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MOMENTS OF PROGRESSIVE TYPE-II RIGHT CENSORED ORDER
STATISTICS FROM POWER HAZARD RATE DISTRIBUTION

M. I. KHAN1 AND ABDELFATTAH MUSTAFA

ABSTRACT. In this paper, some new recurrence relations of the single and prod-
uct moments of progressively Type-II censored order statistics from power hazard
rate distribution are obtained. Further this distribution is characterized by several
techniques. Also, the estimation of the parameters under progressively Type- II
right censored order statistics are obtained by maximum likelihood method. Fi-
nally, a real data set has been analyzed for illustrative purpose.

1. INTRODUCTION

Progressively censoring is very important in life testing experiments. It al-
lowance for the removal of live- units from the experiment at various strange is
an attractive features as it will potentially save a lot for experimenter in terms of
cost and time. There are several types of censoring schemes used in lifetime anal-
ysis. In general scheme of progressively Type- II right censoring scheme, n units
are placed on a life- testing experiment and only m(< n) are completely observed
until failure. The censoring occurs progressively in m stages. Cohen [1], Thomas
and Wilson [2] works are notable in the progressive censoring schemes. We refer
readers to [3] for details.

Consider an experiment in which n units are placed on life test. In progres-
sive scheme, the experimenter decides beforehand the quantity m, the number
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of failures to be observed. At the time of first failure is observed R1 of n − 1

surviving units are randomly withdrawn from the experiment, R2 of n − 2 − R1

surviving units are withdrawn at the time of the second failure. The experi-
ment finally terminates at the time of mth failure when all remaining Rm =

n−m−R1−R2−· · ·−Rm−1 surviving units are withdrawn. The censoring numbers
(Ri, i = 1, · · · ,m − 1) are prefixed. We will denote the m ordered failure times
thus observed by X1:m:n, X2:m:n, · · · , Xm:m:n. It is evident that n = m +

∑m
k=1Rk.

The resulting m ordered values which are obtained from this type of censoring are
referred to as progressively Type-II right-censored order statistics. If the failure
times of the n items originally on test are from a continuous population with cu-
mulative distribution function (cdf), F (.) and probability density function (pdf),
f(.). In progressive censoring, the following notations are used

(i) n,m,R1, R2, · · · , Rm all are integers.
(ii) m is the sample size (which may be random in some models).

(iii) n is the total number of units in the experiment.
(iv) Rj is the number of removals at the jth censoring time.
(v) (R1, R2, · · · , Rm) denote the censoring scheme.

Then the joint pdf of the progressively Type-II censored samples X1:m:n, X2:m:n,
· · · , Xm:m:n is given by [4], as follows

fX1:m:n,X2:m:n,··· ,Xm:m:n(x1, x2, · · · , xm) = C(n,m− 1)
m∏
i=1

f(xi) [1− F (xi)]
Ri ,

where, −∞ < x1 < x2 < · · · < xm <∞, f(.) and F (.) are respectively, the pdf and
cdf of the random sample and

C(n,m− 1) = n(n−R1 − 1) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1).

Let the progressively Type- II right-censored sample X(R1,R2,··· ,Rm)
1:m:n , X(R1,R2,··· ,Rm)

2:m:n ,
· · · , X(R1,R2,··· ,Rm)

m:m:n , with censoring scheme (R1, R2, · · · , Rm), m ≤ n arise from
power hazard rate distribution. The power hazard function has been defined in
[5],

h(x) = αxβ, x > 0, α >, β > −1.

Corresponding to this hazard function, its probability density function (pdf) is
given by,

(1.1) f(x) = αxβ exp

{
− α

β + 1
xβ+1

}
, x > 0, α > 0, β > −1,
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with the corresponding cdf

(1.2) F (x) = 1− exp

{
− α

β + 1
xβ+1

}
, x > 0, α > 0, β > −1.

The distribution with density function defined in (1.1) is known as power hazard
rate (PHR) distribution. For−1 < β < 0, PHR distribution has a decreasing hazard
function and β > 0, PHR distribution has an increasing hazard function and β = 0,
PHR distribution has constant failure rate. For more details and properties of PHR
distribution, see [6].

It is clear that some well-known life time distributions as Weibull, Rayleigh, ex-
ponential and linear failure rate distribution are special cases of PHR distribution,
such that,

(i) If β = α− 1, then PHR distribution reduces to Weibull(α− 1).
(ii) If α = 1

θ
, β = 1, then PHR distribution reduces to Rayleigh(θ).

(iii) If β = 0, then PHR distribution reduces to exponential distribution with
mean

(
1
α

)
.

(iv) If β = 1. then PHR distribution reduces to linear failure rate distribution
(α, 0).

It may be noted that from (1.1) and (1.2), the characterizing differential equation
is given by

(1.3) f(x) = αxβ[1− F (x)].

