ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.12, 10541–10561 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.40

17-DECOMPOSITION MATRICES FOR THE SPIN CHARACTERS OF SYMMETRIC GROUP S_N , $17 \le N \le 22$

A. K. YASEEN¹ AND M. B. TAHIR

ABSTRACT. In this paper, we compute the Brauer trees of the symmetric group S_n , $17 \le n \le 22$, which can give the decomposition matrices of spin characters of S_n , $17 \le n \le 22$, modulo p = 17. The method (r, r')-inducing (restricting) is used.

1. INTRODUCTION

The representation group \bar{S}_n of the symmetric group S_n has order 2(n!) and it has a central subgroup $Z = \{-1, 1\}$ such that $\bar{S}_n/Z \approx S_n$, see [1]. Then, the irreducible representations or characters of \bar{S}_n fall into two classes [1,2]:

- (1) Those, which have Z in their kernel, will be referred to as ordinary representations or characters. The irreducible representations and characters are indexed by partitions λ of n and the character is denoted by $[\lambda]$.
- (2) The representations which do not have Z in their kernel are called the spin representation of S_n. The irreducible spin representations are indexed by partitions of n with distinct parts which are called bar partitions of n and denoted by (λ), see [2,3].

In fact, if $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$, $\lambda \mapsto n$ and if n - m is even, then there is one irreducible spin character denoted by $\langle \lambda \rangle$ which is self-associate, and if n - m is

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 20C20, 13A20.

Key words and phrases. modular representations and characters, Brauer trees, decomposition matrix for the spin characters.

odd, then there are two associate spin characters denoted by $\langle \lambda \rangle$ and $\langle \lambda \rangle'$. The decomposition matrix gives the relationship between the irreducible spin characters and projective indecomposable spin characters of S_n .

In this paper, we determined the decomposition matrices of spin characters of S_n , $17 \le n \le 22$, modulo p = 17. The method (r, r')-inducing (restricting) is used [3], to distribute the spin characters into *p*-blocks [4, 5]. The Brauer trees for spin characters of S_n , $13 \le n \le 20$ modulo p = 13 are found by Taban and Jawad [6], for n = 21 are found by Yaseen [7] and for n = 22 are found by Yaseen and Tahir [8].

2. PRELIMINARIES

The following results are very useful to find the modular characters:

(1) The degree of spin characters $\langle \lambda \rangle$, $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ is [1,9]:

$$deg\langle \lambda \rangle = 2^{\left[\frac{(n-m)}{2}\right]} \frac{n!}{\prod_{i=1}^{m} \lambda!} \prod_{1 \le i < j \le m} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j}.$$

- (2) Every spin (modular, projective) character of S_n can be written as a linear combination with non-negative integer coefficients of the irreducible spin (irreducible modular, projective indecomposable)characters respectively [10].
- (3) Let H be a subgroup of the group G [11], then:
 - a) If φ is a modular (principal) character of a subgroup H of G, then φ ↑ G is a modular (principal) character of G, (where ↑ denotes inducing).
 - b) If ψ is a modular (principal) character of group *G*, then $\psi \downarrow H$ is a modular (principal) character of a subgroup *H*, (where \downarrow denotes the restricting).
- (4) Let *B* be a *p*-block *G* of defect one and let *b* be the number of *p*-conjugate characters to the irreducible ordinary character χ of *G* [12], then:
 - a) There exists a positive integer number N such that the irreducible ordinary characters lying in the block B can be partitioned into two disjoint classes: B₁ = {x ∈ B | b deg x ≡ N mod p^a}, B₂ = {x ∈ B | b deg x ≡ -N mod p^a}.

