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BAYESIAN ESTIMATION BASED ON FIRST FAILURE CENSORED DATA

N. M. YHIEA

ABSTRACT. In this paper, we discuss the problem of estimating the parameters of
the generalized linear exponential distribution based on progressive first- failure
censoring scheme. The maximum likelihood and Bayes methods of estimation are
used. The Markov Chain Monte Carlo technique is used for computing the Bayes
estimates under informative and non-informative priors. The Bayes estimates of
the parameters are compared with their corresponding maximum likelihood esti-
mates. A numerical example is provided to illustrate the proposed methods. A
real data sets are used to show the performance of the censoring schemes using
maximum likelihood estimator and Bayes estimator.

1. INTRODUCTION

The probability density function (pdf) of the generalized linear exponential dis-
tribution (GLED) is given by

f(xi) = α

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

(1.1)

α, θ > 0 and λ ≥ 0,

and the corresponding cumulative distribution function (cdf) is given by

F (xi) = 1− e−(λxi+
θ
2
x2i )

α

, α, θ > 0 and λ ≥ 0.
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The GLED was originally proposed by [1], they derived some statistical prop-
erties such as moments, modes and quantiles. They presented some special cases
are as well as distributions related to this generalization. They derived Maximum
likelihood estimators of the parameters. This distribution can be used for model-
ing bathtub, increasing and decreasing hazard rate behavior. This distribution is
important because it contains some widely known distributions like exponential
distribution, Rayleigh distribution, linear exponential distribution, Weibull distri-
bution and Generalized Rayleigh distribution.

Censoring is utilized in the statistical analysis of reliability characteristics of a
system or device even with a loss in efficiency. There are several types of censor-
ing schemes which are utilized in life-testing experiments.the two most popular
censoring schemes are conventional type-I and type-II censoring schemes. These
censoring schemes with different lifetime models have been studied extensively
by many authors such as [2] and [3]. Authors in [4] proposed a life test in which
the experimenter might decide to group the test units into several sets, each as an
assembly of test units, and then run all the test units simultaneously until the first
failure in each group. [5] showed that when the lifetime of an item is very high
and test facilities are limited but test material is relatively less expensive, one can
test k × n units by testing n sets or groups, each containing k units.

The life test is then conducted by testing each of these sets of units separately
until the occurrence of first failure in each set. Such a censoring scheme is called
first-failure censoring scheme. Under this scheme, one can save a considerable
amount of time as well as money. The first-failure censoring schemes were also
studied by [6] and [7]. But these censoring schemes do not allow the removal of
units from the test at points other than the final termination point. Another type
of censoring called progressive censoring allows removal of units from the test at
times other than the final termination point. The progressive type-II censoring
has become very popular in life-testing experiments because it saves time and cost
of the experiment.Progressive type-II censoring was introduced in the literature
by [8]. [9] presented an overview on progressive censoring. Some recent studies
on progressive censoring can be found in [10], [11] and [12].

Paper [13] combined the concepts of first-failure censoring and progressive cen-
soring to develop a new life-test plan called progressive first-failure censoring
scheme. They obtained maximum likelihood interval estimation (MLEs), and ex-
pected time on test for the parameters of the Weibull distribution based on the
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progressive first-failure censored sample. Some recent studies on progressive first
failure censoring scheme can be found in [14], [15] and [16].

Paper [17] discussed point and interval estimation for Lindley distribution
based on progressive first failure censoring by two methods: Maximum likeli-
hood estimation (Mle) and Bayesian estimation. Also, they made a comparison
between Bayesian estimation under Symmetric and Asymmetric Loss Functions.
Highest Posterior Density (HPD) interval and Approximate Confidence Interval
(CI) are obtained. The lifetime performance index CL for the three-parameter
power Lomax distribution(POLO) under progressive first-failure type II right cen-
soring sample with respect to a lower specification limit (L) has been evaluated
by [18]. Also, he discussed the statistical inference concerning CL via obtaining
the maximum likelihood of CL on the base of progressive first-failure censoring.

Recently, [19] studied the problem of statistical estimation and optimal cen-
soring from three-parameter inverted generalized linear exponential distribution
under progressive first failure censored samples, [20] discussed estimation and
prediction for the two-parameter Chen distribution on the basis of progressive
first failure censoring.

The progressive first-failure censoring scheme can be described as follows: sup-
pose that n independent groups with k items within each group are put on a
life-testing experiment at time zero and the progressive censoring scheme R =

(R1, R2, . . . , Rm) is pre-fixed such that R1 groups and the group in which the first
failure is observed are randomly removed from the experiment as soon as the
first failure has occurred. R2 groups and the group in which the second failure
is observed are randomly removed from the remaining live (n − R1 − 1) groups
at the time of the second failure, and so on. This procedure continues until all
remaining live Rm groups and the group in which the mth failure has occurred are

removed at the time of the mth failure. It is clear that
m∑
i=1

Ri +m = n. Note that if

R1 = R2 =···= Rm = 0, the progressive first-failure censoring is reduced to a first-
failure censoring scheme and if R1 = R2 = · · · = Rm− 1 = 0 and Rm = n−m, this
scheme reduces to first-failure type-II censoring.With k = 1 in each group, the pro-
gressive first-failure censoring scheme becomes the progressive type-II censoring
scheme. Thus, progressive first-failure censoring is a generalization of progressive
censoring.
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Let x1:m:n:k, x2:m:n:k, . . . , xm:m:n:k be a progressive first-failure type-II censored
sample from population with pdf f (·) and distribution function F(·) with pro-
gressive censoring scheme R. On the basis of a progressive first-failure censored
sample, the likelihood function is given by [9] and [13] as follows:

L (x1:m:n:k, x2:m:n:k, . . . , xm:m:n:k)

=Akm
m∏
ı=1

f (xi:m:n:k) [1− F (xi:m:n:k)]
k(Ri+1)−1 ,

0 <x1:m:n:k < x2:m:n:k < . . . < xm:m:n:k <∞

(1.2)

where

(1.3) A = n(n−R1 − 1)(n−R1 −R2 − 1) . . . (n−R1 −R2 − . . . Rm−1 −m+ 1).

In this paper, we describe the maximum likelihood and Bayes estimators of the
unknown parameters of GLED under progressive first-failure type-II censoring. In
Section 2, we obtain MLEs of the parameters. The asymptotic confidence inter-
vals of parameters are obtained using observed Fisher information matrix. Bayes
estimators are obtained using the MCMC. Also, highest posterior density (HPD)
credible intervals of the parameters are derived in Section 3. In Section 4, a Monte
Carlo simulation study is performed to compare the effects of group sizes, num-
ber of groups, effective sample sizes and different censoring schemes on derived
estimates. Section 5 deals with a real data set for illustration purposes.

2. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

In this section, we estimate the parameters α, θ and λ, by constructing the max-
imum likelihood and we compute the observed Fisher information based on a
likelihood equations.

Let x1:m:n:k, x2:m:n:k, . . . , xm:m:n:k be a progressive first-failure type-II censored
sample from GLED with pre-fixed progressive censoring scheme R, effective sam-
ple size m, no.of groups n and group size k. Hereafter, we shall use x = (x1, x2, . . . ,

xm) in place of (x1:m:n:k, x2:m:n:k, . . . , xm:m:n:k). Then, the likelihood function using
Equations (1.1) and (1.2) is given by

L(α, θ, λ|x) = Akmαm
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi)

e−(λxi+
θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1,(2.1)
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where A is defined in (1.3). The log-likelihood function can be written as

l(α, θ, λ|x) = logA+m log k +m logα + (α− 1)
m∑
i=1

(
λxi +

θ

2
x2i

)
(2.2)

+
m∑
i=1

log (λ+ θxi)−
m∑
i=1

(
λxi +

θ

2
x2i

)
−

m∑
i=1

[k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α
.