The relation given in (1.3) will be used to derive some simple recurrence relations
for the single and the product moments.

Means and variances of a distribution can be computed by using recurrence rela-
tions for the single and product moments for any continuous distribution. Recent
works in this area of those of [7–16] and the references cited therein. To our best
knowledge, statistical inference for unknown parameters of PHR distribution has
not been studied under the progressive Type-II right censored order statistics.
The outline of this paper is as follows. Recurrence relations for single moments of
progressive Type-II right censored order statistics from power hazard rate distribu-
tion are given in Section 2. Section 3, contains the recurrence relations for product
moments of progressive Type-II right censored order statistics from power hazard
rate distribution. Characterization results are also presented in Section 4. The
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parameters estimation under proposed scheme for PHR distribution are obtained
and illustrated by a real data set in Section 5.

2. RECURRENCE RELATIONS FOR SINGLE MOMENTS

In this section, we derive several new recurrence relations for the single mo-
ments of progressively Type- II censored order statistics for all sample size n and
all censoring schemes (R1, R2, · · · , Rm), m ≤ n from power hazard rate distribu-
tion. The single moments of the progressive type- II censored ordered statistics for
PHR distribution can be written as,

µ
(R1,R2,...,Rm)(k)

i:m:n = E
[
X

(R1,R2,··· ,Rm)(k)

i:m:n

]
(2.1)

= C(n, m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

xki f(x1)[1− F (x1)]
R1f(x2)×

[1− F (x2)]
R2f(x3)[1− F (x3)]

R3 · · · f(xm)[1− F (xm)]Rmdx1 · · · dxm.

Theorem 2.1. For 2 ≤ m ≤ n and k ≥ 0,

µ
(R1,R2,··· ,Rm)(k)

1:m:n =
α

k + β + 1

[
(n−R1 − 1)µ

(R1+1+R2,··· ,Rm)(k+β+1)

1:m−1:n +(2.2)

(1 +R1)µ
(R1,R2,...,Rm)(k+β+1)

1:m:n

]
Proof. From equations (2.1), we have

µ
(R1,R2,...,Rm)(k)

1:m:n = C(n, m− 1)

∫
· · ·
∫
0<x1<x2<···<xm<∞

L(x2)f(x2)×(2.3)

[1− F (x2)]
R2f(x3)[1− F (x3)]

R3 · · · f(xm)[1− F (xm)]Rm dx2dx3 · · · dxm

where

(2.4) L(x2) =

∫ x2

0

xk1f(x1)[1− F (x1)]
R1dx1.

On using (1.3) in (2.4), we have

(2.5) L(x2) = α

∫ x2

0

xk+β1 [1− F (x1)]
R1+1dx1.

Integrating (2.5) by parts, we have.

L(x2) =
α

k + β + 1

[
[1− F (x2)]

R1+1xk+β+1
2 + (R1 + 1)

∫ x2

0

xk+β+1
1 ×(2.6)

[1− F (x1)]
R1f(x1)dx1

]
.
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Substituting the value of L(x2) from (2.6) into (2.3), we have

µ
(R1,··· ,Rm)(k)

1:m:n =

(
α

k + β + 1

)[
C(n, m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

xk+β+1
2 ×

[1− F (x2)]
R1+R2+1f(x2) · · · f(xm)[1− F (xm)]Rmdx2dx3 · · · dxm

]
+(1 +R1)C(n, m− 1)

∫
· · ·
∫
0<x1<x2<···<xm<∞

xk+β+1
1 f(x1)[1− F (x1)]

R1 ×

f(x2)[1− F (x2)]
R2 · · · f(xm) [1− F (xm)]Rmdx1dx2dx3 · · · dxm

]
,

which upon rearrangement, gives (2.2). �

Corollary 2.1. For m = 1 and n = 1, 2, · · · , k ≥ 0,

µ
(n−1)(k)
1:1:n =

nα

k + β + 1
µ
(n−1)(k+β+1)

1:1:n .

Proof. Corollary 2.1 can be proved on the same line of Theorem 2.1. �

Theorem 2.2. For 2 ≤ i ≤ m− 1, m ≤ n and k ≥ 0,

µ
(R1,R2,...,Rm)(k)

i:m:n =

(
α

k + β + 1

)
×(2.7) [

(n−R1 −R2 − . . .−Ri − i)µ
(R1,R2,...,Ri−1Ri+Ri+1+1, Ri+2,...,Rm)(k+β+1)

i:m−1:n −

(n−R1 −R2 − . . .−Ri−1 − i+ 1)µ
(R1,R2,··· ,,Ri−2, Ri−1+Ri+1, Ri+1,....,Rm)

(k+β+1)

i−1:m−1:n

+(1 +Ri)µ
(R1,R2,...,Rm)(k+β+1)

i:m:n

]
.

