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NUMERICAL RESOLUTION OF A DEGENERATE ELLIPTIC-PARABOLIC
SEAWATER INTRUSION PROBLEM USING FINITE VOLUME SUSHI METHOD

MOHAMED MANDARI AND MOHAMED RHOUDAF

ABSTRACT. In this paper, we propose an approximation for a seawater intrusion
problem in a confined aquifer, This model consists in a coupled system of an ellip-
tic and a de-generate parabolic equation, using finite volume SUSHI (Schema Us-
ing Stabilisation and Hybrid Interfaces) method,we demonstrate the convergence
of Schema using stabilisation and hybrid interface by numerical simulations tests
proposed.

1. INTRODUCTION

Saltwater intrusion is the movement of saline water into freshwater, as result
of higher seawater density than freshwater, ground-water pumping from coastal
wells, or from construction of navigation channels or oils field canals. This phe-
nomenon could affect human activity and wild life that depend on freshwater in
the area, see [10], [11], [12].

A lot of research has been done on this problem. Jacob Bear in [3], H. I. Es-
said [6], O.Kolditz et al [7], S. Sorek et al [9], H.-J.G. Diersch et O. Koldizt [8]. All
these works can be classified in the following way. First, the physically approach-
Hidden diffuse interfaces (sharp-diffuse) see [21, 22]. Second approach is the
sharp interface where the two fluids are immiscible and the domains occupied by
each fluids are assumed to be separated by an interface called sharp interface, we
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refer to [2–5,13–16] for more details about sea intrusion problem with sharp inter-
face approach. Third approach consists in considering the existence of a transition
zone with variable concentrations of salt (see [17–19]). The fourth approach is to
assume that no interface between the fluids, and this fluids are miscible see [20].

We are interested in the numerical resolution of the problem of seawater in-
trusion in the case of the first approach this work is the objective of some works
even [2–5,13–16].

In the literature there exists many methods to discretise the diffusion term,
let us cite the discrete duality finite volume (DDFV) schemes by Domelevo and
Omnes [25,26]. Among other approaches let us mention the multipoints flux ap-
proximation schemes by Aavatsmark et al. [23,24], the scheme using stabilization
and hybrid interfaces by Eymard, Gallouet, and Herbin [27, 28]. and the mixed
finite volume (MFV) schemes by Droniou and Eymard [29, 30]. This is also the
case for the mimetic finite difference (MFD) schemes [31,32], the mixed finite el-
ement methods on distorted meshes by Y. Kuznetzov and S. Repin [33]. All these
methods have been compared in 2008 on a benchmark organized by Herbin and
Hubert [34]

In this work, we will discretise the seawater intrusion problem by the finite
volume method SUSHI, the advantage of this method is that we can use this
method for any type of polyhedral mesh, moreover the hydraulic conductivity
matrix-valued function is variable and defined positive, see [28].

1.1. Seawater intrusion problem. Let Ω an open, bounded connected subset of
Rd (d = 2 or d = 3), which supported tube polygonal (d = 2) or polyhedral (d = 3),
and ∂Ω stands for its boundary. The confined aquifer bounded by two horizontal
and impermeable layers. The upper to z = 0 and the lower surface corresponds to
z = −H2, H2 is the thickness of the aquifer assumed to be such that H2 > δ > 0

and ts(h) = H2 − h is the thickness of saltwater zone.

FIGURE 1. Saltwater intrusion phenomena.
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Here h is the depth of the interface and f is the freshwater hydraulic head, then
(h, f) satisfy the following system (see [2]):

(1.1)

∂h
∂t
− div(ts(h)K(x)∇h) + div(ts(h)K(x)∇f) = −Is in Ω× [0, T ],

−div(K(x)∇f) + div(ts(h)K(x)∇h) = If + Is in Ω× [0, T ].

With the following hypothesis

- The initial condition

(1.2) h(x, 0) = h0(x) in Ω,

such that

(1.3) h0 ∈ L2(Ω) satisfies δ ≤ h0(x) ≤ H2 for a.e. x ∈ Ω.