By differentiating (2.2) with respect to α, θ,and λ, and equating each result to
zero, three equations must be simultaneously satisfied to obtain MLE of α̂, θ̂ and
λ̂. The maximum likelihood equations can be obtained as the solution of

∂l(α, θ, λ|x)
∂α

=
m

α
+

m∑
i=1

(
λxi +

1

2
θx2i

)

−
m∑
i=1

[k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α
ln

(
λxi +

1

2
θx2i

)
,(2.3)

∂l(α, θ, λ|x)
∂θ

= (α− 1)
m∑
i=1

1

2
x2i +

m∑
i=1

xi
λ+ θxi

−
m∑
i=1

1

2
x2i −

m∑
i=1

α

2
x2i [k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α−1
,(2.4)

and

∂l(α, θ, λ|x)
∂λ

= (α− 1)
m∑
i=1

xi +
m∑
i=1

1

λ+ θxi

−
m∑
i=1

xi −
m∑
i=1

αxi[k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α−1
.(2.5)

Solving ∂l(α,θ,λ|x)
∂α

= 0, ∂l(α,θ,λ|x)
∂θ

= 0,and ∂l(α,θ,λ|x)
∂λ

= 0,we obtain α̂, θ̂ and λ̂.
Since, the Equations (2.3), (2.4) and (2.5) are nonlinear equations in three

parameter α̂, θ̂ and λ̂.The exact solution is not easy to compute.Therefore a some
numerical methods must be employed.

2.1. Approximate confidence interval. The asymptotic variance-covariance ma-
trix of the estimators of the parameters ϕ = (ϕ1, . . . ϕn) is obtained by inverting the
Fisher information matrix (given by taking the expectation of the second derivative
of the log- likelihood functions) in which elements are negatives. In the present
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situation, ie seems appropriate to approximate the expected values by their MLE.
Accordingly, the approximate variance-covariance matrix is given by [21].

− ∂2l
∂2ϕ2

1
. . . − ∂2l

∂2ϕ1ϕn
...

...
...

− ∂2l
∂2ϕn

. . . − ∂2l
∂2ϕ2

n


−1

(ϕˆ
1,...,ϕ

ˆ
n)

From the log-likelihood equation (2.2), we get

(2.6)
∂2l(α, θ, λ|x)

∂α2
= −m

α2
−

m∑
i=1

[k(Ri+1)−1]

(
λxi +

θ

2
x2i

)α
[ln

(
λxi +

1

2
θx2i

)
]2,

∂2l(α, θ, λ|x)
∂θ2

=
m∑
i=1

−x2i
(λ+ θxi)2

−
m∑
i=1

α(α− 1)x4i
4

[k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α−2
,

(2.7)

∂2l(α, θ, λ|x)
∂λ2

=
m∑
i=1

−1
(λ+ θxi)2

−
m∑
i=1

α(α− 1)x2i [k(Ri + 1)− 1]

(
λxi +

θ

2
x2i

)α−2
,

(2.8)

∂2l(α, θ, λ|x)
∂α∂θ

=
m∑
i=1

1

2
x2i −

m∑
i=1

[k(Ri + 1)− 1]

(
1

2
x2i

(
λxi +

1
2
θxi
)α

λxi +
1
2
θx2i

+
1

2
αx2i

(
ln

(
λxi +

1

2
θx2i

))(
λxi +

1

2
θx2i

)α−1)
,

∂2l(α, θ, λ|x)
∂α∂λ

=
m∑
i=1

xi −
m∑
i=1

[k(Ri + 1)− 1]

(
xi
(
λxi +

1
2
θxi
)α

λxi +
1
2
θx2i

(2.9)

+ αxi

(
ln

(
λxi +

1

2
θx2i

))(
λxi +

1

2
θxi

)α−1)
,

∂2l(α, θ, λ|x)
∂θ∂λ

=
m∑
i=1

(
−xi

(λ+ θxi)
2

)
−

m∑
i=1

[k(Ri + 1)− 1]
α (α− 1)x3i

2

(
λxi +

1

2
θxi

)α−2
.

(2.10)
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Then, the asymptotic variance-covariance matrix of the estimators of the pa-
rameters α, θ and λ is obtained by inverting the Fisher information matrix given
by taking the expectation of Equations (2.6)- (2.10), in which elements are nega-
tives. In the present situation, it seems appropriate to approximate the expected
values by their MLE. Accordingly, the approximate variance -covariance matrix is
given as σˆ

αα σˆ
αθ σˆ

αλ

σˆ
αθ σˆ

θθ σˆ
θλ

σˆ
αλ σˆ

θλ σˆ
λλ

 =

 −
∂2l(α,λ,θ)
∂2α2 −∂2l(α,λ,θ)

∂2αθ
−∂2l(α,λ,θ)

∂2αλ

−∂2l(α,λ,θ)
∂2αθ

−∂2l(α,λ,θ)
∂2θ2

−∂2l(α,λ,θ)
∂2θλ

−∂2l(α,λ,θ)
∂2αλ

−∂2l(α,λ,θ)
∂2θλ

−∂2l(α,λ,θ)
∂2λ2


−1

(α̂,θ̂,λ̂)

.

The approximate confidence interval for the parameters α, θ and λ are respec-
tively given as:

α̂± Z γ
2

√
σ̂αα, θ̂ ± Z γ

2

√
σ̂θθ and λ̂± Z γ

2

√
σ̂λλ,

where Z γ
2

is the percentile of the standard normal distribution with right tail prob-
ability γ

2
.

3. BAYESIAN ESTIMATION

In this section, we describe the Bayesian estimators of the unknown parameters
of GLED based on a progressive first-failure type-II censored sample. In Bayesian
estimation, we consider three types of loss functions. The first is squared error loss
function (SEL) which is classified as a symmetric function and associates equal
importance to losses for overestimation and underestimation of equal magnitude.
The second is LINEX loss function which is asymmetric, was introduced by [23].
These loss functions were widely used by several authors, among of them [24],
[25], [26] and [27]. The third is the Entropy loss used by several authors [28]
and [29]. From the likelihood function in Equation (2.1), the joint conjugate
priors for the unknown parameters are not easy to obtain. Here, we assume the
following independent gamma priors for the parameters α, θ and λ as

g1 (α) ∝ αa2−1e−αa1 , a1 > 0, a2 > 0 α > 0,

g2 (θ) ∝ θa4−1e−θa3 , a3 > 0, a4 > 0, θ > 0,

and

g3 (λ) ∝ λa6−1e−λa5 , a6 > 0, a5 > 0, λ ≥ 0,
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where a1, a2, a3, a4, a5, a6 are chosen to reflect prior knowledge about α, θ and λ.

When a1 = a2 = a3 = a4 = a5 = a6 = 0, there are non-informative priors of α, θ
and λ.

The joint prior distribution of α, θ and λ can be written as

(3.1) g (α, θ, λ) ∝ αa2−1e−αa1 θa4−1e−θa3 λa6−1e−λa5 , α, θ > 0, λ ≥ 0,

a1, a2, a3, a4, a5, a6 > 0.

