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FIXED POINT THEOREMS FOR SUZUKI TYPE GENERALIZED
Z-CONTRACTIONS IN GENERALIZED METRIC SPACES

SEONG-HOON CHO

ABSTRACT. In this paper, the notion of Suzuki type generalized Z-contractions is
introduced and a new fixed point theorem for such contractions is established. An
example and an application to integral equation are given to support main result.

1. INTRODUCTION AND PRELIMINARIES

Kannan [7] extended the class of contractive mappings as follows.
Let (X, d) be a metric space. A mapping T : X → X is called Kannan contraction

if there exists a constant k ∈ [0, 1
2
) such that for all x, y ∈ X,

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)].

Kannan [7] then proved that every Kannan contraction mappings defined on
complete metric spaces has a unique fixed point.

Afterward, Azam and Arshad [3] extended Kannan’s result [7] to generalized
metric spaces.

Recently, Khojasteh et al. [9] introduced the notion of Z-contractions by defin-
ing the concept of simulation functions, and they proved the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space, and let T : X → X be a
Z-contraction mapping w.r.t. a function ζ, i.e.,

ζ(d(Tx, Ty), d(x, y)) ≥ 0 ∀x, y ∈ X,
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where function ζ : [0,∞)× [0,∞)→ R satisfies conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t ∀s, t > 0;
(ζ3) for any sequence {tn}, {sn} ⊂ (0,∞),

lim
n→∞

tn = lim
n→∞

sn > 0⇒ lim
n→∞

sup ζ(tn, sn) < 0.

Then T has a unique fixed point.

They unified the some existing metric fixed point results. Afterward, many au-
thors (for example, [1,5,8,10,11]) obtained generalizations of the result of [9].

Very recently, Isik et al. [5] obtained the following theorem introducing the
notion of almost Z-contraction mapping w.r.t. a function ζ.

Theorem 1.2. [5] Let (X, d) be a complete metric space, and let T : X → X be an
almost Z-contraction mapping w.r.t. a function ζ. That is, T satisfies the following
condition:

ζ(d(Tx, Ty), d(x, y) + Ln(x, y)) ≥ 0 ∀x, y ∈ X,

where L ≥ 0 and n(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} and ζ : [0,∞)×
[0,∞)→ R satisfies conditions (ζ2) and

(ζ4) for any sequence {tn}, {sn} ⊂ (0,∞) with tn ≤ sn ∀n = 1, 2, 3, · · ·

lim
n→∞

tn = lim
n→∞

sn > 0⇒ lim
n→∞

sup ζ(tn, sn) < 0.

Then T has a unique fixed point.

In the paper, we introduce the concept of a new type of contraction mappings,
and we establish a new fixed point theorem for such contraction mappings in
the setting of generalized metric spaces. We give an example to illustrate main
theorem and give an application to integral equation.

Let ζ : [0,∞)× [0,∞)→ R be a function. Then we say that

(1) ζ : [0,∞)× [0,∞)→ R is a simulation function [9] in the sene of Khojasteh
et al. if and only if (ζ1), (ζ2) and (ζ3) hold;

(2) ζ : [0,∞) × [0,∞) → R is a simulation function [2] in the sene of Argoubi
et al. if and only if (ζ2) and (ζ3) hold;

(3) ζ : [0,∞)× [0,∞)→ R is a simulation function [10] in the sene of Roldan
Lopez de Hierro et al. if and only if (ζ1), (ζ2) and (ζ4) hold;
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(4) ζ : [0,∞)× [0,∞)→ R is a simulation function [5] in the sene of Iisk et al.
if and only if (ζ2) and (ζ4) hold.

From now on, let Z be the family of all simulation function in the sene of Iisk
et al., and ζ ∈ Z is briefly called simulation function. Note that ζ(t, t) < 0 for all
t > 0.