- The boundary conditions

(1.4)

h = 0 on ∂Ω× [0, T ],

f = 0 on ∂Ω× [0, T ].

- Let Ts be the function defined by, Ts(x) =
∫ x

0
ts(r)dr

- K is the hydraulic conductivity matrix-valued function satisfying,

(1.5)



K : Ω× R→M2(R)

for all ξ ∈ R2,∃(K−, K+) ∈ R2

such that 0 < K−|ξ|2 ≤
∑
i,j=1,2

Ki,j(x)ξi.ξj ≤ K+|ξ|2 <∞

for a.e. x ∈ Ω and ξi 6= 0 for i = 1 or i = 2.

- Is and If are the supply functions represent the distributed supply surface
of fresh and salt water into the aquifer such that:

(1.6) (Is, If ) ∈ L2(0, T, L2(Ω)).

The outline of this paper is as follows. In section 2 we presents the mesh nota-
tions, the discrete operators ( gradient and convection ) and some mathematical
properties. Section 2 is devoted to the main results, it is divided to two subsec-
tions, the discretization of the problem is given in the first subsection and then the
numerical validation in the second subsection.
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2. A FINITE VOLUME METHOD SUSHI FOR THIS SEA INTRUSION PROBLEM

Now, we construct an approximate solution of Problem (1.1)-(1.6) correspond-
ing to a time implicit discretization and a finite volume scheme SUSHI. The flux
is constructed using the idea of the stabilised discrete gradient proposed by Ey-
mard et. al. [19]. This scheme is inspired by hybrid finite volume (HFV) and the
cell centred (SUCCES) schemes. They are based on two fundamental ideas: one
where the unknown on the edges are introduced only where they are needed , and
second where the unknown on the edges introduced on all edges of the mesh.

2.1. Space and time discretization.

Definition 2.1. Now let’s define some notations of the discretization of Ω.

- A discretization of Ω, denoted D is defined by a triplet D = (M, E , P ).
- M is a family of connected non-empty open subspaces included in Ω (set of

control volumes K).
- σ is a non-empty open of R.
- The set of interfaces of the mesh D is denoted E .
- This set is decomposed into two subdomains Eint and Eext which respectively

represent the set of internal faces and faces located on the edge ∂Ω of the
domain.

- For all K ∈M, Mσ = {K, σ ∈ EK}. If Mσ content one element then σ ∈ Eext,
else σ ∈ Eint.

- xσ and xK are respectively the center and the barycentre of σ and K.
- mK and mσ are respectively the measure of control volume K and of interface
σ.

- nK,σ is the unit vector normal to σ outward to K.
- P is the set of points of Ω.
- CK,σ is the cone with vertex xK and basis σ.

Definition 2.2. We consider XD, XD,0 and XD,0,B three spaces defined as follow:

XD = {v = ((vK)K∈M, (vσ)σ∈E); vK ∈ R, vσ ∈ R},

XD,0 = {v ∈ XD such that ΛK∇n
K,σv.nK,σ = 0,∀σ ∈ Eext},

XD,0,B = {v ∈ XD,0/∃βKσ ∈ R,

vσ =
∑
K∈M

βKσ vK}.
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B is defined in the next definition.

Definition 2.3. Let:

(2.1) uσ =
∑
K∈M

βKσ uK,

where (βKσ )K∈M,σ∈Eint is a family of real numbers, with βKσ 6= 0 only for some control
volumes K close to σ, and such that∑

K∈M

βKσ = 1 and xσ =
∑
K∈M

βKσ xK.

B is the set of the eliminated unknowns using (2.1), and H = Eint/B.

The space XD is equipped with the semi-norm |.|XD defined by

|v|2XD
=
∑
K∈M

∑
σ∈EK

mσ

dKσ
(vσ − vK)2, for all v ∈ XD.

Note that |.|XD is a norm on the spaces XD,0 and XD,0,B.

2.2. The discrete gradient. It is always possible to deduce an expression for
∇Du(x) as a linear combination of (uσ − uK)σ∈EK.

Let us first define

∇K :XD → (XD)2

un+1 7→ ∇Kun+1,

such that

un+1 ∈ XD,∇Kun+1 =
1

|K|
∑
σ∈EK

|σ|[un+1
σ − un+1

K ]νK,σ.