Thus, using the likelihood function in Equation (2.1) and joint prior distribution
in Equation (3.1), the joint posterior distribution of α, θ and λ is given by

π (α, θ, λ | x) = L(x|α, θ, λ)g (α, θ, λ)
∞∫
0

∞∫
0

∞∫
0

L(x|α, θ, λ)g (α, θ, λ)αθλ
,

=
1

T
kmαa2+m−1e−αa1 θa4−1e−θa3 λa6−1e−λa5

×
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1,

(3.2)

where

T =

∞∫
0

∞∫
0

∞∫
0

[
αa2+m−1e−αa1 θa4−1e−θa3 λa6−1e−λa5

×
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1.

In Bayesian statistics the posterior distribution π (α, θ, λ | x) contains all infor-
mation on the unknown parameters given the observed data. All statistical infer-
ence can be deduced from the posterior distribution. We observe that equation
( 3.2) can not solved explicitly, so we use Markov Chain Monte Carlo (MCMC)
technique to obtain the Bayes estimator for α, θ and λ and the corresponding HPD
credible intervals . There are several conventional methods to define such Markov
Chains exist, including Gibbs sampling, Metropolis-Hastings (MH) and reversible
jump. Using these algorithms it is possible to implement posterior simulation in
essentially any issue which allow point wise evaluation of the prior distribution
and likelihood function. From Equation (3.2), the conditional posterior of α, is
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proportional to

g∗1 (α | θ, λ, x) ∝ αa2+m−1e−αa1
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1,(3.3)

Similarly, the conditional posterior distribution for θ and λ are respectively

g∗2 (θ | α, λ, x) ∝ θa4+m−1e−θa3
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1,(3.4)

and

g∗3 (λ | α, θ, x) ∝ θa6+m−1e−θa5
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(3.5)

(λ+ θxi) e
−(λxi+ θ

2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1.

We can see the conditional posteriors distributions for α, θ and λ are log-concave
and can not be reduced analytically to well known distributions. So, as suggested
by [22], a common way to solve this problem is to use the hybrid algorithm by
combined a MH sampling with Gibbs sampling scheme using normal distribution.
There for the algorithm works as follow:

(i) Set the initial values of α, θ and λ say (α0, θ0,λ0).
(ii) Set j = 1.

(iii) Using MH, generate αj1 from g∗1(αj−1 | θj−1,λj−1,x) with normal distribu-
tion, N(αj−1,βαV α).

(iv) Using MH, generate θj1 from g∗2(θj−1 | αj−1,λj−1,x) with normal distribu-
tion, N(θj−1,βθVθ).

(v) Using MH, generate λj1 from g∗3(λj−1 | αj−1,θj−1,x) with normal distribu-
tion, N(λj−1,βλVθ),where βα, βθ and βλ are scaling factor and V α , Vθ and
Vθ are variances-covariance matrix.

(vi) Set j = j + 1.

(vii) Repeat steps from 1to 5 N times and obtain f1(αj, θj, λj), j = 1, . . . , N.

(viii) The Bayes estimators of u(α, θ, λ) can be approximated as:

(3.6) ûMc ≈
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)
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where

f1(α, θ, λ) =
m∏
i=1

(
λxi +

θ

2
x2i

)α−1
(λ+ θxi) e

−(λxi+ θ
2
x2i )

α

[e−(λxi+
θ
2
x2i )

α

]k(Ri+1)−1,

(ix) Ordered αj , θj and λj ,j = 1, . . . N and suppose that we would like to
construct the HPD credible intervals of α, θ and λ Now, we construct all
100(1− η)% credible intervals of α say (α[1], α[N(1−α)]), . . . (α[Nα],α[N ]).Here
[X] denotes the largest integer less than or equal to X. Then the HPD cred-
ible interval of α is that interval which has the shortest length. Similarity,
the HPD credible interval of θ and λ can also be constructed.

3.1. Bayes Estimate Based on MCMC under LINEX Loss Function.

(i) For estimating α, consider u (αj, θj, λj) = exp[−hαj] , then

(3.7) α̂BL =
−1
h

log

[
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

]
.

(ii) For estimating θ, consider u (αj, θj, λj) = exp[−hθj] , then

(3.8) θ̂BL =
−1
h

log

[
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

]
.

(iii) For estimating λ, consider u (αj, θj, λj) = exp[−hλj] , then

(3.9) λ̂BL =
−1
h

log

[
1
N

∑N
i=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

]
.

where h represents the direction and degree of symmetry, (if h > 0, the
overestimation is more serious than underestimation, and vice-versa). For
h close to zero, the LINEX loss is approximately SEL and therefore almost
symmetric. The estimators α̂BL, θ̂BL and λ̂BL are Bayes estimators obtained
by using the approximation for LINEX loss function.

3.2. Bayes Estimate Based on MCMC under Squared Error Loss Function.

(i) For estimating α, consider u (αj, θj, λj) = αj, then

(3.10) α̂SL =
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

.
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(ii) For estimating θ, consider u (αj, θj, λj) = θj, then

(3.11) θ̂SL =
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

.

(iii) For estimating λ, consider u (αj, θj, λj) = λj , then

(3.12) λ̂SL =
1
N

∑N
i=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

.

The estimators α̂SL, θ̂SL and λ̂SLare Bayes estimators obtained by using the
approximation for SEL function.

3.3. Bayes estimate based on MCMC under Entropy Function.

(i) For estimating α, consider u (αj, θj, λj) = α−hj , therefore

(3.13) α̂BE =

(
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

)− 1
h

.

(ii) For estimating θ, consider u (αj, θj, λj) = θj, then

(3.14) θ̂SL =
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

.

(iii) For estimating λ, consider u (αj, θj, λj) = λ−hj , then

(3.15) λ̂BE =

(
1
N

∑N
j=1 u (αj, θj, λj) f1(αj, θj, λj)

1
N

∑N
j=1 f1(αj, θj, λj)

)− 1
h

.

The estimators α̂BE, θ̂BE and λ̂BE are Bayes estimators obtained by using
the approximation for Entropy function.

4. SIMULATION STUDY

This section deals with obtaining some numerical results. We simulated 1000
progressively first-failure censored samples from GLED (α, θ, λ). The samples were
simulated by using the algorithm described in [30]. We used different sample
sizes n, different effective sample of sizes m, different k, and different of sampling
schemes to compare the MLEs and different Bayes estimators. First we used the
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non informative gamma priors for the three parameters, that is when hyper pa-
rameters are 0 (a1 = a2 = a3 = a4 = a5 = a6 = 0). Second, we used informative
prior, a1 = 2, a2 = 0.05, a3 = 1, a4 = 2, a5 = 0.05 and a6 = 1. In two cases, we used
the SEL, LINEX loss function and Entropy function to compute the Bayes estimates.
We also computed the Bayes estimates and 95% credible intervals based on 10000
MCMC samples and discard the first 1000 values as burn-in. Also, we compute the
MLEs and 95% confidence intervals based on the observed Fisher information ma-
trix. The different censoring schemes used in this article have been represented by
short notations such as (0*3) denotes (0,0,0) and ((1,0)*3) denotes (1,0,1,0,1,0).
We are giving results only for two different group sizes k = 2, 5 and for each group
size, two different no. of groups n = 30, 50 and for each n, there are different fail-
ure information m and h = 2. The results of simulations are presented in Tables
1-4. From these tables the following conclusions are made:

(i) In case of maximum likelihood estimation, as n increases the MSE of es-
timates decrease as expected. Moreover, as m increases, the MSE of esti-
mates decrease. Also, as the value of the group size k increases, the MSE
of most parameter almost decrease.

(ii) Bayes estimates are also very good in respect of MSE. Bayes estimates are
better than MLEs in respect of MSE as they include prior information. It
is also observed that as the failure proportion m/n increases, the point
estimates become even better. Also, as group size k increases, the MSE
increase in most of the cases.

