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NEUTROSOPHIC GRAPHS
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ABSTRACT. The minimal spanning tree (MST) algorithms by using the edges weights
are elderly presented mainly by Prim’s and Kruskal’s algorithms. In this article we
use the triplet weights for the neutrosophic edges by using the different score
functions we angry with the new model algorithms namely neutrosophic Prim’s
algorithm and neutrosophic kruskal’s algorithm. Further, we use the different
score functions we get the satisfied results based on the algorithms.

1. INTRODUCTION

The idea of Neutrosophic technique was derived by Smarandache [17]. These
can abduction the ordinary circumstance of both deception as well as ambiguity
that endure in genuine existence plot.The concept of the triplet was derived by us-
ing fuzzy set and intuitionistic fuzzy set. The triplet contains truth, indeterminacy
and false numbers lies between 0 and 1. By using Fuzzy of type 1, intuitionistic
fuzzy and conventional set is NS. In NS there are three components called truth
assign number indicate T and indeterminate assign number I, false assign number
indicate F, separately. Furthermore, in real life problems we can apply NSs for the
reference see [18]. Next they got idea of SVNS. By using this SVNSs properties
described by Wang et al. [25]. In order to deal with uncertainty, fuzzy concept
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proposed by Zadeh [28]. A rank method on IVIFSs with rank method studied by
Nayagam et al. [12] and Mitchell [8]. The generalizations of score function on
IVFSs introduced by Garg [3]. The weighted accuracy function and score function
in IVIFSs studied by Xu [26] and Liu and Xie [7] the IVIFSs. There different types
of algorithms for finding the minimal sapping tree see the reference [14], in that
mainly Prim’s algorithm and Kruskal’s algorithm. The number of types of spanning
tree problems contain to residential through a lot of researchers with assign the
weights to edges are not accurate in that an uncertainty is there for that see the
references [2,4,5,6,9,10,11,13,14,23,24,27].

In this manuscript the main aim is to find minimal spanning tree from NSCWG
by using algorithms like Prim’s and Kruskal’s with different score functions.

2. PRELIMINARIES

The authors are research down by the some results based on the neutrosophic
theory [1,15,16,17,19,20,21,22].

Definition 2.1. Neutrosophic set contains the triplet numbers which are lies between
the 0 and 1. The summation of these three values present between the 0 and 3.

Example 1. 〈0.2, 0.5, 0.6〉 is the neutrosophic set and the sum also shows 0 ≤ 1.3 ≤ 3.

Definition 2.2. The single valued neutrosophic sets is denoted as following A =<

T, I, F > and defined as the functions 0 ≤ T ≤ 1 is the truth number 0 ≤ I ≤ 1 is
the indeterminacy number and 0 ≤ F ≤ 1 falsity number. TheT ,I and F satisfies the
condition0 ≤ T + I + F ≤ 3.

Definition 2.3. A single valued neutrosophic graph (SVN-graph) with NV is explained
by to be a two of a kind (P,Q) everywhere [0, 1] indicate the interval B. The functions
TP : NV → B, IP : NV → B and FP : NV → B and 0 ≤ TP + IP + FP ≤ 3 for all
vertices in NV . Further, The functions TQ : NV × NV → B, IQ : NV × NV → B and
FQ : NV ×NV → B are explained by TQ(ai, aj) ≤ min[TQ (ai) , TQ (aj)], IQ(ai, aj) ≥
max[IQ (ai) , IQ (aj)] and FQ(ai, aj) ≥ max[FQ (ai) , FQ (aj)] with the condition 0 ≤
TB(ai, aj) + IB(ai, aj) + FB(ai, aj) ≤ 3 for all (ai, aj) ∈ E.

Definition 2.4. Let A = (T, I, F )be a SVNs. Then a score function S is explained
by SZHANG (A) = (2+T−I−F )

3
, where T, Iand F corresponds to the truth number,

indeterminacy number and falsity number lies between 0 and 1.
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3. MST ALGORITHM OF NEUTROSOPHIC WEIGHTED GRAPHS

This segment, an innovative description of minimum spanning tree algorithms
come within reach of new technique presented by using neutrosophic graph theory
with edge weight. In the subsequent, we put forward MST algorithm, with step by
steps process given below:

We discus all neutrosophic graphs are connected with n vertices.

Minimal spanning tree by using Primes algorithm:

Input: Neutrosophic weighted graph.
Output: MST from the given neutrosophic weighted graph.
Neutrosophic Prim’s algorithms:
Step:1 Compute the Adjacency matrix of the given neutrosophic graph.
Step:2 With help of the score function change the adjacency matrix to assign the
scores of the each edge.
Step:3 Staring from any arbitrary vertex vi, (i 6= j = 1, 2, · · ·n) and connect it to
its nearest neighbor vertex (that is to be vertex which has the smallest weight) say,
vj (i 6= j = 1, 2, · · ·n). Now consider the edge {vi, vj} and connect it to its closest
neighbor (that is to a vertex other than vi and vj , that has the smallest weight
among all entities ) without forming loop. Let this vertex be vk say.
Step:4 start from the vertex vk and repeat the process of step:3. Terminate the
process after all n vertices connected with n-1 edges. These n-1 edges forms a
minimal neutrosophic spanning tree.