However, we find that this discrete gradient is zero for any un+1
K ∈ K, if un+1

σ

are zero, so it is not coercive. We thus seek a new coherent discrete gradient
with the previous and coercive in the CK,σ (cone the vertex xK and basis σ). This
corresponds to the previous step gradient to which we add a correction term. We
define the discrete gradient as follows

∇K,σun+1 = ∇Kun+1 +RK,σ(un+1)νK,σ,

with

RK,σ(un+1) =

√
d

dK,σ
(un+1

σ − un+1
K −∇Kun+1.[xσ − xK]).
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(Recall that d is the space dimension and dK,σ is the Euclidean distance between
xK and xσ.) We obtain the following stable discrete gradient

(2.2) ∇K,σun+1 = ∇Kun+1 +RK,σun+1.νK,σ.

We may then define ∇D as the piece-wise constant function equal to ∇K,σ a.e. in
the cone CK,σ with vertex xK and basis σ

∇Dun+1 = ∇K,σun+1 for a.e x ∈ CK,σ.

Then we have

∇K,σun+1 =
∑
σ′EK

Y σ,σ′
(un+1

σ′ − un+1
K ),

with Y σ,σ′ giving by

(2.3) Y σ,σ′
=

mσ
mK
νKσ +

√
d

dK,σ
(1− mσ

mK
νKσ.[xσ − xK])νKσ if σ = σ′,

mσ′
mK

νKσ′ −
√
d

dK,σmK
νK,σ′ .[xσ − xK]νK,σ otherwise.

2.3. The discrete convection term. To treat the convection term in the concen-
tration equation, we define the following convection operator discrete:

divcσ : XD ×XD → XD

(ξD, vD) 7→ div(ξD, vD),

with

divcσ(ξD, vD) =

vKνσ,KξK if vKνσ,K ≥ 0,

−vKνσ,KξL if vKνσ,K < 0.

3. MAIN RESULTS

3.1. Discrete weak formulation.

3.1.1. Elliptic equation. We begin with the discretisation of this equation

−div(K(x)∇f) + div(K(x)ts(h)∇h) = Is − If .

We integer over K for any K ∈M an in the interval ]tn, tn+1[⊂]0, T [∫ tn+1

tn

∆t

∫
K
−div(K2(x)∇fn+1) + div(K(x)Ts(h

n)∇hn+1 =

∫ tn+1

tn

∆t

∫
K

(If + Is),
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then we get∑
σ∈EK

∫
σ

K(x)∇fn+1.νK,σ −
∑
σ∈EK

∫
σ

K(x)ts(h
n)∇hn.νK,σ = mK(In+1

f,K + In+1
s,K ),

finally

(3.1)
∑
σ∈EK

F1
K,σ(fn+1)−

∑
σ∈EK

F2
K,σ(hn) = mK(In+1

f,K + In+1
s,K ).

Withe the following discretisation of boundary condition

fn+1
σ = 0; for all σ ∈ Eext.

The fact that the flow is continuous at the interface of the two elements, we have

(3.2) F1
K,σ(fn+1) + F1

L,σ(fn+1) = 0 for all σ ∈ Eint.

Let, multiplying the equation (3.1) by vn+1
K for all K ∈M and all n = 0, . . . , N −1,

then sum over K and over n = 0, . . . , N − 1, and using the equation (3.2) we get

N−1∑
n=0

∑
K∈M

∑
σ∈EK

F1
K(fn+1)|vn+1

K − vn+1
σ ]−

N−1∑
n=0

∑
K∈M

∑
σ∈EK

F2
K(hn+1)vn+1

K =

N−1∑
n=0

∑
K∈M

vn+1
K mK(In+1

s,K − I
n+1
f,K ),

3.1.2. Parabolic equation. Let discrete the following equation

∂h

∂t
− div(K(x)ts(h)∇h) + div(K(x)ts(h)∇f) = −Is.