Proof. From (2.1), we have

µ
(R1,··· ,Rm)(k)

i:m:n = C(n,m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

I(xi−1, xi+1)×(2.8)

f(x1)[1− F (x1)]
R1 · · · f(xi−1)[1− F (xi−1)]

Ri−1f(xi+1)[1− F (xi+1)]
Ri+1

× · · · f(xm)[1− F (xm)]Rm dx1 · · · dxm

where

(2.9) I(xi−1, xi+1) =

∫ xi+1

xi−1

xki f(xi)[1− F (xi)]
Ridxi.
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On using (1.3) in (2.9), we have

I(xi−1, xi+1) = α

∫ xi+1

xi−1

xk+βi [1− F (x1)]
R1+1dxi.

Integrating the above equation by parts, we have

I(xi−1, xi+1) =

(
α

k + β + 1

)[
xk+β+1
i+1 [1− F (xi)]

Ri+1 − xk+β+1
i−1 [1− F (xi)]

Ri+1

+(1 +Ri)

∫ xi+1

xi−1

xk+β+1
i [1− F (x1)]

R1dxi

]
Now, substituting the above resulting expression of I (xi−1, xi+1) in (2.8),

µ
(R1,··· ,Rm)(k)

i:m:n = C(n,m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

(
α

k + β + 1

)
×[

xk+β+1
i+1 [1− F (xi)]

Ri+1 − xk+β+1
i−1 [1− F (xi)]

Ri+1 + (1 +Ri)×∫ xi+1

xi−1

xk+β+1
i [1− F (x1)]

R1dxi

]
f(x1)[1− F (x1)]

R1 · · · f(xi−1)[1− F (xi−1)]
Ri−1

f(xi+1)[1− F (xi+1)]
Ri+1 · · · f(xm)[1− F (xm)]Rmdx1 · · · dxm.

after simplification it leads to (2.7). �

Theorem 2.3. For 2 ≤ m ≤ n and k ≥ 0,

µ(R1,R2,...,Rm)(k)

m:m:n =
α

k + β + 1

[
(1 +Rm)µ(R1,R2,...,Rm)(k+β+1)

m:m:n

−(n−R1 −R2 − . . .−Ri−1 − i+ 1)µ
(R1,R2,··· ,Rm−2, Rm−1+Rm+1, Ri+1,....,Rm)(k+β+1)

m−1:m−1:n

]
.

Proof. Similar to the proof of Theorem 2.1. �

Remark 2.1. For β = 0 and α = 1 in Theorem 2.1, we get the recurrence relations
for single moments of progressively Type-II censored order statistics from the standard
exponential distribution,

µ
(R1,R2,...,Rm)(k)

1:m:n =
1

k + 1

[
(n−R1 − 1)µ

(R1+1+R2,...,Rm)(k+1)

1:m−1:n + (1 +R1)µ
(R1,R2,...,Rm)(k)

1:m:n

]
,

as obtained in [17].

Remark 2.2. For β = 0 and α = 1 in corollary 2.1

µ
(n−1)(k)
1:1:n =

n

k + 1
µ
(n−1)(k+1)

1:1:n
,
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as obtained in [17].

Remark 2.3. For β = 0 and α = 1 in Theorem 2.2, we get the recurrence relations
for single moments of progressively Type-II censored order statistics from the standard
exponential distribution,

µ
(R1,R2,··· ,Rm)(k)

i:m:n =

(
1

k + 1

)
×[

(n−R1 −R2 − . . .−Ri − i)µ
(R1,R2,··· ,Ri−1, Ri+Ri+1+1, Ri+2,··· ,Rm)(k+1)

i:m−1:n −

(n−R1 −R2 − · · ·−Ri−1 − i+ 1)µ
(R1,R2,,,,Ri−2, Ri−1+Ri+1, Ri+1,··· ,Rm)

(k+1)

i−1:m−1:n +

(1 +Ri)µ
(R1,R2,··· ,Rm)(k+1)

i:m:n

]
,

as obtained in [17].

Remark 2.4. For β = 0 and α = 1 in Theorem 2.3, we get the recurrence relations
for single moments of progressively Type-II censored order statistics from the standard
exponential distribution,

µ(R1,R2,...,Rm)(k)

m:m:n =
1

k + 1

[
(1 +Rm)µ(R1,R2,··· ,Rm)(k+1)

m:m:n

−(n−R1 −R2 − . . .−Ri−1 − i+ 1)µ
(R1,R2,,,,,Rm−2, Rm−1+Rm+1, Ri+1,....,Rm)(k+1)

m−1:m−1:n

]
,

as obtained in [17].

Deductions: For special case R1 = R2 = · · · = Rm = 0, so that m = n in
which the progressive censored order statistics become the usual order statistics
X1:n, X2:n, · · · ., Xn::n, then

(i) From (2.2): For k ≥ 0, we get

µk1:n =
α

k + β + 1

[
µ
(k+β+1)
1:n + (n− 1) µ

(1,0,0,.....0)(k+β+1)

1:n−1:n

]
.