Example 1. ( [5,8,9]) Let ζb, ζw, ζη, ζI : [0,∞)× [0,∞)→ R be functions defined as
follows, respectively:

(1) ζb(t, s) = ks− t ∀t, s ≥ 0, where k ∈ (0, 1);
(2) ζw(t, s) = s−φ(s)− t ∀t, s ≥ 0 where φ : [0,∞)→ [0,∞) is continuous such

that φ−1({0}) = 0;
(3) ζη(t, s) = η(s)− t ∀t, s ≥ 0 where η : [0,∞)→ [0,∞) is upper semicontinu-

ous such that η(t) < t ∀t > 0 and η−1({0}) = 0;

(4) ζI(t, s) =


1 if (s, t) = (0, 0) or s = t,

2(s− t) if s < t,

λs− t otherwise,
∀s, t ≥ 0, where λ ∈ (0, 1).
Then ζb, ζw, ζη, ζI ∈ Z.

Remark 1.1. Simulation functions ζb, ζw, ζη, ζI are non-decresing w.r.t. the second
variable, and ζI is not satisfied condition (ζ1) and (ζ3).

We recall the following definitions which are in [4].

Let X be a nonempty set, and let d : X ×X → [0,∞) be a map such that for all
x, y ∈ X and for all distinct points u, v ∈ X, each of them different from x and y

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then d is called a generalized metric onX and (X, d) is called a generalized metric
space.

Note that if triangle inquality holds, then condition (d3) is satisfied. So every
metric space is a generalized metric space.

Let (X, d) be a generalized metric space, {xn} ⊂ X be a sequence and x ∈ X.
Then we say that
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(1) {xn} is convergent to x (denoted by limn→∞ xn = x) if, and only if,
lim
n→∞

d(xn, x) = 0;

(2) {xn} is Cauchy if and only if limn,m→∞ d(xn, xm) = 0;
(3) (X, d) is complete if and only if every Cauchy sequence in X is convergent

to some point in X.

Let (X, d) be a generalized metric space.
A map T : X → X is called continuous at x ∈ X if and only if for any V ∈ τ

containg Tx, there exists U ∈ τ containg x such that TU ⊂ V , where τ is the
topology on X induced by the generalized metric d. That is,

τ = {U ⊂ X : ∀x ∈ U,∃B ∈ β, x ∈ B ⊂ U},
β = {B(x, r) : x ∈ X, ∀r > 0},
B(x, r) = {y ∈ X : d(x, y) < r}.

If T is continuous at each point x ∈ X, then it is called continuous.
Note that T is continuous if and only if it is sequentially continuous, i.e.,

lim
n→∞

d(Txn, Tx) = 0 for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0.

Lemma 1.1. [6] Let (X, d) be a generalized metric space, {xn} ⊂ X be a Cauchy
sequence and x, y ∈ X. If there exists a positive integer N such that

(1) xn 6= xm ∀n,m > N ;
(2) xn 6= x ∀n > N ;
(3) xn 6= y ∀n > N ;
(4) limn→∞ d(xn, x) = limn→∞ d(xn, y),

then x = y.

2. FIXED POINT THEOREMS

Let (X, d) be a generalized metric space.
A mapping T : X → X is called Suzuki type generalized Z-contraction if and

only if for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

(2.1) ζ(d(Tx, Ty),max{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)) ≥ 0

where ζ ∈ Z, L ≥ 0 and n(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y.Tx)}.

Now, we prove our main result.
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Theorem 2.1. Let (X, d) be a complete generalized metric space, and let T : X → X

be Suzuki type generalized Z-contraction. Then T has a fixed point, and for every
initial point x0 ∈ X, the Picard sequence {T nx0} converges to the fixed point.

Proof. Let x0 ∈ X be a point. Define a sequence {xn} ⊂ X by xn = Txn−1 =

T nx0 ∀n = 1, 2, 3 · · · .
If xn0 = xn0+1 for some n0 ∈ N, then xn0 is a fixed point of T , and the proof is

finished.
Assume that

(2.2) xn−1 6= xn ∀n = 1, 2, 3 · · · .

We deduce that

n(xn−1, xn)

= min{d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)

= min{d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), d(xn, xn)}

= 0 ∀n = 1, 2, 3, · · · .

Also, we infer that
1

2
min{d(xn−1, Txn−1), d(xn, Txn−1)} < d(xn−1, xn) ∀n = 1, 2, 3, · · · .