Integering over K for any K ∈M an in the interval ]tn, tn+1[⊂]0, T [, we get
∫ tn+1

tn
∆t
∫
K
∂h
∂t

+
∫ tn+1

tn
∆t
∫
K−div(K(x)ts(h)∇h)+

div(K(x)Ts(h)∇f =
∫ tn+1

tn
∆t
∫
K(−Is),

then we get

(3.3)


mK(hn+1

K − hnK) + ∆t
∑
σ∈K

F2
K,σ(hn+1)

+∆t
∑
σ∈K

mσdivcσ(ts(h
n+1
D , KD∇Dfn+1) = ∆tmK(−In+1

s,K ),

with the following discretization of boundary condition

hn+1
σ = 0; for all σ ∈ Eext.
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The fact that the flow is continuous at the interface of the two elements, we have

(3.4) F2
K,σ(hn+1) + F2

L,σ(hn+1) = 0 for all σ ∈ Eint.

We multiplying (3.3) by wn+1
K for all K ∈ M and all n = 0, . . . , N − 1, then sum

over K and over n = 0, . . . , N − 1, then we get
N−1∑
n=0

∑
K∈M

wn+1
K (hn+1

K − hnK) + δt
N−1∑
n=0

∑
K∈M

∑
σ∈EK

F2
K,σ(hn+1)wn+1

K +

δt
N−1∑
n=0

∑
K∈M

wn+1
K

∑
σ∈EK

mσdivcσ(ts(h
n+1
D ), KD∇Dfn+1) = δt

N−1∑
n=0

∑
K∈M

wn+1
K I+,n+1

s,K .

Bearing in mind (3.4), from above, we get

N−1∑
n=0

∑
K∈M

wn+1
K (hn+1

K − hnK) + δt
N−1∑
n=0

∑
K∈M

∑
σ∈EK

F2
K,σ(hn+1)[wn+1

K − wn+1
σ ]+

δt
N−1∑
n=0

∑
K∈M

wn+1
K

∑
σ∈EK

mσdivcσ(ts(h
n+1
D ), KD∇Dfn+1) = δt

N−1∑
n=0

∑
K∈M

wn+1
K I+,n+1

s,K .

3.1.3. The discrete flux. The discrete flux F1
K,σ and F2

K,σ are expressed in terms of
the discrete unknowns. For this purpose we apply the SUSHI scheme proposed
in [27]. The idea is based upon the identification of the numerical flux through
the mesh dependent bilinear form, using the expression of the discrete gradient

(3.5)
N−1∑
n=0

∑
K∈M

∑
σ∈EK

F1
K,σ(fn+1)(vK−vσ) ≈

∫ T

0

∫
Ω

K(x)∇Dfn+1K(x, s)∇Dv,∀fn+1,

v ∈ X0,D, and

(3.6)
N−1∑
n=0

∑
K∈M

∑
σ∈EK

F2
K,σ(hn+1)(wK − wσ) ≈

∫ T

0

∫
Ω

∇DTs(hn+1)K(x)∇Dw,∀hn+1,

w ∈ X0,D. The identification of the numerical fluxes using relation (3.5) and (3.6)
leads to the expression

F 1
K,σ(fn) =

∑
σ′∈EK

Kσ,σ′

K (fn+1
K − fn+1

σ ),

F 2
K,σ(hn+1) =

∑
σ′∈EK

Kσ,σ′

K (Ts(h
n+1
K )− Ts(hn+1

σ )).
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Thus ∫
K
∇Dfn+1K(x)∇Dv =

∑
σ∈EK

∑
σ′∈EK

Kσ,σ′

K (fn+1
K − fn+1

σ′ )(vσ′ − vK).

∫
K
∇DTs(hn+1)K(x)∇Dw =

∑
σ∈EK

∑
σ′∈EK

Kσ,σ′

K (Ts(h
n+1
K )− Ts(hn+1

σ′ ))(wσ′ − wK).

With σ, σ′ ∈ EK and{
Kσ,σ′

K =
∑
σ′′∈EK

Y σ′′,σΓσ
′′

K Y
σ′′,σ′

with Γσ
′′
K =

∫
K,Cσ′′

K(x)dx,

The local matrices Kσ,σ′

K is symmetric positive and Y σ′′,σ′ is defined in (2.3).