- b) Each coefficient of the decomposition matrix of the block *B* is 1 or 0.
- c) If α_1 and α_2 are not *p*-conjugate characters and belong to the same partition class B_1 or B_2 above, then they have no irreducible modular character in common.
- d) For every irreducible ordinary character χ in B_1 , there exists irreducible ordinary character φ in B_2 such that they have one irreducible modular character in common with multiplicity one.
- (5) Let λ and μ be bar partitions such that λ ≠ μ, then ⟨λ⟩ and ⟨μ⟩ are in the same *p*-block if and only if λ(p̄) = μ(p̄), where *p* is an odd prime. The associative irreducible spin characters ⟨λ⟩ and ⟨λ⟩' are in the same *p*-block if λ(p̄) ≠ λ, see [3].
- (6) Let G be a group of order m = m₀p^a, where (p, m₀) = 0. If c is a principal character of H, then deg c ≡ 0 mod p^a, see [13].
- (7) If c is a principal character of G for an odd prime p and all entries in c are divisible by positive integer q, then c/q is a principal character of G, see [11].
- (8) Let p be odd and n be even, then from [14]:
 - a If $p \nmid n$, then $\langle n \rangle = \varphi \langle n \rangle$ and $\langle n \rangle' = \varphi \langle n \rangle'$ are distinct irreducible modular spin characters of degree $2^{(n-2)/2}$.
 - b If $p \nmid n$ and $p \nmid (n-1)$, then $\langle n-1, 1 \rangle = \varphi \langle n-1, 1 \rangle^*$ is an irreducible modular spin characters of degree $2^{(n-2)/2}(n-2)$.
- (9) Let α = (α₁, α₂, ..., α_m) be a bar partition of n, not a p-bar core, and B be the block containing (α), then:
 - a If $n m m_0$ is even, then all irreducible modular spin characters in B are double.
 - b If $n m m_0$ is odd, then all irreducible modular spin characters in *B* are associate, where m_0 is the number of parts of α divisible by *p* [13]. For more details, see [16–18].

We shall use the following notations next: Irreducible modular spin characters (i.m.s), modular spin characters (m.s), principal indecomposable spin character (p.i.s), and principal spin character (p.s).

3. Decomposition Matrices for the Spin Characters of the symmetric groups $S_n,\,17\leq n\leq 22$ for the prime p=17

In the following sections, we calculate the decomposition matrices of the spin characters of the symmetric group S_n , when $17 \le n \le 22$ for the prime p = 17. In each we find the irreducible spin characters and $(17, \alpha)$ -regular classes of S_n , $17 \le n \le 22$ when p = 17. All blocks in these sections are 17-blocks.

3.1. Decomposition Matrix for the Spin Characters of S_{17} . The symmetric group S_{17} has 57 irreducible spin characters and S_{17} has 56 (17, α)-regular classes, then the decomposition matrix of the spin characters for S_{17} , p = 17 has 57 rows and 56 columns. There are forty-one 17-block, (Preliminary 5). The principal block B_1 (the block which contains the spin character $\langle n \rangle$ or $\langle n \rangle'$), where B_1 of defect one contains the characters $\langle 17 \rangle^*$, $\langle 16, 1 \rangle$, $\langle 16, 1 \rangle'$, $\langle 15, 2 \rangle$, $\langle 14, 3 \rangle$, $\langle 14, 3 \rangle'$, $\langle 13, 4 \rangle$, $\langle 13, 4 \rangle'$, $\langle 12, 5 \rangle$, $\langle 12, 5 \rangle'$, $\langle 11, 6 \rangle$, $\langle 11, 6 \rangle'$, $\langle 10, 7 \rangle$, $\langle 10, 7 \rangle'$, $\langle 9, 8 \rangle$, $\langle 9, 8 \rangle'$ with 17-bar core φ . All the 40 remaining characters B_2, B_3, \cdots, B_{41} form their own blocks of defect 0, see [10], which are irreducible modular spin characters.

3.2. The Brauer tree for the spin characters of S_p . The spin characters of S_p are $\{\langle P - r, r \rangle | r = 0, 1, 2, \cdots, (p - 1)/2\}$ belong to the same *p*-block since they have empty \bar{p} -core. These characters of defect 1 since *p* does not divide their degrees. Then, we apply the following theorem to find the Brauer tree for spin characters of S_p to determine the decomposition matrix for S_p .

Theorem 3.1. The Brauer tree for S_p is: $\langle (p+1)/2, (p-1)/2 \rangle' = \ldots = \langle p-1, 1 \rangle' = \langle p^* \rangle = \langle p-1, 1 \rangle = \ldots = \langle (p+1)/2, (p-1)/2 \rangle.$ *Proof.* See [3].