(iii) Average length of confidence/HPD credible intervals narrow down as n
increases. HPD credible intervals are better than confidence intervals in
respect of average length. Also, as the group size k increases, the average
length of confidence intervals increases while the average length of HPD
credible intervals narrows down almost in all cases.

(iv) The MSE of Bayesian estimators ( SEL, LINEX and Entropy) is always sim-
ilar in most cases.
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TABLE 1. Average values of the different estimators and the corre-
sponding MSEs when α = 2, θ = 3 and λ = 1 with informative priors

MLE Bayes SEL Bayes LINEX Bayes Entropy

k n m Scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

2 30 15 (15, 0∗14) 2.2762 3.3637 1.0016 2.265 3.069 0.994 2.265 3.013 0.994 2.265 3.029 0.994

(0.19924) (0.14726) (0.01015) (0.18494) (0.31988) (0.00739) (0.18491) (0.40873) (0.00738) (0.18492) (0.38268) (0.00738)

(1∗15) 1.9912 2.7535 1.0145 1.99 2.813 1.027 1.99 2.802 1.027 1.99 2.806 1.027

(0.10463) (0.94217) (0.14202) (0.1031) (0.84647) (0.15307) (0.1031) (0.85048) (0.15302) (0.13031) (0.85507) (0.15303)

(0∗14, 15) 1.4648 3.238 0.4938 1.464 3.205 0.495 1.464 3.305 0.495 1.464 3.305 0.495

(0.31705) (0.6293) (0.26476) (0.31712) (0.5682) (0.26339) (0.31712) (0.5687) (0.2634) (0.31712) (0.5686) (0.2634)

20 (10, 0∗19) 1.7546 2.9554 0.9343 1.755 2.959 0.934 1.755 2.959 0.934 1.755 2.959 0.934

(0.06097) (0.1267) (0.04957) (0.06082) (0.00759) (0.05085) (0.06082) (0.00767) (0.05085) (0.06082) (0.00763) (0.05085)

(0∗5, 1∗10, 0∗5) 2.0397 2.7224 0.7961 2.04 2.77 0.795 2.04 2.769 0.794 2.04 2.769 0.794

(0.0674) (0.5798) (0.05734) (0.06792) (0.6887) (0.05767) (0.06791) (0.6883) (0.05768) (0.06791) (0.68969) (0.0577)

(0∗19, 10) 1.7612 3.2911 0.7323 1.761 3.191 0.736 1.761 3.191 0.736 1.761 3.192 0.736

(0.14992) (0.24008) (0.08772) (0.14916) (0.29629) (0.08725) (0.14916) (0.29696) (0.08727) (0.14916) (0.29688) (0.08729)

50 30 (20, 0∗29) 1.8584 2.8134 0.8816 1.858 2.822 0.883 1.858 2.821 0.883 1.858 2.821 0.883

(0.03423) (0.12167) (0.02192) (0.03409) (0.11209) (0.02122) (0.03409) (0.11213) (0.02123) (0.03409) (0.11212) (0.02123)

(0∗5, 1∗20, 0∗5) 2.0679 2.895 1.1247 2.07 2.853 1.129 2.07 2.851 1.129 2.07 2.852 1.129

(0.01862) (0.46402) (0.03061) (0.01904) (0.48501) (0.03091) (0.01904) (0.48625) (0.03092) (0.01904) (0.48594) (0.03091)

(0∗29, 20) 2.0159 3.2862 0.812 2.018 3.108 0.825 2.018 3.091 0.825 2.018 3.1 0.825

(0.03127) (0.191603) (0.05248) (0.03478) (0.27936) (0.04627) (0.03478) (0.25764) (0.04628) (0.03478) (0.27107) (0.0463)

40 (10, 0∗39) 2.022 2.8267 1.0852 2.026 2.803 1.079 2.026 2.798 1.079 2.026 2.8 1.079

(0.02516) (0.07966) (0.2159) (0.0254) (0.08354) (0.02064) (0.0254) (0.08628) (0.02063) (0.0254) (0.08508) (0.02062)

(0∗15, 1∗10, 0∗15) 2.0249 3.1337 0.8623 2.024 3.231 0.863 2.024 3.23 0.863 2.024 3.231 0.863

(0.013215) (0.12719) (0.02024) (0.013306) (0.20162) (0.02044) (0.013305) (0.20007) (0.02044) (0.013306) (0.20097) (0.02044)

(0∗39, 10) 2.0227 2.8267 1.0852 2.026 2.798 1.079 2.026 2.808 1.079 2.026 2.8 1.079

(0.02516) (0.07966) (0.02159) (0.0254) (0.08628) (0.02063) (0.0254) (0.08079) (0.02064) (0.0254) (0.08508) (0.02062)

5 30 15 (15, 0∗14) 1.7295 2.7162 0.8432 1.729 2.63 0.842 1.729 2.629 0.842 1.729 2.629 0.842

(0.14071) (0.8919) (0.04229) (0.14063) (0.81326) (0.04204) (0.14063) (0.81302) (0.04204) (0.14063) (0.81331) (0.04204)

(1∗15) 1.3129 2.7655 0.6107 1.313 2.773 0.614 1.313 2.773 0.614 1.313 2.773 0.614

(0.47216) (0.05499) (0.15158) (0.47198) (0.0514) (0.14898) (0.47198) (0.0516) (0.14898) (0.47198) (0.05151) (0.14898)

(0∗14, 15) 1.7779 2.5209 0.8032 1.777 2.513 0.805 1.777 2.501 0.805 1.777 2.506 0.805

(0.04935) (0.22951) (0.03875) (0.04991) (0.23744) (0.03797) (0.04991) (0.24891) (0.03801) (0.04991) (0.24437) (0.03805)

20 (10, 0∗19) 1.9472 2.4868 0.9224 1.947 2.435 0.92 1.947 2.426 0.92 1.947 2.429 0.90

(0.08386) (0.76673) (0.03933) (0.08455) (0.77016) (0.0372) (0.08455) (0.78221) (0.0371) (0.08455) (0.77828) (0.037)

(0∗5, 1∗10, 0∗5) 2.2574 3.1229 1.0388 2.254 3.127 1.036 2.254 3.124 1.036 2.254 3.126 1.036

(0.06624) (0.01511) (0.0015) (0.06443) (0.0161) (0.00133) (0.06443) (0.01547) (0.00133) (0.06443) (0.0158) (0.00133)

(0∗19, 10) 2.2086 3.2167 0.9231 2.21 3.2167 0.933 2.21 3.269 0.933 2.209 3.263 0.933

(0.04353) (0.04698) (0.00592) (0.04389) (0.07027) (0.00452) (0.04389) (0.07233) (0.00452) (0.04389) (0.06938) (0.00453)

50 30 (20, 0∗29) 2.0531 2.9322 0.9685 2.05 3.006 0.968 2.05 3.004 0.968 2.05 3.005 0.968

(0.05444) (0.70911) (0.01117) (0.05304) (0.66491) (0.0105) (0.05304) (0.62081) (0.0105) (0.05304) (0.65061) (0.0105)

(0∗5, 1∗20, 0∗5) 2.1811 2.9366 0.9486 2.179 2.827 0.949 2.179 2.827 0.949 2.179 2.823 0.949

(0.03279) (0.00402) (0.00145) (0.03202) (0.0161) (0.00135) (0.03203) (0.016) (0.00132) (0.03202) (0.01026) (0.00132)

(0∗29, 20) 1.8508 2.8953 1.0762 1.849 2.861 1.067 1.849 2.861 1.067 1.849 2.861 1.067