(ii) From (2.7): For k ≥ 0, we get

µki:n =
α

k + β + 1

[
(n− i)µ(k+β+1)

i:n−1 − (n− i+ 1)µ
(k+β+1)
i−1:n−1 + (1 +Ri)µ

(k+β+1)
i:n

]
.
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3. RECURRENCE RELATIONS FOR PRODUCT MOMENTS

In this section, we derive some recurrence relations for product moments of the
progressively Type-II right censored order statistics from the PHR distribution. The
(i, j)th product moments of the progressive Type- II right censored order statistics
can be written as,

µ
(R1,R2,··· ,Rm)(r,s)

i:j:m:n = E
[
X

(R1,R2,...,Rm)r

i:m:n X
(R1,R2,··· ,Rm)s

j:m:n

]
(3.1)

= C(n, m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

xrix
s
jf(x1)[1− F (x1)]

R1f(x2)

×[1− F (x2)]
R2f(x3)[1− F (x3)]

R3 · · · f(xm)[1− F (xm)]Rmdx1 · · · dxm.

Theorem 3.1. For 1 ≤ i < j ≤ m− 1 and m ≤ n,

µ
(R1,R2,··· ,Rm)(r,s)

i:j:m:n =

(
α

s+ β + 1

)
[(n−R1 − 1− · · · −Rj − j)(3.2)

×µ(R1,R2,,··· ,Rj−1, Rj +Rj+1+1, ··· ,Rm)(r,s+β+1)

i:j:m−1:n − (n−R1 − 1− · · · −Rj−1 − j + 1)

× µ(R1,R2,··· ,Rj−1+Rj+1,··· ,Rm)(r, ,s+ β+1)

i:j−1:m−1:n + (1 +Rj)µ
(R1,R2,··· ,Rm)(r,s+β+1)

i:j:m:n

]
.

Proof. From (3.1), we have,

µ
(R1,··· ,Rm)(r,s)

i:j:m:n = C(n,m− 1)

∫
· · ·
∫
0<x1<···<xm<∞

xri I(xj−1, xj+1)f(x1)(3.3)

×[1− F (x1)]
R1 · · · f(xj−1)[1− F (xj−1)]

Rj−1f(xj+1)[1− F (xj+1)]
Rj+1

· · · f(xm)[1− F (xm)]Rmdx1 · · · dxj−1dxj+1 · · · dxm

where

(3.4) I(xj−1, xj+1) =

∫ xj+1

xj−1

xsjf(xj)[1− F (xj)]
Rjdxj.

On using (1.3) in (3.4), we have

(3.5) I(xj−1, xj+1) = α

∫ xj+1

xj−1

xs+βj f(xj)[1− F (xj)]
Rj+1dxj.

Integrating (3.5) by parts, we have

I(xj−1, xj+1) =
α

β + s+ 1

[
xβ+sj+1 [1− F (xj+1)]

Rj+1 − xβ+sj−1 [1− F (xj−1)]
Rj+1

]
+(1 +Rj)

∫ xj+1

xj−1

[1− F (xj)]
Rj+1f(xj)x

β+s
j dxj.
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Substituting the expression of I (xj−1 , xj+1) in (3.3) and using (3.1), we have,

µ
(R1,··· ,Rm)(r,s)

i:j:m:n =

(
α

β + s+ 1

)
C(n, m− 1)

[∫
· · ·
∫
0<x1<···<xm<∞

xrix
β+s
j+1f(x1)

[1− F (x1)]
R1 · · · f(xj−1)[1− F (xj−1)]

Rj−1f(xj+1)[1− F (xj+1)]
Rj+1 · · ·

× · · · f(xm)[1− F (xm)]Rmdx1dx2 · · · dxj−1dxj+1 · · · dxm

−
∫
· · ·
∫
0<x1<···<xm<∞

xrix
β+s
j−1f(x1)[1− F (x1)]

R1 · · · f(xj−1)[1− F (xj−1)]
Rj−1 ×

f(xj+1)[1− F (xj+1)]
Rj+1 · · · f(xm)[1− F (xm)]Rmdx1 · · · dxj−1dxj+1 · · · dxm

+(1 +Rj)

∫
· · ·
∫
0<x1<···<xm<∞

xrix
β+s
j f(x1)[1− F (x1)]

R1 · · ·

× · · · f(xm)[1− F (xm)]Rmdx1 · · · dxj−1dxj+1 · · · dxm

]
.

After simplification, we get the required result. This completes the proof of Theo-
rem 3.1. �

Theorem 3.1 can be reduced to Theorem 2.2 by putting i = 0.