Thus it follows from (2.1) that ∀n = 1, 2, 3, · · ·

0 ≤ ζ(d(Txn−1, Txn),max{d(xn−1, xn),
1

2
[d(xn−1, Txn−1) + d(xn, Txn)]}(2.3)

+ n(xn−1, xn))

= ζ(d(xn, xn+1),max{d(xn−1, xn),
1

2
[d(xn−1, xn) + d(xn, xn+1)]})

< max{d(xn−1, xn),
1

2
[d(xn−1, xn) + d(xn, xn+1)]} − d(xn, xn+1),

which implies that for all n = 1, 2, 3, · · · ,

(2.4) d(xn, xn+1) < max{d(xn−1, xn),
1

2
[d(xn−1, xn) + d(xn, xn+1)]}.

If
max{d(xn−1, xn),

1

2
[d(xn−1, xn) + d(xn, xn+1)]} = d(xn−1, xn)

then
d(xn, xn+1) < d(xn−1, xn) ∀n = 1, 2, 3, · · · .
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Let

d(xn−1, xn) ≤
1

2
[d(xn−1, xn) + d(xn, xn+1)].

Then from (2.4) we have

d(xn, xn+1) <
d(xn−1, xn)

2
+
d(xn, xn+1)

2
,

which implies

d(xn, xn+1) < d(xn−1, xn) ∀n = 1, 2, 3, · · · .

Hence {d(xn−1, xn)} is a decreasing sequence, and so there exists r ≥ 0 such that

lim
n→∞

d(xn−1, xn) = r.

We now show that r = 0. Assume that r 6= 0. Let tn = d(xn, xn+1) and
sn = max{d(xn−1, xn), 12 [d(xn−1, xn) + d(xn, xn+1)]}. Then tn ≤ sn and limn→∞ sn =

limn→∞ tn = r > 0, and so we have

0 ≤ lim
n→∞

sup ζ(tn, sn) < 0,

which is a contradiction. Thus we have

(2.5) lim
n→∞

d(xn−1, xn) = 0.

Now, we show that {xn} is a Cauchy sequence.
On the contrary, assume that {xn} is not a Cauchy sequence. Then there exists

ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that
m(k) is the smallest index for which

(2.6) m(k) > n(k) > k, d(xm(k), xn(k)) ≥ ε and d(xm(k)−1, xn(k)) < ε.

From (2.5) we have

ε ≤ d(xm(k), xn(k))

≤ d(xn(k), xm(k)−2) + d(xm(k)−2, xm(k)−1) + d(xm(k)−1, xm(k))

< ε+ d(xm(k)−2, xm(k)−1) + d(xm(k)−1, xm(k)).

(2.7)

Letting k →∞ in (2.6), we obtain

lim
n→∞

d(xm(k), xn(k)) = ε.

On the other hand, we obtain

d(xm(k), xn(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1) + d(xm(k)+1, xm(k))
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and

d(xn(k)+1, xm(k)+1) ≤ d(xn(k)+1, xn(k)) + d(xn(k), xm(k)) + d(xm(k), xm(k)+1).

Thus
lim
k→∞

d(xn(k)+1, xm(k)+1) = ε.

We infer that

d(xm(k), xn(k)+1)

≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) + d(xn(k), xn(k)+1)

< d(xm(k), xm(k)−1) + ε+ d(xn(k), xn(k)+1),

which yields
lim
k→∞

d(xm(k), xn(k)+1) ≤ ε.

We have

d(xn(k), xm(k)+1) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)) + d(xm(k), xm(k)+1),

which yields
lim
k→∞

d(xn(k), xm(k)+1) ≤ ε.

We infer that

lim
k→∞

n(xn(k), xm(k))

= lim
k→∞

min{d(xn(k), xn(k)+1), d(xm(k), xm(k)+1), d(xm(k), xn(k)+1), d(xn(k), xm(k)+1)}

≤ min{0, 0, ε, ε}

= 0,

which yields
lim
k→∞

n(xn(k), xm(k)) = 0.

It follows from (2.5) that there exists N ∈ N such that

d(xn(k), xn(k)+1) < ε, ∀k > N.