Proposition 3.1. By using above Theorem 3.1, the Brauer tree for the principal block B_1 is:

$$\begin{array}{c} \langle 16,1\rangle_\langle 15,2\rangle_\langle 14,3\rangle_\langle 13,4\rangle_\langle 12,5\rangle_\langle 11,6\rangle_\langle 10,7\rangle_\langle 9,8\rangle \\ \\ \langle 17\rangle^* \\ \\ \langle 16,1\rangle'_\langle 15,2\rangle'_\langle 14,3\rangle'_\langle 13,4\rangle'_\langle 12,5\rangle'_\langle 11,6\rangle'_\langle 10,7\rangle'_\langle 9,8\rangle \\ \end{array} \\ Hence the decomposition matrix for this block D^{(1)}_{17,17} in Table 1. \end{array}$$

The decomposition matrix for the block B_1 The spin characters 1 1 $\langle 17 \rangle^*$ 1 1 $\langle 16, 1 \rangle$ 1 $\langle 16,1\rangle'$ 1 1 $\langle 15, 2 \rangle$ 1 $\langle 15, 2 \rangle'$ 1 1 1 1 $\langle 14,3\rangle$ 1 1 $\langle 14,3\rangle'$ $\langle 13, 4 \rangle$ 1 1 1 1 $\langle 13, 4 \rangle'$ 1 $\langle 12, 5 \rangle$ 1 1 1 $\langle 12, 5 \rangle'$ $\langle 11, 6 \rangle$ 1 1 1 $\langle 11, 6 \rangle'$ 1 1 $\langle 10,7 \rangle$ 1 $\langle 10,7\rangle'$ 1 1 $\langle 9, 8 \rangle$ 1 $\langle 9, 8 \rangle'$ 1 $d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10} d_{11} d_{12} d_{13} d_{14} d_{15} d_{16}$

TABLE 1. $D_{17,17}^{(1)}$

3.3. Decomposition Matrix for the Spin Characters of S_{18} . The group S_{18} has 69 irreducible spin characters and 68 of $(17, \alpha)$ -regular classes, then the decomposition matrix for the spin characters of S_{18} , p = 17 has 69 rows and 68 columns. By using (Preliminary 5), there are 51 blocks of S_{18} . In the spin block B_1 of defect 1, all i.m.s. of the decomposition matrix are associate (Preliminary 9) and $\langle\beta\rangle \neq \langle\beta\rangle'$. The block B_1 contains the characters $\langle 18 \rangle$, $\langle 18 \rangle'$, $\langle 17, 1 \rangle^*$, $\langle 15, 2, 1 \rangle$, $\langle 15, 2, 1 \rangle'$, $\langle 14, 3, 1 \rangle$, $\langle 14, 3, 1 \rangle'$, $\langle 13, 4, 1 \rangle$, $\langle 13, 4, 1 \rangle'$, $\langle 12, 5, 1 \rangle$, $\langle 12, 5, 1 \rangle'$, $\langle 11, 6, 1 \rangle$, $\langle 11, 6, 1 \rangle'$, $\langle 10, 7, 1 \rangle$, $\langle 10, 7, 1 \rangle'$, $\langle 9, 8, 1 \rangle$, $\langle 9, 8, 1 \rangle'$ with 17-bar core $\langle 1 \rangle$. The other Blocks B_2, B_3, \dots, B_{51} of defect zero.

Proposition 3.2. The Brauer tree for B_1 is:

Proof.

(a) $deg \{ \langle 18 \rangle, \langle 18 \rangle', \langle 15, 2, 1 \rangle, \langle 15, 2, 1 \rangle', \langle 13, 4, 1 \rangle, \langle 13, 4, 1 \rangle' \} \equiv 1 \mod 17;$ $deg \{ \langle 17, 1 \rangle^*, \langle 14, 3, 1 \rangle, \langle 14, 3, 1 \rangle', \langle 12, 5, 1 \rangle, \langle 12, 5, 1 \rangle', \langle 10, 7, 1 \rangle, \langle 10, 7, 1 \rangle' \} \equiv -1 \mod 17$ (Preliminary 4).