(0.02226) (0.01096) (0.00581) (0.02284) (0.01928) (0.00452) (0.02284) (0.0194) (0.00452) (0.02284) (0.01934) (0.00452)

40 (10, 0∗39) 1.9418 2.9558 0.9613 1.94 2.986 0.91 1.94 2.985 0.91 1.94 2.985 0.91

(0.03818) (0.29319) (0.01114) (0.03758) (0.27358) (0.0032) (0.03758) (0.27348) (0.0033) (0.03758) (0.27358) (0.003)

(0∗15, 1∗10, 0∗15) 2.1273 3.04 1.024 2.123 3.03 1.02 2.123 3.03 1.02 2.123 3.03 1.02

(0.01621) (0.00182) (0.00142) (0.01503) (0.00904) (0.00116) (0.01503) (0.00904) (0.00116) (0.01503) (0.00115) (0.00116)

(0∗39, 10) 2.0579 2.8958 1.0746 2.061 3.046 1.082 2.061 3.042 1.052 2.061 3.044 1.052

(0.00335) (0.01085) (0.00517) (0.00377) (0.00211) (0.00317) (0.00377) (0.0018) (0.00432) (0.00377) (0.00195) (0.00432)

.
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TABLE 2. Average values of the different estimators and the corre-
sponding MSEs when

α = 2, θ = 3 and λ = 1 with non informative priors
MLE Bayes SEL Bayes LINEX Bayes Entropy

k n m Scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

2 30 15 (15, 0∗14) 2.6030 2.3234 1.3433 2.626 2.508 1.342 2.626 2.501 1.342 2.626 2.504 1.3422

(0.36379) (0.45777) (0.11785) (0.39221) (0.2422) (0.11681) (0.39193) (0.24936) (0.11679) (0.39205) (0.24647) (0.11679)

(1∗15) 2.1099 3.6459 0.6685 2.11 3.989 0.668 2.117 3.956 0.668 2.117 3.976 0.667

(0.01208) (0.41713) (0.1099) (0.01362) (0.97772) (0.10991) (0.0136) (0.91458) (0.11026) (0.01361) (0.95308) (0.11071)

(0∗14, 15) 1.2114 3.2655 0.6567 1.209 3.192 0.656 1.209 3.19 0.656 1.209 3.191 0.656

(0.62182) (0.07052) (0.11783) (0.62526) (0.03699) (0.11857) (0.62526) (0.03616) (0.11857) (0.62526) (0.0366) (0.11858)

20 (10, 0∗19) 2.5357 2.7446 0.8801 2.536 2.641 0.88 2.536 2.645 0.88 2.536 2.639 0.88

(0.28698) (0.06523) (0.01438) (0.287) (0.12871) (0.01442) (0.28703) (0.12631) (0.01442) (0.28698) (0.1301) (0.01443)

(0∗5, 1∗10, 0∗5) 1.9296 2.3884 0.8739 1.929 2.378 0.873 1.929 2.378 0.873 1.929 2.378 0.873

(0.00496) (0.37408) (0.01591) (0.00509) (0.38629) (0.0161) (0.00509) (0.38653) (0.0161) (0.00509) (0.38644) (0.0161)

(0∗19, 10) 1.7057 2.969 0.8189 1.702 2.935 0.8291 1.702 2.936 0.821 1.702 2.9357 0.821

(0.08664) (0.049439) (0.0328) (0.08857) (0.041105) (0.03215) (0.08857) (0.041476) (0.03215) (0.08857) (0.041342) (0.03215)

50 30 (20, 0∗29) 2.0949 2.9393 1.1123 2.092 2.943 1.1 2.092 2.944 1.1 2.092 2.942 1.1

(0.00901) (0.00369) (0.01261) (0.00852) (0.0033) (0.00992) (0.00852) (0.00314) (0.00993) (0.00852) (0.00338) 0.00991)

(0∗5, 1∗20, 0∗5) 2.0682 3.5751 1.0237 2.072 3.534 1.018 2.072 3.534 1.018 2.072 3.534 1.018

(0.00465) (0.33076) (0.00056) (0.0052) (0.28541) (0.00034) (0.00519) (0.28513) (0.00034) (0.0052) (0.28529) (0.00034)

(0∗29, 20) 2.04 3.0689 0.8568 2.037 3.028 0.838 2.037 3.026 0.838 2.037 3.027 0.838

(0.0016) (0.00475) (0.02051) (0.00136) (0.00077) (0.0216) (0.00136) (0.00069) (0.02617) (0.00136) (0.00073) (0.02619)

40 (10, 0∗39) 2.0399 3.0648 1.087 2.038 3.092 1.075 2.038 3.09 1.075 2.038 3.092 1.075

(0.00159) (0.0042) (0.00772) (0.00147) (0.00851) (0.00561) (0.00147) (0.0085) (0.00561) (0.00147) (0.00851) (0.0056)

(0∗15, 1∗10, 0∗15) 2.0043 2.7718 1.022 2.004 2.732 1.0224 2.004 2.731 1.021 2.004 2.732 1.021

(0.00002) (0.05207) (0.00027) (0.00002) (0.07196) (0.00029) (0.00002) (0.0721) (0.00029) (0.00002) (0.07204) (0.000292)

(0∗39, 10) 2.033 2.9483 0.8566 2.03 2.993 0.851 2.03 2.993 0.851 2.03 2.993 0.851

(0.0014) (0.00268) (0.0201) (0.00092) (0.00005) (0.02131) (0.00092) (0.00005) (0.02134) (0.00092) (0.00005) (0.02134)

5 30 15 (15, 0∗14) 1.5405 3.4182 0.5184 1.544 3.385 0.518 1.544 3.383 0.518 1.544 3.384 0.518

(0.21114) (0.17505) (0.23193) (0.20837) (0.14845) (0.2326) (0.20838) (0.1466) (0.23261) (0.20837) (0.14763) (0.23262)

(1∗15) 2.1018 3.7249 0.7556 2.108 3.782 0.755 2.108 3.782 0.755 2.108 3.781 0.755

(0.01036) (0.5255) (0.05971) (0.01157) (0.61145) (0.06009) (0.01157) (0.60897) (0.06009) (0.01157) (0.61046) (0.0601)

(0∗14, 15) 1.8609 3.6636 0.674 1.857 3.618 0.67 1.857 3.614 0.67 1.857 3.617 0.67

(0.01934) (0.4404) (0.10626) (0.02041) (0.38218) (0.10902) (0.02041) (0.37726) (0.10903) (0.02041) (0.38012) (0.10903)

20 (10, 0∗19) 1.9537 3.3627 0.7819 1.953 3.411 0.784 1.953 3.41 0.784 1.953 3.41 0.784

(0.00214) (0.13154) (0.04756) (0.00217) (0.14685) (0.04663) (0.00217) (0.1414) (0.04663) (0.00217) (0.1414) (0.04663)

(0∗5, 1∗10, 0∗5) 1.9491 2.391 1.0816 1.955 2.452 1.086 1.955 2.451 1.086 1.955 2.451 1.086

(0.00259) (0.37089) (0.00666) (0.00207) (0.30024) (0.0074) (0.00207) (0.30126) (0.00739) (0.00207) (0.30087) (0.00738)

(0∗19, 10) 2.0596 2.7411 0.8913 2.062 2.701 0.84 2.062 2.67 0.84 2.062 2.684 0.84

(0.00355) (0.06703) (0.01181) (0.00382) (0.08945) (0.02559) (0.00382) (0.1087) (0.02564) (0.00382) (0.09983) (0.02568)