Numerical example:
The following graph is the given neutrosophic connected weighted graph G.

Weights of the given NCWG are given in the table form,
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Edges End vertices weight of the edges
e1 v1v4 (0.4, 0.5, 0.8)

e2 v1v2 (0.2, 0.4, 0.6)

e3 v2v3 (0.2, 0.4, 0.3)

e4 v3v4 (0.2, 0.7, 0.9)

e5 v1v3 (0.7, 0.2, 0.4)

e6 v2v4 (0.6, 0.3, 0.4)

e7 v4v5 (0.8, 0.1, 0.2)

e8 v3v5 (0.5, 0.3, 0.4)

Now according to the step 1 process we construct the adjacency matrix of
the given NSCWG. The adjacency matrix of the given neutrosophic connected
weighted graph is

0 (0.2, 0.4, 0.6) (0.7, 0.2, 0.4) (0.4, 0.5, 0.8) 0

(0.2, 0.4, 0.6) 0 (0.2, 0.4, 0.3) (0.6, 0.3, 0.4) 0

(0.7, 0.2, 0.4) (0.2, 0.4, 0.3) 0 (0.2, 0.7, 0.9) (0.5, 0.3, 0.4)

(0.4, 0.5, 0.8) (0.6, 0.3, 0.4) (0.2, 0.7, 0.9) 0 (0.8, 0.1, 0.2)

0 0 (0.5, 0.3, 0.4) (0.8, 0.1, 0.2) 0


According to the Step 2 the score matrix as follows: By using the score function,

the adjacency matrix is converting to the following matrix
0 0.4 0.7 0.367 0

0.4 0 0.5 0.633 0

0.7 0.5 0 0.2 0.6

0.367 0.633 0.2 0 0.833

0 0 0.6 0.833 0


Now, consider step 3 the arbitrary vertex is v1 and connect it to its nearest

neighbor vertex which has smallest weight is v4 with the weight 0.367.
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Next, consider the two end vertices on the edge {v1, v4}and the nearest neighbor
vertex is v2add to the edge {v1, v2}at v1.

Now, consider the vertices {v1, v2, v4}, the nearest vertex with the small weight
is v3 add the vertex to the vertex sets and edge {v4, v3}the new vertex set contains
4 vertices, i.e., {v1, v2, v3, v4}.

We have 4 vertices now we consider the vertex set {v1, v2, v3, v4}, repeat the same
process we get nearest vertex having smallest weight is not visited already is v5, the
new vertex set is {v1, v2, v3, v4, v5}. Then stop the process because all the vertices
are appeared. Now, the required sapping tree is v1− v2− v3− v4− v5. The minimal

weight is 0.4 + 0.367 + 0.2 + 0.6 = 1.567. This minimal spanning tree is comparing
with different than Prim’s, namely Kruskal’s algorithm.
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Minimal spanning tree by using Kruskal’s algorithm:

Input: Neutrosophic weighted graph.
Output: MST of the given neutrosophic weighted graph with n-1 edges.

Neutrosophic Kruskal’s algorithm:

Step:1 Compute the Adjacency matrix of the given neutrosophic weighted graph.
Step:2 With help of the score function of NCWG, change the adjacency matrix to
scores matrix by replacing edge weight with its score value.
Step: 3 List the edges of NCWG in the order of non decreeing weights
Step: 4 Start with a small weighted edge, proceed sequentially by selecting one
edge at a time such that no cyclic is formed.
Step: 5 Stop the process of step:4 when n-1 edges are selected.
These n-1 edges make up a minimal neutrosophic spanning tree of neutrosophic
weighted graph G.

Remark: The process of step: 4 is called greedy process.

By using the same numerical example, we consider the adjacency matrix and
also score function both are same. (ref. above example)

Now, according to the Kruskal’s algorithm, we chose minimum weight edge first,
the edge is {v3, v4} with minimum weight is 2.

After that, we consider the next smallest weight edge is {v1, v4}with weight
0.367.
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Next, we repeat this processor we get the smallest weight is 0.4 add the edge
{v1, v2}.

After that, we consider the smallest weight edge is 0.5 {v2, v3} but we add this
edge we form a loop, so that we does not consider that edge. Further, we go to
the edge {v3, v5}with minimum weight is 0.6 .Therefore the required sapping tree
is

The minimal weight is 0.4 + 0.367 + 0.2 + 0.6 = 1.567.
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3.1. Comparative Study.

References Score functions Minimal weight(Prim’s and
Kruskal’s)

29 SZHANG(A) =
2+T−I−F

3
1.567

11 SZHANG(A) =
1+(1+T−2I−F )(2−T−F )

2
1.345

10 SZHANG(A) =
1+T−2I−F

2
−0.6

4. CONCLUSION

This study indicates the extension of the neutrosophic theory. Hear we thought
that the minimal spanning algorithms extended to neutrosophic graphs. In par-
ticularly by using different three score functions we derive the different minimal
weights but by using Prim′s and Kruskal′s we get the equal minimal weights which
satisfies that Prim′s and Kruskal′s satisfies in neutrosophic theory also.
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