(b) By using
$$(r, r')$$
-inducing of p.i.s. of S_{17} (see $D_{17,17}^{(1,17)}$) to S_{18} , we have:
 $d_1 \uparrow^{(1,0)} S_{18} = \langle 18 \rangle + \langle 18 \rangle' + 2 \langle 17, 1 \rangle^* = K = D_1 + D_2$
 $d_3 \uparrow^{(1,0)} S_{18} = \langle 17 \rangle^* + \langle 15, 2, 1 \rangle = D_3$
 $d_4 \uparrow^{(1,0)} S_{18} = \langle 17 \rangle^* + \langle 15, 2, 1 \rangle' = D_4$
 $d_5 \uparrow^{(1,0)} S_{18} = \langle 15, 2, 1 \rangle + \langle 14, 3, 1 \rangle = D_5$
 $d_6 \uparrow^{(1,0)} S_{18} = \langle 15, 2, 1 \rangle' + \langle 14, 3, 1 \rangle' = D_6$
 $d_7 \uparrow^{(1,0)} S_{18} = \langle 14, 3, 1 \rangle + \langle 13, 4, 1 \rangle = D_7$
 $d_8 \uparrow^{(1,0)} S_{18} = \langle 14, 3, 1 \rangle + \langle 13, 4, 1 \rangle' = D_8$
 $d_9 \uparrow^{(1,0)} S_{18} = \langle 13, 4, 1 \rangle + \langle 12, 5, 1 \rangle = D_9$
 $d_{10} \uparrow^{(1,0)} S_{18} = \langle 13, 4, 1 \rangle' + \langle 12, 5, 1 \rangle' = D_{10}$
 $d_{11} \uparrow^{(1,0)} S_{18} = \langle 12, 5, 1 \rangle + \langle 11, 6, 1 \rangle = D_{11}$
 $d_{12} \uparrow^{(1,0)} S_{18} = \langle 12, 5, 1 \rangle' + \langle 11, 6, 1 \rangle' = D_{12}$
 $d_{13} \uparrow^{(1,0)} S_{18} = \langle 11, 6, 1 \rangle + \langle 10, 7, 1 \rangle = D_{13}$
 $d_{14} \uparrow^{(1,0)} S_{18} = \langle 10, 7, 1 \rangle + \langle 9, 8, 1 \rangle = D_{15}$
 $d_{16} \uparrow^{(1,0)} S_{18} = \langle 10, 7, 1 \rangle' + \langle 9, 8, 1 \rangle' = D_{16}$

 $\langle 18,1 \rangle \downarrow_{(1,0)} S_{18} = D_1$ since $\langle 18,1 \rangle$ i.m. in S_{19} , and $\langle 18,1 \rangle' \downarrow_{(1,0)} S_{18} = D_2$ since $\langle 18,1 \rangle'$ i.m. in S_{19} . So we have the Brauer tree for B_1 and the decomposition matrix for this block $D_{18,17}^{(2)}$ in Table 2.

The spin			Th	م م	<u>eco</u>	mn	oci	tion	n m	otriv	z for	• tho	blo	ck E	2.	
characters			1 11	eu	eco	mp	051	101	1 111	atili	101	uie	DIO	CK L	1	
																<u> </u>
$\langle 18 \rangle$	1															
$\langle 18 \rangle'$		1														
$\langle 17,1\rangle^*$	1	1	1	1												
$\langle 15, 2, 1 \rangle$			1		1											
$\langle 15, 2, 1 \rangle'$				1		1										
$\langle 14, 3, 1 \rangle$					1		1									
$\langle 14, 3, 1 \rangle'$						1		1								
$\langle 13, 4, 1 \rangle$							1		1							
$\langle 13, 4, 1 \rangle'$								1		1						
$\langle 12, 5, 1 \rangle$									1		1					
$\langle 12, 5, 1 \rangle'$										1		1				
$\langle 11, 6, 1 \rangle$											1		1			
$\langle 11, 6, 1 \rangle'$												1		1		
$\langle 10, 7, 1 \rangle$													1		1	
$\langle 10, 7, 1 \rangle'$														1		1
$\langle 9, 8, 1 \rangle$															1	
$\langle 9, 8, 1 \rangle'$																1
	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}

TABLE 2. $D_{18,17}^{(2)}$

3.4. Decomposition Matrix for the Spin Characters of S_{19} . The group S_{19} has 74 irreducible spin characters and 72 of $(17, \alpha)$ -regular classes, then the decomposition matrix for the spin characters of S_{19} , p = 17 has 74 rows and 72 columns. By using (Preliminary 5), there are 65 blocks of S_{19} . In the principal block B_1 of defect 1, all i.m.s. of the decomposition matrix are double (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_1 contains the characters $\langle 19 \rangle^*$, $\langle 17, 2 \rangle$, $\langle 17, 2 \rangle'$, $\langle 16, 2, 1 \rangle^*$, $\langle 14, 3, 2 \rangle^*$, $\langle 13, 4, 2 \rangle^*$, $\langle 12, 5, 2 \rangle^*$, $\langle 11, 6, 2 \rangle^*$, $\langle 10, 7, 2 \rangle^*$, $\langle 9, 8, 2 \rangle^*$ with 17-bar core $\langle 2 \rangle$. The other Blocks B_2, B_3, \dots, B_{65} of defect zero.