Corollary 3.1. For 1 ≤ i ≤ m− 1 and m ≤ n,

µ
(R1,··· ,Rm)(r,s+β+1)

i:j:m:n =

(
α

s+ β + 1

)[
(1 +Rj)µ

(R1,··· ,Rm)(r,s+β+1)

i:j:m:n

−(n−R1 − 1− · · · −Rj−1 − j + 1)µ
(R1,··· ,Rj−1+Rj+1,··· ,Rm)(r, s+β+1)

i:j−1:m−1:n

]
.

Proof. Similar to the proof of Theorem 3.1. �

Remark 3.1. For β = 0 and α = 1 in Theorem 3.1, we get the recurrence relations for
product moments of progressively Type-II censored order statistics from the standard
exponential distribution,

µ
(R1,··· ,Rm)(r,s)

i:j:m:n =

(
1

s+ 1

)
×[

(n−R1 − 1− · · · −Rj − j)µ
(R1,R2,··· ,Rj−1,Rj+Rj+1+1,··· ,Rm)(r,s+1)

i:j:m−1:n −

(n−R1 − 1− · · · −Rj−1 − j + 1)µ
(R1,R2,··· ,Rj−1+Rj+1,··· ,Rm)(1,s+1)

i:j−1:m−1:n +

(1 +Rj)µ
(R1,··· ,Rm)(r,s+1)

i:j:m:n

]
as obtained in [17].
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Remark 3.2. For β = 0 and α = 1 in corollary 3.1, we get the recurrence rela-
tions for product moments of progressively Type-II censored order statistics from the
standard exponential distribution,

µ
(R1,··· ,Rm)(r,s+1)

i:j:m:n =

(
1

s+ 1

)[
(1 +Rj)µ

(R1,R2,··· ,Rm)
i:j:m:n

−(n−R1 − 1− · · · −Rj−1 − j + 1) µ
(R1,R2,,,Rj−1+Rj+1, ··· ,Rm)(r,s+1)

i:j−1:m−1:n

]
,

as obtained in [17].

Remark 3.3. When R1 = R2 = · · · = Rm = 0 in (3.2) the recurrence relation for
product moments of order statistics from PHR distribution as follows,

µ
(r,s)
i:j:n =

(
α

s+ β + 1

)
×[

(n− j)µ(0,0,··· ,1,··· ,0)(r,s+β+1)

i:j:n−1 − (n− j + 1)µ
(0,0,··· ,1,··· ,0)(r,s+β+1)

i:j−1:n−1 + µ
(r,s+β+1)
i:j:n

]

4. CHARACTERIZATIONS

An important area of statistical theory is characterization of probability distri-
butions. Different methods are used for the characterization. In this paper, power
hazard rate distribution is characterized by hazard function, recurrence relations
for single moments and truncated moment respectively.

Theorem 4.1. Let X be a continuous random variable with pdf f(x) and cdf F (x)

and survival function [1− F (x)]. Then X has a power hazard rate distribution if

(4.1) f(x) = αxβ[1− F (x)].

Proof. Necessary part from equation (1.1) and (1.2), we can easily obtain. For
sufficiency part if (4.1) is true, then (4.1) can be written as

−d[1− F (x)]

1− F (x)
= αxβdx.

On integrating the above equation, we have

(4.2) − ln [1− F (x)] =
αxβ+1

β + 1
+ C,
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where C is an arbitrary constant. Now since, 1− F (0) = 1, then putting x = 0, in
(4.2), we have C = 0,

− ln [1− F (x)] =
αxβ+1

β + 1
,

F (x) = 1− exp

{
− α

β + 1
xβ+1

}
, x > 0, α > 0, β > −1.

This is the distribution function of power hazard rate distribution. This completes
the proof. �

Theorem 4.2. For 2 ≤ i ≤ m − 1, m ≤ n and k ≥ 0, a necessary and sufficient
condition for a random variable X to be distributed with pdf given in (1.1) is that

µ
(R1,··· ,Rm)(k)

i:m:n =

(
α

k + β + 1

)
×(4.3) [

(n−R1 − · · ·−Ri − i)µ(R1,··· ,Ri−1, Ri+Ri+1+1,Ri+2,··· .,Rm)(k+β+1)

i:m−1:n −

(n−R1 − · · ·−Ri−1 − i+ 1)µ
(R1,··· ,Ri−2,Ri−1+Ri+1,Ri+1,··· ,Rm)(k+β+1)

i−1:m−1:n +

(1 +Ri)µ
(R1,··· ,Rm)(k+β+1)

i:m:n

]
.