Thus
1

2
d(xn(k), Txn(k)) =

1

2
d(xn(k), xn(k)+1) < ε ≤ d(xn(k), xm(k)), ∀k > N,

which yields
1

2
min{d(xn(k), Txn(k)), d(xm(k), Txn(k))} < d(xn(k), xm(k)), ∀k > N.
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It follows from (2.1) that

0 ≤ ζ(d(Txn(k), Txm(k)),max{d(xn(k), xm(k)),
1

2
[d(xn(k), Txn(k))

+ d(xm(k), Txm(k))]}+ Ln(xn(k), xm(k)))

= ζ(d(xn(k)+1, xm(k)+1),max{d(xn(k), xm(k)),
1

2
[d(xn(k), xn(k)+1)

+ d(xm(k), xm(k)+1)]}+ Ln(xn(k), xm(k)))

< max{d(xn(k), xm(k)),
1

2
[d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1)]}(2.8)

+ Ln(xn(k), xm(k))− d(xn(k)+1, xm(k)+1)

which implies

d(xn(k)+1, xm(k)+1) < max{d(xn(k), xm(k)),
1

2
[d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1)]}

+ Ln(xn(k), xm(k)).

Let

tk = d(xn(k)+1, xm(k)+1),

sk = max{d(xn(k), xm(k)),
1

2
[d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1)]}(2.9)

+ Ln(xn(k), xm(k)).

Then

tk < sk ∀k = 1, 2, 3, · · · , and lim
k→∞

tk = lim
k→∞

sk = ε > 0,

and so we have

0 ≤ lim
k→∞

sup ζ(tk, sk) < 0,

which is a contradiction. Thus {xn} is a Cauchy sequence.
Since X is complete, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0.

Hence we may assume that

d(xn+1, z) ≤ d(xn, z), ∀n = 1, 2, 3, · · · .
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We have
1

2
min{d(xn, Txn), d(z, Txn)}

=
1

2
min{d(xn, xn+1), d(z, xn+1)}

< d(xn, z), ∀n = 1, 2, 3, · · · .

It follows from (2.1) that

0 ≤ ζ(d(Txn, T z),max{d(xn, z),
1

2
[d(xn, Txn) + d(z, Tz)]}+ Ln(xn, z))

= ζ(d(xn+1, T z),max{d(xn, z),
1

2
[d(xn, xn+1) + d(z, Tz)]}+ Ln(xn, z))

< max{d(xn, z),
1

2
[d(xn, xn+1) + d(z, Tz)]}+ Ln(xn, z)− d(xn+1, T z),

where n(xn, z) = min{d(xn, xn+1), d(z, Tz), d(z, xn+1), d(xn, T z)}. Thus we obtain

(2.10) d(xn+1, T z) < max{d(xn, z),
1

2
[d(xn, xn+1) + d(z, Tz)]}+ Ln(xn, z).

Since

d(z, Tz) ≤ d(z, xn) + d(xn, xn+1) + d(xn+1, T z),

it follows from (2.7) that

d(xn+1, T z)

<max{d(xn, z), d(xn, xn+1) +
1

2
[d(xn, z) + d(xn+1, T z)]}+ Ln(xn, z),

which implies

lim
n→∞

d(xn+1, T z) = 0.

By Lemma 1.1, z = Tz. �

We give an example to illustrate Theorem 2.1.

Example 2. Let X = {1, 2, 3, 4} and define d : X ×X → [0,∞) as follows:

d(1, 2) = d(2, 1) = 3,

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 1,

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4,

d(x, x) = 0 ∀x ∈ X.
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Then (X, d) is a complete generalized metric space, but not a metric space (see [3]).
Define a map T : X → X by

Tx =

3 (x 6= 4),

1 (x = 4).

We now show that T is a Z-contraction with respect to ζb, where ζb(t, s) = ks −
t ∀t, s ≥ 0, where k = 2

3
. Let λ = 1

3
and L = 1.

Note that if x = y = 4, then

1

2
min{d(x, Tx), d(x, Ty)} = 1

2
min{d(4, 1), d(4, 1)} = 2 > 0 = d(x, y).

Thus we consider the following two cases.

1◦ : Let x = 4 and y 6= 4.
Then d(x, Tx) = 4, d(y, Ty) = 0 or 1, and d(Tx, Ty) = 1. We infer that

n(4, 1) = 0, n(4, 2) = 1, n(4, 3) = 0.

Hence n(x, y) = 0 or 1. We have

1

2
min{d(x, Tx), d(x, Ty)} = 1

2
min{d(4, 1), d(4, 3)} = 2 < 4 = d(x, y)

and

kmax{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)− d(Tx, Ty) ≥ 5

3
.

