(m_j)$. Therefore, $m(1 - a_i) = (m_1 + ... + m_n)(1 - a_i) = m_i(1 - a_i) = m_i$.

Thus $m_i R \subseteq mR$ for every i. Therefore, M = mR.

Corollary 3.2.

(1) Every simple module is an essential multiplication module.

(2) Every nonzero essential multiplication module over a simple ring is an simple module.

Corollary 3.3. Let M be an essential multiplication module, P be an maximal ideal of R.

1) If $M \neq MP$, then the module $\frac{M}{MP}$ is simple and there exists a cyclic essential submodule N of M such that $R = P + r(\frac{M}{N})$. is a cyclic module with at most two essential submodules of M. 2) $\frac{M}{MP}$ is a cyclic essential multiplication module with at most two submodules and either M = MP or MP is a maximal submodule of M.

Proof. 1) By Proposition 2.3, M/MP is an essential multiplication module over the simple ring $\frac{R}{P}$. Since $\frac{M}{MP} \neq 0$, it follows from Proposition 3.4(2) that the module M/MP is simple. By Proposition 2.3, there exists a cyclic essential submodule N of M such that P does not contain $r(\frac{M}{N})$; in addition, P is a maximal ideal. Therefore, $R = P + r(\frac{M}{N})$.

2) By Proposition 2.3, M/MP is an essential multiplication module over the simple ring $\frac{R}{P}$. If $\frac{M}{MP} = 0$, then the zero module $\frac{M}{MP}$ is a cyclic module with exactly one submodule. If $M/MP \neq 0$, then by (1), MP is an essential maximal submodule of M and M/MP is a cyclic module with exactly two submodules. \Box

Corollary 3.4. Let M be an essential multiplication module and R be a ring with commutative multiplication of ideals, P be a maximal ideal of R. Then the following conditions are equivalent.

1) M = MP

- 2) N = NB for every essential submodule N of M.
- 3) X = XP for every cyclic essential submodule of M.
- 4) *P* does not condition the annihilator of any cyclic essential submodule of *M*.

Proof. The implication $(1) \Rightarrow (2)$ follows from Lemma 3.3(1) the implications $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are obvious.

 $(3) \Rightarrow (4)$ assume that P contains the annihilator of some essential cyclic submodule X of M. By assumption X = Xp = 0. Then $R = r(X) \subseteq P$; this is a contradiction.

 $(4) \Rightarrow (3)$ Let X be a cyclic essential submodule of M. Since r(X) is not contained in P and the ideal P is maximal, R = P + r(M). Therefore, X = XR = X(P + r(X)) = XP + Xr(X) = XP.

Corollary 3.5. Let M be an R-module, R an invariant ring with essential commutative multiplication of ideals. The following conditions are equivalent.

1) *M* is an essential multiplication module.

2) For any maximal ideal P of R, either M = MP or $M \neq MP$ and there exists a cyclic essential submodule N of M such that R = P + r(M|N).

3) For any maximal ideal P of R, either P does not contain the annihilator of any cyclic essential submodule N of M such that P does not contain r(M/N).

4) For any maximal ideal P of R, either P does not contain the annihilator of any element of M or there exist elements $p \in P$ and $x \in M$ such that $M(1 - P) \subseteq xR$.

Proof. (1) \Rightarrow (2) Assume that M = MP. Let N be a cyclic essential submodule of M. Since M = MP, we have N = NP by Theorem 3.3(1). Therefore, P does not contain r(N).

Now assume that $M \neq MP$. By Corollary 2.2(1), there exists a cyclic essential submodule N of M such that R = P + r(M/N). The implication (2) \Rightarrow (1) follows from Corollary 3.2.

 $(3) \Rightarrow (4)$ Assum that there exists an element $m \in M$ such that $r(m) \subseteq P$. Since R is an invariant ring, P contains the annihilator of the cyclic essential submodule $mR \in M$. It follows from (3) that there exist a cyclic essential submodule N of M such that the maximal ideal P does not contain r(M/N). Therefore, R = P + r(M/N) and there exists an element $p \in P$ such that $M(1-p) \subseteq N$.

 $(4) \Rightarrow (1)$ Let Y be a cyclic essential submodule of M. By Proposition 3.1, it is enough to prove that $Y \subseteq M(Y : M).if(M(Y : M) : Y) = R$, then $Y = Y(M(Y : M) : Y) \subseteq M(Y : M)$. Assume that $(M(Y : M) : Y) \neq R$. Then there exists a maximal ideal P of R such that $(M(Y : M) : Y) \subseteq P$. By assumption, either P doesn't contain the annihilator of any cyclic essential submodule of M or there exist a cyclic essential submodule N of M such that P does not contain r(M/N).

Since $r(Y) \subseteq (M(Y : M) : Y) \subseteq P$, it follows from the assumption that there exist an element $p \in P$ and a cyclic essential submodule N of M such that $M(1-p) \subseteq N$. It follows that Y(1-P)R is a submodule of the cyclic module N over the invariant ring R. Therefore, there exists an ideal D of R such that Y(1-P)R = ND. We have $MD(1-P)R = M(1-P)D \subseteq ND \subseteq Y$. Therefore, $D(1-P)R \subseteq (Y : M)$. It follows that $Y(1-P^2) \subseteq Y(1-P)R(1-P)R = ND(1-P)R \subseteq M(Y : M)$. Therefore, $(1-P^2) \in (M(Y : M) : Y) \subseteq P$ and $1 \in pR + P = P$; this is a contradiction.

REFERENCES

- [1] F. W. ANDERSON, K. R. FULLE: *Rings and Categories of Modules*, Springer-Verlog, New York, 1992.
- [2] Z. A. EL-BAST, P. F. SMITH: Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
- [3] S. EBRAHIMI ATANI, S. KHOJASTEH, G. GHALEH: On Multiplication Modules, Int. Math. Forum, 1(21-24) (2006), 1175-1180.
- [4] S. H. MOHAMED, B. J. MÜLLER: Continuous and Discrete Modules London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [5] A. A. TUGANBAEV: *Multiplication moduls*, Jurnal of Mathematical Science, **123**(2) (2004), 1–57.
- [6] R. WISBAUER: Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MAZANDARAN BABOLSAR, IRAN *Email address*: talebi@umz.ac.ir

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MAZANDARAN BABOLSAR, IRAN *Email address*: motahareh.irani64@yahoo.com