50 30 (20, 0∗29) 1.975 3.2785 1.0047 1.969 3.255 1.01 1.969 3.253 1.01 1.969 3.254 1.01

(0.00062) (0.07755) (0.00002) (0.00094) (0.06513) (0.0001) (0.00094) (0.06414) (0.00009) (0.00094) (0.06467) (0.00009)

(0∗5, 1∗20, 0∗5) 1.9811 3.1124 0.9386 1.986 3.242 0.944 1.986 3.242 0.944 1.986 3.242 0.944

(0.00036) (0.01264) (0.00377) (0.00019) (0.05863) (0.00316) (0.00019) (0.05844) (0.00316) (0.00019) (0.05854) (0.00316)

(0∗29, 20) 1.9775 3.2091 0.9077 1.981 3.025 0.908 1.981 3.024 0.908 1.981 3.024 0.908

(0.00051) (0.04372) (0.00852) (0.00037) (0.00061) (0.00849) (0.00037) (0.00057) (0.00849) (0.00037) (0.00059) (0.0085)

40 (10, 0∗39) 2.0135 2.7933 1.0042 2.013 2.768 1.001 2.013 2.767 1.001 2.013 2.767 1.001

(0.00018) (0.04273) (0.00001) (0.00016) (0.05376) (0.0000) (0.00016) (0.05437) (0.000) (0.00016) (0.05409) (0.000)

(0∗15, 1∗10, 0∗15) 1.986 3.0426 0.9522 1.982 3.208 0.952 1.982 3.208 0.952 1.982 3.208 0.952

(0.00019) (0.00182) (0.00228) (0.00031) (0.0495) (0.00226) (0.00031) (0.0495) (0.00226) (0.00031) (0.0495) (0.00226)

(0∗39, 10) 1.9773 3.1023 0.9224 1.971 3.002 0.714 1.974 3.002 0.914 1.973 3.002 0.914

(0.00037) (0.01046) (0.00602) (0.000) (0.00031) (0.00747) (0.00037) (0.00031) (0.00747) (0.0007) (0.00031) (0.00747)

5. REAL DATA

In this section, we consider a real data set to illustrate the estimation methods
developed in this paper. We consider a real data set given by The [31]. These data
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TABLE 3. The 95% ACI’s and HPD credible intervals and the corre-
sponding length of α, θ and λ for non informative priors

ACI HPD

k n m scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂

interval length interval length interval length interval length interval length interval length

2 30 15 (15, 0∗14) {−0.6048, 5.8111} 6.41592 {0.326, 5.9728} 5.6468 {0.1717, 4.8583} 4.6866 {2.5996, 2.645} 0.0454555 {2.3527, 2.637} 0.284276 {1.3331, 1.3505} 0.017336

(1∗15) {−2.4977, 6.7174} 9.2151 {0.9441, 5.5358} 4.5939 {0.7629, 6.0999} 5.337 {2.1032, 2.1346} 0.0314526 {3.6741, 4.3867} 0.712552 {0.6294, 0.7033} 0.0738712

(0∗14, 15) {0.7431, 3.5542} 2.8111 {0.5443, 5.1245} 4.5802 {0.5461, 5.3254} 4.7793 {1.2058, 1.2119} 0.00607397 {3.1138, 3.2614} 0.147595 {0.6514, 0.6602} 0.00876122

20 (10, 0∗19) {0.0126, 5.0588} 5.04618 {−1.3581, 3.8473} 5.2054 {−1.5099, 3.27} 4.93728 {2.5268, 2.5441} 0.017244 {2.5421, 2.7211} 0.179078 {0.8754, 0.8867} 0.011332

(0∗5, 1∗10, 0∗5) {0.264, 3.5951} 3.33114 {0.1506, 8.9273} 8.7767 {−1.1249, 2.8726} 3.2314 {1.9257, 1.932} 0.00633213 {2.346, 2.402} 0.0560248 {0.8688, 0.8792} 0.0103267

(0∗19, 10) {0.73215, 5.1287} 4.39655 {0.3698, 4.6782} 4.3084 {−1.0253, 3.4552} 4.4805 {1.6995, 1.7049} 0.00536944 {2.2952, 3.4442} 1.149 {0.8168, 0.8246} 0.0078561

50 30 (20, 0∗29) {0.048, 4.1419} 4.09391 {−0.4931, 3.3717} 3.8648 {−1.6414, 3.866} 6.34582 {2.0895, 2.0982} 0.00871099 {2.8695, 3.0134} 0.143955 {1.0936, 1.1091} 0.0154608

(0∗5, 1∗20, 0∗5) {0.4414, 3.6949} 3.25352 {−0.1218, 3.7272} 3.849 {−1.185, 3.2324} 3.83023 {2.07, 2.0748} 0.00482677 {3.5021, 3.5654} 0.0633026 {1.0166, 1.0206} 0.0039782

(0∗29, 20) {−0.3213, 4.4012} 4.72247 {0.3754, 5.5132} 5.1378 {−2.1052, 3.8188} 8.03929 {2.031, 2.0426} 0.0115413 {2.9413, 3.092} 0.150677 {0.8289, 0.8498} 0.0209028

40 (10, 0∗39) {0.9028, 3.1769} 2.27402 {−1.4912, 7.6208} 9.11198 {−0.4924, 2.1448} 1.05621 {2.0371, 2.0392} 0.00203615 {3.0802, 3.1048} 0.0246265 {0.8244, 1.8283} 1.00389

(0∗15, 1∗10, 0∗15) {0.8295, 3.179} 2.34951 {−2.7455, 5.2891} 8.0346 {−0.4529, 2.5573} 1.15819 {2.0034, 2.0061} 0.00267866 {2.7072, 2.7683} 0.0610953 {1.0514, 1.0557} 0.00431681

(0∗39, 10) {0.5039, 3.5635} 3.05967 {−0.304, 5.2005} 5.5045 {−0.9997, 2.6279} 2.62698 {2.0289, 2.0337} 0.00482107 {2.9654, 3.0236} 0.0582215 {0.812, 1.818} 1.0698

5 30 15 (15, 0∗14) {0.4055, 2.8618} 2.45626 {−0.2996, 6.6886} 6.9882 {−1.0515, 3.0484} 3.20551 {1.5301, 1.6341} 0.104 {2.9086, 3.8134} 0.8274 {0.3977, 1.0043} 0.6066

(1∗15) {−0.5833, 3.742} 4.32526 {−0.5935, 6.3921} 6.9856 {−2.8386, 1.4204} 4.30426 {1.5736, 2.5793} 1.0057 {3.0955, 3.8482} 0.7527 {0.726, 0.8066} 0.0806

(0∗14, 15) {0.7609, 4.5523} 3.7917 {−2.1547, 5.2312} 7.3859 {−0.10215, 3.5872} 3.68935 {1.8534, 1.8606} 0.00719791 {3.5281, 3.7272} 0.199146 {0.6647, 0.6787} 0.014056

20 (10, 0∗19) {0.737, 3.1704} 2.43339 {−0.6829, 5.4083} 6.0912 {−0.616, 2.1799} 1.34286 {1.9517, 1.9557} 0.00397833 {3.3809, 3.4483} 0.0674126 {0.7823, 0.7859} 0.00358573

(0∗5, 1∗10, 0∗5) {0.2652, 3.633} 3.36779 {−0.9918, 3.7738} 4.7656 {−1.3486, 3.5118} 4.73585 {1.9524, 1.9569} 0.00452203 {2.4032, 2.5335} 0.130268 {1.0756, 1.0999} 0.0243698