Thus we have
5

3
≤ kmax{d(x, y), 1

2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)− d(Tx, Ty)

= ζb(d(Tx, Ty),max{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)).

2◦ : Let x 6= 4 and y 6= 4.
Then

d(x, Tx) = d(y, Ty) = 0 or 1, d(Tx, Ty) = 0, and n(x, y) = 0 or 1.

Hence we have

kmax{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)− d(Tx, Ty) ≥ 2

3
.
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Hence

2

3
≤ kmax{d(x, y), 1

2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)− d(Tx, Ty)

= ζb(d(Tx, Ty),max{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}+ Ln(x, y)).

Thus all conditions of Theorem 2.1 are satisfied. By Theorem 2.1, T has a fixed point
z = 3.

Corollary 2.1. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

ζ(d(Tx, Ty), d(x, y) + Ln(x, y)) ≥ 0

where L ≥ 0. Then T has a unique fixed point.

Proof. From Theorem 2.1 T has a fixed point. If u and v are fixed point of T such
that u 6= v, then 1

2
min{d(u, Tu), d(v, Tu)} = 0 < d(u, v), and so

0 ≤ ζ(d(Tu, Tv), d(u, v) + Ln(u, v)) = ζ(d(u, v), d(u, v)) < 0,

which is contradiction. Hence u = v, and hence T has a unique fixed point. �

Remark 2.1. Corollary 2.1 is a generalization of Theorem 2 of [5] to generalized
metric space with Suzuki type condition.

Corollary 2.2. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

ζ(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y)) ≥ 0

where L ≥ 0. Then T has a fixed point.

Corollary 2.3. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

ζ(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)]) ≥ 0.

Then T has a fixed point.

From Theorem 2.1 we have the following corollary.
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Corollary 2.4. Let (X, d) be complete a generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

(2.11) d(Tx, Ty)) ≤ λ[d(x, Tx) + d(y, Ty)] + Ln(x, y),

where λ ∈ (0, 1
2
) and L ≥ 0. Then T has a unique fixed point.

Proof. Let ζb(t, s) = ks− t, k ∈ (0, 1), and let λ = k
2
. It follows from (2.11) that for

all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

0 ≤ λ[d(x, Tx) + d(y, Ty)] + Ln(x, y)− d(Tx, Ty)

=
k

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y)− d(Tx, Ty)

= ζb(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)] +

L

k
n(x, y)).

By Theorem 2.1, T has a fixed point. Let u and v be fixed points of T such that
u 6= v. Then from (2.11) we have

0 < d(u, v) = d(Tu, Tv)

≤ λ[d(u, Tu) + d(v, Tv)] + Ln(u, v)

≤ λ[d(u, u) + d(v, v)] + Ln(u, v)

= 0,

which is a contradiction. Thus T has a unique fixed point. �

Corollary 2.5. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

(2.12) d(Tx, Ty)) ≤ η(
1

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y)),

where L ≥ 0 and η : [0,∞) → [0,∞) is an upper semicontinuous function such that
η(t) < t ∀t > 0 and η−1({0}) = 0. Then T has a unique fixed point.

Proof. Let ζη(t, s) = η(s)− t, where η : [0,∞)→ [0,∞) is an upper semicontinuous
function such that η(t) < t ∀t > 0 and η−1({0}) = 0. It follows from (2.12) that
for all x, y ∈ X with 1

2
min{d(x, Tx), d(y, Tx)} < d(x, y),

0 ≤ η(
1

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y))− d(Tx, Ty))

= ζη(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y)).
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By Theorem 2.1, T has a fixed point.
Let u and v be fixed points of T such that u 6= v. Then it follows from (2.12)

that

0 < d(u, v) = d(Tu, Tv)

≤ η(
1

2
[d(u, Tu) + d(v, Tv)] + Ln(u, v))

= η(
1

2
[d(u, u) + d(v, v)] + Ln(u, v))

=0,

which is a contradiction. Thus T has a unique fixed point. �

Corollary 2.6. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

(2.13) d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(y, Ty)]− ϕ(d(x, Tx), d(y, Ty)),

where ϕ : [0,∞)× [0,∞)→ [0,∞) is continuous such that ϕ(t, s) = 0⇔ s = t = 0.
Then T has a unique fixed point.