Proposition 3.3. The Brauer tree for B_1 is: $\langle 19^* \rangle_{-} \langle 17, 2 \rangle = \langle 17, 2 \rangle'_{-} \langle 16, 2, 1 \rangle^*_{-} \langle 14, 3, 2 \rangle^*_{-} \langle 13, 4, 2 \rangle^*_{-} \langle 12, 5, 2 \rangle^*_{-} \langle 11, 6, 2 \rangle^*_{-} \langle 10, 7, 2 \rangle^*_{-} \langle 9, 8, 2 \rangle^*$

Proof. deg $\{\langle 19^* \rangle, \langle 16, 2, 1 \rangle^*, \langle 13, 4, 2 \rangle^*, \langle 11, 6, 2 \rangle^*, \langle 9, 8, 2 \rangle^*\} \equiv 2 \mod 17;$ deg $\{\langle 17, 2 \rangle, \langle 17, 2 \rangle', \langle 14, 3, 2 \rangle^*, \langle 12, 5, 2 \rangle^*, \langle 10, 7, 2 \rangle^*\} \equiv -2 \mod 17$ (Preliminary 4). By using (r, r')-inducing of p.i.s. of S_{18} (see $D_{18,17}$) to S_{19} , we have:

$$D_{1} \uparrow^{(2,16)} S_{19} = \langle 19^{*} \rangle + \langle 17, 2 \rangle + \langle 17, 2 \rangle' = e_{1}$$

$$D_{2} \uparrow^{(2,16)} S_{19} = \langle 17, 2 \rangle + \langle 17, 2 \rangle' + \langle 16, 2, 1 \rangle^{*} = e_{2}$$

$$D_{3} \uparrow^{(2,16)} S_{19} = \langle 16, 2, 1 \rangle^{*} + \langle 14, 3, 2 \rangle^{*} = e_{3}$$

$$D_{4} \uparrow^{(2,16)} S_{19} = \langle 14, 3, 2 \rangle^{*} + \langle 13, 4, 2 \rangle^{*} = e_{4}$$

$$D_{5} \uparrow^{(2,16)} S_{19} = \langle 13, 4, 2 \rangle^{*} + \langle 12, 5, 2 \rangle^{*} = e_{5}$$

$$D_{6} \uparrow^{(2,16)} S_{19} = \langle 12, 5, 2 \rangle^{*} + \langle 11, 6, 2 \rangle^{*} = e_{6}$$

$$D_{7} \uparrow^{(2,16)} S_{19} = \langle 11, 6, 2 \rangle^{*} + \langle 10, 7, 2 \rangle^{*} = e_{7}$$

$$D_{8} \uparrow^{(2,16)} S_{19} = \langle 10, 7, 2 \rangle^{*} + \langle 9, 8, 2 \rangle^{*} = e_{8}$$

So we have the Brauer tree for B_1 and the decomposition matrix for this block $D_{19,17}^{(3)}$ in Table 3.

The spin	The decomposition											
characters	matrix for											
	the block B_1											
$\langle 19^* \rangle$	1											
$\langle 17, 2 \rangle$	1	1										
$\langle 17, 2 \rangle'$	1	1										
$\langle 16, 2, 1 \rangle^*$		1	1									
$\langle 14, 3, 2 \rangle^*$			1	1								
$\langle 13, 4, 2 \rangle^*$				1	1							
$\langle 12, 5, 2 \rangle^*$					1	1						
$\langle 11, 6, 2 \rangle^*$						1	1					
$\langle 10, 7, 2 \rangle^*$							1	1				
$\langle 9, 8, 2 \rangle^*$								1				
	e_1	e_2	e_3	e_4	\overline{e}_5	e_6	e_7	e_8				

TABLE 3.
$$D_{19,17}^{(3)}$$

3.5. Decomposition Matrix for the Spin Characters of S_{20} . The group S_{20} has 81 irreducible spin characters and 78 of $(17, \alpha)$ -regular classes, then the decomposition matrix for the spin characters of S_{20} , p = 17 has 81 rows and 78 columns. By using (Preliminary 5), there are 69 blocks of S_{20} two of them B_1 , B_2 of defect 1. All the 67 remaining characters form their own blocks B_3, B_4, \dots, B_{69} of defect zero [11].