(0∗19, 10) {0.4375, 3.9982} 3.5607 {−0.67421, 5.3235} 5.99771 {−0.1289, 2.3945} 2.5234 {2.0559, 2.0696} 0.0136657 {2.3289, 2.9556} 0.626709 0.8203, 0.8717} 0.0513903

50 30 (20, 0∗29) {0.0501, 3.9} 3.84995 {−0.8639, 4.4208} 5.2847 {−1.8455, 3.8549} 7.11412 {1.9668, 1.9733} 0.00644604 {3.1822, 3.3338} 0.151675 {1.0003, 1.0192} 0.0188343

(0∗5, 1∗20, 0∗5) {0.2259, 3.7363} 3.51033 {−0.2201, 3.4449} 3.665 {−1.5115, 3.3887} 5.12189 {1.9838, 1.988} 0.00426579 {3.2032, 3.2797} 0.0764709 {0.9368, 0.9536} 0.016881

(0∗29, 20) {−0.0553, 4.0103} 4.06558 {−0.7876, 3.2958} 4.0834 {−1.8151, 3.6305} 6.58978 {1.9777, 1.9825} 0.00479792 {2.939, 3.0655} 0.126497 {0.9002, 0.9138} 0.0135919

40 (10, 0∗39) {0.3276, 3.6993} 3.3717 {−0.6859, 3.8725} 4.5584 {−1.3462, 3.5329} 4.75582 {2.0111, 2.014} 0.00297002 {2.7167, 2.834} 0.117325 {1.0886, 1.0976} 0.00893318

(0∗15, 1∗10, 0∗15) {0.2752, 4.1142} 3.83897 {−0.1567, 4.2874} 4.4441 {−1.4344, 3.4285} 4.91775 {1.1872, 2.1936} 1.0064 {3.032, 3.2662} 0.234282 {0.9263, 1.0067} 0.0804

(0∗39, 10) {0.3368, 3.3054} 2.96868 {−0.6739, 3.1187} 3.7926 {−1.3908, 3.6057} 5.01497 {1.8176, 2.8222} 1.0046 {2.7116, 3.8569} 1.1453 {0.9098, 1.1045} 0.1947

TABLE 4. The 95% ACI’s and HPD credible intervals and the corre-
sponding length of α, θ and λ for informative priors

ACI HPD
k n m scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂

interval length interval length interval length interval length interval length interval length
2 30 15 (15, 0∗14) {−1.695, 7.1307} 8.8257 {−1.0521, 5.5222} 6.5743 {−3.5334, 1.7956} 5.329 {2.0784, 2.7053} 0.6269 {1.7593, 3.0884} 1.3291 {0.9849, 1.1254} 0.1405

(1∗15) {−0.2177, 4.7468} 4.96453 {−1.7848, 4.4581} 6.2429 {−2.0054, 3.6778} 7.37559 {1.2592, 2.2682} 1.009 {2.6946, 4.0663} 1.3717 {0.8274, 1.841} 1.0136

(0∗14, 15) {0.1752, 2.2599} 2.08478 {−0.757, 7.3617} 8.11861 {−0.9986, 1.73} 1.7275 {1.2178, 1.8196} 0.6018 {3.0839, 3.3077} 0.2238 {0.3638, 0.566} 0.2022

20 (10, 0∗19) {0.061, 3.5248} 3.46381 {−0.5526, 4.5593} 5.1119 {−1.6762, 4.1351} 6.93137 {1.7504, 1.7981} 0.0477 {2.8454, 2.9753} 0.129894 {0.225, 1.2424} 1.0174

(0∗5, 1∗10, 0∗5) {0.6174, 3.9607} 3.34331 {−0.384, 4.9877} 5.3717 {−0.9333, 2.7867} 2.60092 {2.0162, 2.2906} 0.2744 {2.7064, 3.8434} 1.137 {0.7239, 0.9275} 0.2036

(0∗19, 10) {0.2267, 3.7943} 3.56761 {−0.6434, 4.0688} 4.7122 {−1.3504, 2.8013} 3.7828 {1.0101, 2.0142} 1.0041 {3.0712, 3.8103} 0.7391 {0.7211, 0.7775} 0.0564

50 30 (20, 0∗29) {0.6613, 3.0249} 2.3636 {−0.1039, 6.0881} 6.192 {−0.6127, 2.619} 1.60464 {1.8435, 1.8768} 0.0333 {2.4945, 2.834} 0.3386 {0.7898, 1.0058} 0.216

(0∗5, 1∗20, 0∗5) {0.4382, 4.0209} 3.58277 {−0.5192, 5.4305} 5.9497 {−1.0998, 3.316} 3.64711 {2.0272, 2.234} 0.2068 {2.8069, 2.9884} 0.181418 {1.1123, 1.1307} 0.0183728

(0∗29, 20) {−0.5367, 4.384} 4.92072 {−0.9219, 5.64} 6.5619 {−2.8124, 4.1012} 6.9136 {1.9111, 2.9239} 1.0128 {2.4254, 5.659} 3.2696 {0.651, 1.6741} 1.0231

40 (10, 0∗39) {0.5952, 3.1986} 2.60343 {−0.582, 6.7886} 7.3706 {−0.8368, 2.8012} 2.34401 {1.8068, 1.8997} 0.08317 {2.0103, 3.0937} 1.0834 {0.6729, 0.9814} 0.3085

(0∗15, 1∗10, 0∗15) {0.5981, 2.488} 1.88992 {−0.2235, 7.6496} 7.8731 {−0.6402, 2.3028} 1.47419 {1.541, 2.5436} 1.0026 {2.7156, 3.743} 1.0274 {0.8249, 0.931} 0.1061

(0∗39, 10) {0.5952, 3.1986} 2.60343 {−0.582, 5.7886} 6.3706 {−0.8368, 2.8012} 2.34401 {1.8968, 2.8997} 1.0029 {2.0103, 3.0937} 1.0834 {0.9729, 1.9814} 1.0085

5 30 15 (15, 0∗14) {0.166, 2.6532} 2.48724 {−0.435, 5.3466} 5.7816 {−1.411, 3.2933} 4.64673 {1.4099, 2.4115} 1.0016 {1.4401, 3.5043} 2.0642 {0.7312, 0.9415} 0.2103

(1∗15) {0.0509, 2.998} 2.94716 {−0.5586, 3.6458} 4.2044 {−1.667, 3.2405} 5.40175 {1.2228, 1.5292} 0.3064 {2.441, 2.8243} 0.3833 {0.5928, 0.8077} 0.2149

(0∗14, 15) {−0.5182, 4.0739} 4.59212 {−0.847, 4.8889} 5.7359 {−2.5082, 3.1145} 5.6225 {1.7742, 1.7789} 0.0047181 {2.3753, 2.748} 0.372679 {0.7872, 0.8224} 0.0352424

20 (10, 0∗19) {0.5711, 3.077} 2.50587 {−0.2314, 5.0757} 5.3071 {−0.8508, 2.3321} 1.98418 {1.7212, 2.8258} 1.1046 {2.2685, 3.4105} 1.142 {0.7317, 0.9374} 0.2064

(0∗5, 1∗10, 0∗5) {0.1513, 4.3634} 4.21214 {−0.1554, 3.4013} 3.5567 {−1.5766, 3.6541} 5.76103 {2.2504, 2.2573} 0.00689895 {3.0447, 3.2137} 0.169031 {1.0322, 1.042} 0.00986966

(0∗19, 10) {−0.1943, 4.6115} 4.80583 {−0.9924, 4.4259} 5.4179 {−2.0105, 3.8566} 7.75357 {2.2035, 2.2134} 0.00983745 {3.1806, 3.3917} 0.21107 {0.9273, 0.9397} 0.0123965