Proof. Let ζ(t, s) = s− ϕ(s1, s2)− t, where s = s1+s2
2

. Then ζ ∈ Z. From (2.13) we
have that, for all x, y ∈ X with 1

2
min{d(x, Tx), d(y, Tx)} < d(x, y),

0 ≤ 1

2
[d(x, Tx) + d(y, Ty)]− ϕ(d(x, Tx), d(y, Ty))− d(Tx, Ty)

= ζ(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)]).

By Corollary 2.3, T has a fixed point.
Let u and v be fixed points of T such that u 6= v. Then we have

0 < d(u, v) = d(Tu, Tv)

≤ 1

2
[d(u, Tu) + d(v, Tv)]− ϕ(d(u, Tu), d(v, Tv))

=
1

2
[d(u, u) + d(v, v)]− ϕ(d(u, u), d(v, v))

= 0,

which is a contradiction. Hence T has a unique fixed point. �
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Corollary 2.7. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X with 1
2
min{d(x, Tx), d(y, Tx)} < d(x, y),

d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(y, Ty)]− ψ(1

2
[d(x, Tx) + d(y, Ty)]),

where ψ : [0,∞) → [0,∞) is continuous and ψ−1({0}) = 0. Then T has a unique
fixed point.

Corollary 2.8. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X,

ζ(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)] + Ln(x, y)) ≥ 0,

where L ≥ 0. Then T has a fixed point.

Corollary 2.9. Let (X, d) be a complete generalized metric space, and let T : X → X

be a mapping such that for all x, y ∈ X,

ζ(d(Tx, Ty),
1

2
[d(x, Tx) + d(y, Ty)]) ≥ 0.

Then T has a fixed point.

Remark 2.2. By taking ζ(t, s) = ζb(t, s) = ks − t, where k ∈ (0, 1), Corollary 2.9
reduces to Theorem 2.1 of [3].

3. APPLICATION

Let q : I = [a, b]→ R, H : I× I→ R+ and f : I×R→ R be continuous functions.
Consider the following integral equation:

(3.1) p(r) = q(r) +

∫ b

a

H(r, z)f(z, p(z))dz, r ∈ I.

We give an application of our result to prove existence of solution of above
integral equation.

Let X = C(I,R) and d(p, q) = supr∈I | p(r) − q(r) |, ∀p, q ∈ X. Then (X, d)

is a complete metric space, and hence it is a complete generalized metric space.
Define a map T : X → X by

Tp(r) = q(r) +

∫ b

a

H(r, z)f(z, p(z))dz.
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Then the existence of unique solution of (3.1) is equivalent to the existence of
unique fixed pont of T .

Theorem 3.1. Assume that the followings are satisfied.

(1) supr∈I
∫ b
a
H(r, z)dz ≤ 1

b−a ;

(2) ∀p, q ∈ R,

| f(z, p)− f(z, q) |≤ η(
1

2
[| p− Tp | + | q − Tq |] + Ln(p, q)),

where L ≥ 0 and η : [0,∞) → [0,∞) is upper semicontinuous with η(t) <

t ∀t > 0 and η−1({0}) = 0.

Then the integral equation (3.1) has a unique solution.

Proof. We deduce that

d(Tp1, Tp2)

= sup
r∈I
| Tp1(r)− Tp2(r) |

= sup
r∈I
| q(r) +

∫ b

a

H(r, z)f(z, p1(z))dz − q(r)−
∫ b

a

H(r, z)f(z, p2(z))dz |

= sup
r∈I
|
∫ b

a

H(r, z)[f(z, p1(z))− f(z, p2(z))]dz |

≤ sup
r∈I
{
∫ b

a

H(r, z)dz}{
∫ b

a

| f(z, p1(z))− f(z, p2(z)) | dz}

≤ 1

b− a

∫ b

a

η(
1

2
[d(p1, Tp1) + d(p2, Tp2)] + Ln(p1, p2))dz

= η(
1

2
[d(p1, Tp1) + d(p2, Tp2)] + Ln(p1, p2)).

Thus all conditions of Corollary 2.8, and T has a unique fixed point. Hence equa-
tion (3.1) has a unique solution. �
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