3.2. The numerical scheme. Using (2.2) we have∇K,σfn+1 = ∇Kfn+1 +RK,σ(fn+1).νK,σ,

∇K,σhn+1 = ∇Khn+1 +RK,σ(hn+1).νK,σ,

and

divcσ(ξD, vD) =

vKνσ,KξK if vKνσ,K ≥ 0,

−vKνσ,KξL if vKνσ,K < 0.

The discretisation of the problem (1.1), (1.2) and (1.4) is defined as following

h(x, 0) =
1

mK

∫
K∈M

h0(x)dx.

 KK,σ∇Df.ν = 0

KK,σ∇Dh.ν = 0 = 0.

At each time step n, the numerical solution will be given by (hn+1
D , fn+1

D ) ∈ R2
D.

Then, the scheme for (1.1) writes for all 0 ≤ n ≤ N − 1,

In+1
s,K =

1

δt

∫ tn+1

tn

1

mK

∫
K
Is(t, x)dt,

In+1
f,K =

1

δt

∫ tn+1

tn

1

mK

∫
K
If (t, x)dt,
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(3.7)



−
∑
K∈T

∑
σ∈EK

F1
K,σ(fn+1)(vσ − vK) +

∑
K∈T

∑
σ∈EK

F2
K,σ(hn)(vσ − vK) =∑

K∈T

vK
(
In+1
s,K + In+1

f,K
)
,

∑
K∈T

mKvK
hn+1
K − hnK

∆t
−
∑
K∈T

∑
σ∈EK

F2
K,σ(hn+1)(vσ − vK)+∑

K∈T

∑
σ∈EK

mσdivc(ts(h
n+1
D ), KD∇K,σfn+1)vK = −

∑
K∈T

vKmKI
n+1
s,K ,

F1
K,σ(fn+1) =

∑
σ′∈EK

Aσ,σ
′

K (fn+1
σ′ − fn+1

K ),

F2
K,σ(hn+1) =

∑
σ′∈EK

Aσ,σ
′

K (Ts(h
n+1
σ′ )− Ts(hn+1

K )),

such that,

Aσ,σ
′

K =
∑
σ′′∈EK

Y σ,σ′′
KY σ′,σ′′

,

with Y σ,σ′ is given by (2.3).

3.3. Numerical convergence of the SUSHI scheme.

3.3.1. Convergence of the diffusion equation. In this numerical test, we are inter-
ested to demonstrate the convergence of the following diffusion equation with
Dirichlet boundary  −div(K(x)∇S) = f(x) inΩ,

S = 0 on∂Ω.

We take the exact solution S1(x, y) = sin(πx)2sin(πy)2 in a first case and in a
second case S2(x, y) = x2y2(x− 1)2(y − 1)2 the permeability K(x, y) is given by

K1(x, y) = 80

[
1 0

0 1

]
,

or by

K2(x, y) =
1

x2 + y2

[
10−3x2 + y2 (10−3 − 1)xy

(10−3 − 1)xy 10−3y2 + x2

]
,

in both cases Ω = (0, 1)2. Then we get the convergence tables in norm L2, L1 and
L∞ following,
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TABLE 1. Convergence results of the SUSHI schemes, with Sext = S1

and K = K1 .

Refinement level ‖ST − Sext‖L2(Ω) ‖ST − Sext‖L1(Ω) ‖ST − Sext‖L∞(Ω)

1 0.0149 0.0045 0.1920
2 0.0033 0.0010 0.0848
3 8.0426e-04 2.4747e-04 0.0414
4 2.0011e-04 6.1305e-05 0.0206

TABLE 2. Convergence results of the SUSHI schemes, with Sext = S2

and K = K2.