Proof. The necessary part follows from (2.7). On the other hand if the recurrence
relation (4.3) is satisfied, then using (2.1), we have

µ
(R1,··· ,Rm)(k+a)

i:m:n = C(n,m− 1)

∫
· · ·
∫
0<x1<xi−1<xi+1<···<xm<∞

I(xi−1, xi+1)(4.4)

×f (x1) [1− F (x1)]
R1 . . . f (xi−1) [1− F (xi−1)]

Ri−1f (xi+1) [1− F (xi+1)]
Ri+1

× . . . f (xm) [1− F (xm)]Rm dx1 . . . dxm,

where,

(4.5) I (xi−1, xi+1) =

∫ xi+1

xi−1

xk+ai f(xi)[1− F (xi)]
Ridxi.

Integrating (4.5) by parts, we get

I(xi−1, xi+1) =
1

(Ri + 1)

[
−xk+ai+1 [1− F (xi+1)]

Ri+1 − xk+ai−1 [1− F (xi−1)]
Ri+1(4.6)

+(k + a)

∫ xi+1

xi−1

xk+a−1i [1− F (xi)]
Ri+1dxi

]
.
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Upon substituting (4.6) in (4.4), and simplifying the resulting expression, we get

µ
(R1,··· ,Rm)(k+a)

i:m:n =
1

(Ri + 1)
×(4.7)[

−(n−R1 − · · · −Ri − i)µ
(R1,R2,...,Ri−1, Ri+Ri+1+1, Ri+2,··· ,Rm)(k+a+1)

i:m−1:n +

(n−R1 −R2 − . . .−Ri−1 − i+ 1)µ
(R1,R2,,,,Ri−2, Ri−1+Ri+1, Ri+1,··· ,Rm)

(k+a+1)

i−1:m−1:n +

(k + a)C(n,m− 1)

∫
· · ·
∫
0<x1<xi−1<xi+1<···<xm<∞

xk+a−1i f(x1)[1− F (x1)]
R1 ×

f(xi)[1− F (xi)]
Ri+1 · · · f(xm)[1− F (xm)]Rmdx1 · · · dxm

]
.

Now substituting for µ(R1,··· ,Rm)(k+β+1)

i:m:n in (4.7) and simplifying the resulting expres-
sion, we get

C(n,m− 1)

∫
· · ·
∫
0<x1<xi−1<xi+1<···<xm<∞

xki

[
f(xi)− αxβi [1− F (xi)]

]
(4.8)

×f(x1)[1− F (x1)]
R1f(xi−1)[1− F (xi−1)]

Ri−1f(xi+1)[1− F (xi+1)]
Ri+1)

×f(xm)[1− F (xm)]Rmdx1 · · · dxm = 0.

Now applying a generalization of the Muntz- Szasz Theorem (see [18]) to (4.8),
we obtain

f(xi) = αxβi [1− F (xi)],

which proves the theorem. �

The following theorem contains characterization result for power hazard rate dis-
tribution based on truncated moment.

Theorem 4.3. Suppose an absolutely continuous (with respect to Lebesgue measure)
random variable X has the cdf F (x) and pdf f(x) for x ≥ 0 such that f ′(x) and
E(X|X ≤ x) exist, then

E
(
X
∣∣∣X ≤ x

)
= g(x)η(x)

where

g(x) =

[
− x

αxβ
+

exp( α
β+1

xβ+1)

αxβ

∫ x

0

exp(− α

β + 1
uβ+1)du

]
and η(x) =

f(x)

F (x)

if and only if

f(x) = αxβ exp(− α

β + 1
xβ+1), x > 0, α > 0, β > −1.
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Proof. If X has PHR distribution, we have

(4.9) E(X|X ≤ x) =
1

F (x)

∫ x

0

uf(u)du =
1

F (x)

∫ x

0

uαuβ exp(− α

β + 1
uβ+1)du.

Integrating (4.9) by parts treating αuβ exp(− α
β+1

uβ+1) for integration and rest for
the integrand for differentiation, we get,
(4.10)

E(X|X ≤ x) =
1

F (x)

[
−x exp

(
− α

β + 1
xβ+1

)
+

∫ x

0

exp(− α

β + 1
uβ+1)du

]
.

After multiplying and dividing by f(x) in (4.10), we have

E(X|X ≤ x) =

[
− x

αxβ
+

exp( α
β+1

xβ+1)

αxβ

∫ x

0

exp(− α

β + 1
uβ+1)du

]
f(x)

F (x)

therefore
E(X|X ≤ x) = g(x)η(x).

This proves the necessary part.

To prove the sufficiency part. From [19], we have the following,

1

F (x)

∫ x

0

uf (u) du =
g (x) f(x)

F (x)
or

∫ x

0

uf (u) du = g (x) f(x)(4.11)

xf(x) = g
′
(x)f(x) + g(x)f

′
(x).

Therefore,
f
′
(x)

f(x)
=
x− g′(x)

g(x)

(4.12)
f
′
(x)

f(x)
=
x− g′(x)

g(x)
=

[
β

x
− αxβ

]
,

where,

g
′
(x) = x− g(x)

[
β

x
− αxβ

]
.