50 30 (20, 0∗29) 0.5854, 2.9599} 2.37444 {−0.0711, 7.5531} 7.6242 {−0.783, 2.44} 1.91052 {1.7699, 2.7732} 1.0033 {2.2432, 3.2739} 1.0307 {0.8288, 1.9373} 1.1085

(0∗5, 1∗20, 0∗5) {0.2677, 4.0945} 3.82685 {−0.8726, 4.7458} 5.6184 {−1.4163, 3.3135} 4.69292 {2.1715, 2.1834} 0.0118756 {2.7512, 2.9107} 0.159487 {0.9452, 0.9531} 0.00792964

(0∗29, 20) {0.5199, 3.1818} 2.66189 {−0.9494, 3.74} 4.6894 {−1.0727, 3.3008} 3.54075 {1.8476, 1.8504} 0.00273587 {2.8158, 2.9002} 0.0844068 {1.0144, 1.1281} 0.11369

40 (10, 0∗39) {0.7337, 3.2346} 2.50094 {−0.2068, 6.7142} 6.921 {−0.6417, 2.8283} 1.81495 {1.9228, 1.9847} 0.0619 {2.2395, 3.309} 1.0695 {0.0829, 1.0919} 1.00899

(0∗15, 1∗10, 0∗15) {0.3728, 3.8818} 3.50893 {−0.6536, 3.7388} 4.3924 {−1.3547, 3.7628} 5.09756 {2.1206, 2.1242} 0.00352191 {3.028, 3.4166} 0.3886 {0.1959, 1.2069} 1.011

(0∗39, 10) {0.0729, 4.5069} 4.43394 {−0.7027, 3.4943} 4.197 {−1.6571, 3.8143} 6.32059 {2.0327, 2.2956} 0.2629 {2.947, 3.143} 0.196012 {1.0758, 1.0873} 0.0114277

represents the relief times of twenty patients receiving an analgesic.1.1, 1.4 ,1.3,
1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7,4.1, 1.8 ,1.5 ,1.2 ,1.4, 3.0 ,1.7, 2.3, 1.6, 2.0 Before
progressing, first we would like to check whether the GLED fit this data or not.
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The calculated value of the K-S test is 0.18497 for the GLE distribution and this
value is smaller than their corresponding values expected at 5% significance level,
which is 0.29407 at n = 20 .We have just plotted the empirical survival function
and the fitted survival functions in Figure 1. Observe that the GLE distribution can
be a good model fitting this data. Figure 2 shows that a Q-Q plot for the data .

FIGURE 1. Empirical and fitted distribution function for completed
data set.

FIGURE 2. Q-Q plot compare data to a specific distribution.
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Second, we generate a first-failure censored sample after randomly grouping
this data set into n = 15 groups with k = 2 items within each group Finally, the
following first-failure censored sample is obtained: 1.1, 1.3, 1.4, 1.4, 1.6, 1.7, 1.7,
1.7, 1.8, 1.8, 1.9, 2.3, 2.7, 3., 4.1

Now, we generate three progressive first-failure censored samples using three
different censoring schemes from the above first-failure censored sample with
m = 10. The different censoring schemes and the corresponding progressive first-
failure censored samples are presented in Table 5. In all the three cases we cal-
culate the ML and Bayes estimates of the parameters. In Bayes estimation we use
non-informative priors as we have no prior information about the parameters. For
importance sampling procedure, we take M = 1000. Also, we obtain 95% confi-
dence and HPD credible intervals for the parameters. The estimates are listed in
Table 6 and Table 7.

TABLE 5. Different progressive first-failure censored data sets

k n m censoring scheme Progressive first failure censored sample

2 15 10 (5, 0∗9) 1.2, 1.4, 1.7, 1.8, 1.9, 2., 2.2, 2.3, 3., 4.1

(0∗4, 2, 3, 0∗4) 1.2, 1.3, 1.4, 1.6, 1.7, 1.8, 1.9, 2.7, 3., 4.1

(0∗9, 5) 1.2, 1.3, 1.4, 1.6, 1.7, 1.7, 1.7, 1.8, 2.2, 2.7

TABLE 6. The MLE and Bayes estimates of the parameters for the
real data set

MLE Bayes SEL Bayes LINEX Bayes Entropy

k n m Scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

2 15 10 (5, 0∗9) 2.23912 0.0956745 0.149963 2.23537 0.095677 0.150153 2.23537 0.095677 0.150153 2.23537 0.095677 0.150153

(0.0708) (0.00245) (0.04084) (0.07196) (0.00245) (0.0408) (0.07196) (0.00245) (0.0408) (0.07196) (0.00245) (0.0408)

(0∗4, 2, 3, 0∗4) 2.13244 0.0976703 0.151228 2.1379 0.0976692 0.151345 2.13446 0.0976747 0.151042 2.13446 0.0976747 0.151041

(0.10738) (0.00256) (0.04055) (0.10532) (0.00256) (0.04052) (0.10661) (0.00256) (0.04059) (0.10661) (0.00256) (0.04059)

(0∗9, 5) 1.97263 0.110446 0.138139 1.97337 0.110444 0.138367 1.9713 0.110448 0.138237 1.9713 0.110448 0.138237

(0.17636) (0.00336) (0.04365) (0.176) (0.00336) (0.04359) (0.177) (0.00336) (0.04362) (0.177) (0.00336) (0.04362)

From Table 6 and Table 7, it is quite clear that all the estimates for the param-
eters α, θ and λ are quite close to each other. HPD credible intervals are better
than confidence intervals in respect of average length.
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TABLE 7. The 95% ACI’s and HPD credible intervals and the corre-
sponding length of the parameters for the real data set

AC I HPD

k n m scheme α̂ θ̂ λ̂ α̂ θ̂ λ̂

interval length interval length interval length interval length interval length interval length

2 15 10 (5, 0∗9) {0.7354, 3.7429} 3.00753 {−0.1221, 0.3135} 0.435574 {−0.2038, 0.5037} 0.10264 {2.2338, 2.2387} 0.00495864 {0.0957, 0.09578} 1.00222× 10−5 {0.1499, 0.1503} 0.000402991

(0∗4, 2, 3, 0∗4) {0.81, 3.4549} 2.64484 {−0.1119, 0.3072} 0.419115 {−0.1853, 0.4878} 0.0904108 {2.1329, 2.1385} 0.00561 {0.0975, 0.0977} 2.90316× 10−4 {0.1509, 0.15135} 0.00045844

(0∗9, 5) {0.5801, 3.3652} 2.78507 {−0.1375, 0.3584} 0.495851 {−0.2623, 0.5386} 0.141307 {1.9703, 1.9755} 5.2× 10−3 {0.1104, 0.1105} 5.6× 10−5 {0.138, 0.1384} 0.000394016

6. CONCLUSION

The problem of estimating the unknown parameters of GLED is discussed in this
article under progressive first-failure censoring. We computed MLEs and Bayes es-
timators of the parameters and with square error loss function, LINEX loss function
and Entropy function. These estimates cannot be obtained in closed forms, but can
be derived numerically. Also, in the case of MLEs Asymptotic confidence intervals
are constructed using observed Fisher information matrix. Bayes estimates are
obtained using the MCMC technique.

We use of the importance sampling procedure to obtain point estimates and
HPD credible intervals of the parameters. The method of selecting appropriate
lifetime models are studied. This work is mainly associated with progressive first-
failure censoring case, and the same methods can be extended for other censoring
schemes also.
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