Refinement level ‖ST − Sext‖L2(Ω) ‖ST − Sext‖L1(Ω) ‖ST − Sext‖L∞(Ω)

1 0.0159 0.0017 0.3076
2 0.0050 4.7231e-04 0.1941
3 0.0015 1.2424e-04 0.1124
4 4.2783e-04 3.1108e-05 0.0623

3.3.2. Convergence of a nonlinear elliptic-parabolic equations: In this subsection,
we present the schema 2D-SUSHI apply to a simple test case with analytical so-
lution in order to study the convergence properties. For this test case we give
the formulas for the diffusion tensor K and the exacts solutions he and fe from
which we deduce the source terms g1 and g2, of the system (3.8), to be used in the
numerical computations.

(3.8)



∂h
∂t
− div(K(H2 − h)∇h) + div(K(H2 − h)∇f) = g1, in Ω× [0, T ],

−div(K∇f) + div(K(H2 − h)∇h) = g2, in Ω× [0, T ],

f = 0 and h = 0, on ∂Ω× [0, T ],

h(x, 0) = h0, in Ω.

The algorithm used to compute numerical solution of the system (3.7) is the fol-
lowing: at each time step, we first calculate fn solution of the linear system given
by the first equation of (3.7) and next we compute hn+1 as the solution of the
nonlinear system defined by the second equation of (3.7).

Consider the following data: Lx = 1, Ly = 1 (the length and the width of the
domain Ω =]0, 1[×]0, 1[), the rectangular domain is covered by triangles. Further,
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δt = 10−4, the diffusion tensor K = 1 and the second members g1 and g2 of the
bouts equations are defined such that the exacts solutions are, h(x, t) = tsin(πx)2sin(πy)2,

f(x, t) = x(x− 1)y(y − 1).

We introduce the relative error in L1(Ω), L2(Ω), L∞(Ω), between the exact and the
numerical solution by, 

err1(h) =
‖he−hD‖L1(Ω)

‖he‖L1(Ω)
,

err2(h) =
‖he−hD‖L2(Ω)

‖he‖L2(Ω)
,

err∞(h) =
‖he−hD‖L∞(Ω)

‖he‖L∞(Ω)
.

In the Table bellow, we calculate the norms L1(Ω), L2(Ω), and L∞(Ω) of the
difference between the exact solution h(x, t) and the numerical solution hT .

TABLE 3. L∞ − norm Convergence results of the SUSHI method on
the deft h at t = 10−3 with δt = 10−4.

N.U err∞ Order err1 Order err2 Order
44 9.7600e-03 - 3.6692e-07 - 3.8518e-07 -
168 1.1289e-04 1.9633 2.2946e-07 1.0317 3.2735e-07 1.0110
656 1.1056e-04 1.0023 1.3789e-07 1.0333 1.6480e-07 1.0460

2592 1.0944e-04 1.0011 6.8453e-08 1.0443 8.0808e-08 1.0456
10304 1.0862e-04 1.0008 3.5054e-08 1.0406 4.4356e-08 1.0367
12560 1.079e-04 1.0007 2.0286e-08 1.0319 2.8983e-08 1.0251

3.3.3. Example describes the interface evolution from a salt intrusion problem in
a confined aquifer: In this subsection, we illustrate the behavior of the SUSHI
scheme by applying it to the system (1.1), which describes the seawater intru-
sion. In this simulations, we solve numerically the full bi-dimensional problem
and we plot the transversal section average (with respect to y) of the depth hD(x)

at different times.
Let’s use the data from the original Keulegan article [1] for our numerical sim-

ulations. In this example the evolution of the interface is described from a salt
intrusion problem in a confined aquifer. The fresh and salty waters are separated
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by interface described by a linear profile pivoting around a fixed point (0, (D/2)) .
More precisely, Keulegan has proposed the following formula:

Z(x, t) =
D

2

(
1 +

x

L(t)

)
, with L(t) =

(
KDαt

ne

)2

.

With D = 10m stands for the depth of the aquifer, α = 0.1, the effective porosity
ne = 0 and the hydraulic conductivity K = 39, 024m/j. We consider homogeneous
Dirichlet conditions. Let L(t0) = 50m for the initial data.

FIGURE 2. Comparison between the approximate and exact solution
at time t = 20
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FIGURE 3. Approximate solution at time t = 1, 2, 10, 20, 30, 50, 70, 80, 100

FIGURE 4. Comparison between the approximate and exact solution
at time t = 30
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