Integrating both sides in (4.12) with respect to x, we get,

f(x) = cxβ exp(− α

β + 1
xβ+1).

Now, using the condition,
∫∞
−∞ f(x)dx = 1, then∫ ∞

0

cxβexp(− α

β + 1
xβ+1)dx = 1
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1

c
=

∫ ∞
0

xβexp(− α

β + 1
xβ+1)dx =⇒ 1

c
=

1

α

This completes the proof. �

5. PARAMETER ESTIMATION UNDER PROGRESSIVE TYPE-II CENSORED ORDER

STATISTICS

Let X1:m:n, X2:m:n, · · · , Xm:m:n be the ordered m observed failures under Type-II
progressively censored sample from PHR distribution (α, β) with censoring scheme
(R1, R2, · · · , Rm). For notational convenience, we will use Xi in place of Xi:m:n.
Thus the likelihood function is given by

L(x|α, β) = C(n,m− 1)
m∏
i=1

f(xi)[1− F (xi)]
Ri

= C(n,m− 1)
m∏
i=1

[
αxβi exp

{
−α(1 +Ri)x

β+1
i

β + 1

}]
.

The corresponding log-likelihood function is given by,

(5.1) lnL(x|α, β) = D +m lnα + β
m∑
i=1

ln(xi)−
α

β + 1

m∑
i=1

(1 +Ri)x
β+1
i .

where D = ln[C(n,m− 1)].
By differentiating the log-likelihood function (5.1). The MLEs of α and β can

be obtained by equating the first derivatives by zero and solving with respect to α
and β,

∂ lnL(x|α, β)

∂α
=
m

α
− 1

β + 1

m∑
i=1

(1 +Ri)x
β+1
i = 0,

∂ ln(x|α, β)

∂β
=

m∑
i=1

ln(xi) +
α

(β + 1)2

m∑
i=1

(Ri + 1)xβ+1
i

− α

β + 1

m∑
i=1

(Ri + 1)xβ+1
i ln(xi) = 0.

Once the ML estimates of α and β are obtained, we can apply the asymptotic
normality of the MLEs to compute the approximate Cls for the parameters. The
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observed variance and covariance matrix for the MLEs of the unknown parameters
Θ = (α, β) is

I−1(Θ) =

[
−∂2 lnL

∂α2 −∂2 lnL
∂α∂β

−∂2 lnL
∂α∂β

−∂2 lnL
∂β2

]−1
=

[
−I11 −I12
−I21 −I22

]−1
.

The derivative in I(Θ) are given as follows

I11 = −m
α2

I22 = − 2α

(β + 1)3

m∑
i=1

(Ri + 1)xβ+1
i +

2α

(β + 1)2

m∑
i=1

(Ri + 1)xβ+1
i ln(xi)

− α

β + 1

m∑
i=1

(Ri + 1)xβ+1
i (ln(xi))

2

I21 = I12 =
1

(β + 1)2

m∑
i=1

(Ri + 1)xβ+1
i − 1

β + 1

m∑
i=1

(Ri + 1)xβ+1
i ln(xi).

Therefore, the above approach is used to derive the approximate 100 (1 − δ)%

confidence interval Cls of the parameters Θ = (α, β) as in the following form

α̂±−z δ
2

√
var(α̂), β̂± − z δ

2

√
var(β̂).

Here z δ
2

is the upper
(
δ
2

)
th percentile of the standard normal distribution.

5.1. Data Analysis. Now we use a real data set to show that the PHR distribution
can be a better model, comparing with many known distributions such as the
exponential ( [20]) and Rayleigh. We consider the data set from [20].

n = 15 and m = 12

(0.278,1), (2.009,1), (6.352,1), (8.286, 0), (18.325, 0), (19.332,0), (20.333, 0),
(24.727, 0), (25.717, 0), (25.877,0), (41.47, 0), (84.676, 0).

By using this data set, the likelihood estimators, asymptotic confidence interval,
log likelihood function, AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) are calculated in the following table.

The variance-covariance matrix can be obtained as follows.

V =

 6.334× 10−4 −5.102× 10−3

−5.102× 10−3 0.052


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TABLE 1. The Likelihood Estimation, LogL, AIC and BIC

Models α̂ β̂ LogL AIC BIC

PHRD 0.03936 0.02561 −7.8024 19.6048 21.020
Exp(θ) 0.042 – -50.054 102.108 102.816
Rayleigh

(
α = 1

θ

)
1.981× 10−3 1 −14.329 30.658 34.074

The asymptotic confidence interval for α and β are (0,0.089) and (0,0.471), re-
spectively.

Based on Table 1, it is shown that PHRD (α, β) model provides better fit to the
data rather than other distributions which we compared with because it has the
smallest value of AIC and BIC test.

ACKNOWLEDGMENT

The authors would like to thank the Deanship of Scientific Research at Islamic
University of Madinah, KSA for supporting this paper under the project number
(141/1441-1442 AH).

REFERENCES

[1] A. C. COHEN: Progressively censored samples in life testing, Technometrics, 5 (1963), 327–
339.

[2] D. R. THOMAS, W. M. WILSON: Linear order statistic estimation for the two-parameter
Weibull and extreme-value distributions from Type-II progressively censored samples, Techno-
metrics, 14 (1972), 679–691.

[3] N. BALAKRISHNAN, R. AGGARWALA: Progressive Censoring: Theory, Method and Applica-
tions, Birkhauser, Bosto, 2000.

[4] N. BALAKRISHNAN, A. R. SANDHU: A simple simulation algorithm for generating progressive
Type-II censored samples, The American Statistician, 49 (1995), 229–230.

[5] A. R. MUGDADI: The least squares type estimation of the parameters in the power hazard
function, Applied Mathematics Computation, 169 (2005), 737–748.

[6] K. ISMAIL: Estimation of P (Y < X) for distribution having power hazard function, Pakistan
Journal of Statistics, 30 (2014), 57–70.

[7] N. BALAKRISHNAN, E. K. AL-HUSSAINI, H. M. SALEH: Recurrence relations for moments
of progressively censored order statistics from logistic distribution with applications to inference,
Journal of Statistical Planning and Inference, 14 (2011), 17–30.



MOMENTS OF PROGRESSIVE TYPE-II RIGHT . . . 10521

[8] J. SARAN, V. PANDE: Recurrence relations for moments of progressively Type-II right censored
order statistics from half- logistic distribution, Journal of Statistics Theory and Applications,
11 (2012), 87–96.

[9] N. BALAKRISHNAN, H. M. SALEH: Relations for moments of progressively Type-II censored
order statistics from log-logistic distribution with applications to inference, Communication in
Statistics- Theory and Methods, 41 (2012), 880–906.

[10] N. BALAKRISHNAN, H. M. SALEH: Recurrence relations for single and product moments of
progressively Type-II censored order statistics from a generalized half-logistic distribution with
application to inference, Journal of Statistical Computation and Simulation, 83 (2013), 1704–
1721.

[11] H. ATHAR, Z. AKHTER, J. SARAN: Moments of progressively Type-II right censored order
statistics from Lindely distribution, Statistics Research Letters, 3 (2014), 1–6.

[12] M. M. MOHIE EL- DIN, A. SADEK, MARWA, A.M. SHARAWY: Characterization of linear
failure rate distribution by general progressively Type-II right censored order statistics, American
Journal of Theoretical and Applied Statistics, 6 (2017), 129–140.

[13] M. R. MALIK, D. KUMAR: Relations for moments of progressively Type-II censored order
statistics from Erlang-Truncated exponential distribution, Statistics Transition. New Ser., 18
(2017)), 651–668.

[14] S. DEY, M. NASSAR, D. KUMAR: Moments and estimation of reduced Kies distribution based
on progressive type-II right censored order statistics, Hacettepe Journal of Mathematics and
Statistics, 48 (2019), 332–350.

[15] D. KUMAR, M. R. MALIK, S. DEY, M. Q. SHAHBAZ: Recurrence relations for moments and
estimation of parameters of extended exponential distribution based on progressive Type-II right
censored order statistics, Journal of Statistical Theory and Applications, 18 (2019), 171–181.

[16] B. SINGH, R. U. KHAN: Moments of progressively Type-II right censored order statistics from
additive Weibull distribution, ProbStat Forum, 12 (2019), 36–46.

[17] R. AGGARWALA, N. BALAKRISHNAN: Recurrence relations for single and product moments
of progressive type-II right censored order statistics from exponential and truncated exponential
distributions, Annals of the Institute of Statistical Mathematics, 48 (1996), 757–771.

[18] J. S. HWANG, G. D. LIN: On a generalized moments problem II, Proceedings of the American
Mathematical Society, 91 (1984), 577–580.

[19] M. AHSANULLAH, M. SHAKIL, B. M.G. KIBRIA: Characterization of continuous distri-
butions by truncated moment, Journal of Modern Applied Statistical Methods, 15 (2016),
316–331.

[20] A. M. SARHAN, A. ABUAMMOH: Statistical inference using progressively Type-II censored
data with random scheme, International Mathematical Forum, 3 (2008), 1713–1725.



10522 M. I. KHAN AND A. MUSTAFA

DEPARTMENT OF MATHEMATICS

ISLAMIC UNIVERSITY OF MADINAH

KINGDOM OF SAUDI ARABIA

Email address: izhar.stats@gmail.com

DEPARTMENT OF MATHEMATICS

ISLAMIC UNIVERSITY OF MADINAH

KINGDOM OF SAUDI ARABIA

Email address: amelsayed@mans.edu.eg