In the principal block B_1 , all i.m.s. of the decomposition matrix are associate (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_1 contains the characters $\langle 20 \rangle$, $\langle 20 \rangle', \langle 17, 3 \rangle^*, \langle 16, 3, 1 \rangle, \langle 16, 3, 1 \rangle', \langle 15, 3, 2 \rangle, \langle 15, 3, 2 \rangle', \langle 13, 4, 3 \rangle, \langle 13, 4, 3 \rangle', \langle 12, 5, 3 \rangle, \langle 12, 5, 3 \rangle', \langle 11, 6, 3 \rangle, \langle 11, 6, 3 \rangle', \langle 10, 7, 3 \rangle, \langle 10, 7, 3 \rangle', \langle 9, 8, 3 \rangle, \langle 9, 8, 3 \rangle'$ with 17-bar core $\langle 3 \rangle$.

In the spin block B_2 , all i.m.s. of the decomposition matrix are double (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_2 contains the irreducible spin characters $\langle 19, 1 \rangle^*$, $\langle 18, 2 \rangle^*$, $\langle 17, 2, 1 \rangle$, $\langle 17, 2, 1 \rangle'$, $\langle 14, 3, 2, 1 \rangle^*$, $\langle 13, 4, 2, 1 \rangle^*$, $\langle 12, 5, 2, 1 \rangle^*$, $\langle 10, 7, 2, 1 \rangle^*$ has 17-bar core $\langle 2, 1 \rangle$.

Proposition 3.4. The Brauer tree for principal block B_1 is: $\langle 20 \rangle$ $\langle 16, 3, 1 \rangle - \langle 15, 3, 2 \rangle - \langle 13, 4, 3 \rangle - \langle 12, 5, 3 \rangle - \langle 11, 6, 3 \rangle - \langle 10, 7, 3 \rangle - \langle 9, 8, 3 \rangle$ $\langle 17, 3 \rangle^*$ $\langle 20 \rangle'$ $\langle 16, 3, 1 \rangle' - \langle 15, 3, 2 \rangle' - \langle 13, 4, 3 \rangle' - \langle 12, 5, 3 \rangle' - \langle 11, 6, 3 \rangle' - \langle 10, 7, 3 \rangle' - \langle 9, 8, 3 \rangle'$

Proof. deg { $\langle 20 \rangle$, $\langle 20 \rangle'$, $\langle 16, 3, 1 \rangle$, $\langle 16, 3, 1 \rangle'$, $\langle 13, 4, 3 \rangle$, $\langle 13, 4, 3 \rangle'$, $\langle 11, 6, 3 \rangle$, $\langle 11, 6, 3 \rangle'$, $\langle 9, 8, 3 \rangle$, $\langle 9, 8, 3 \rangle'$ } $\equiv 3 \mod 17$; deg { $\langle 17, 3 \rangle^*$, $\langle 15, 3, 2 \rangle$, $\langle 15, 3, 2 \rangle'$, $\langle 12, 5, 3 \rangle$, $\langle 12, 5, 3 \rangle'$, $\langle 10, 7, 3 \rangle$, $\langle 10, 7, 3 \rangle'$ } $\equiv -3 \mod 17$ (Preliminary 4). By using (3, 15)-inducing of p.i.s. of S_{19} (see $D_{19,17}^{(3)}$) to S_{20} , we have:

$$e_{1} + \langle 1 \rangle + \langle 2 \rangle + \langle 17, 3 \rangle = K_{1} = E_{1} + E_{2}$$

$$e_{2} \uparrow^{(3,15)} S_{20} = \langle 2 \langle 17, 3 \rangle^{*} + \langle 16, 3, 1 \rangle + \langle 16, 3, 1 \rangle' = K_{2} = E_{3} + E_{4}$$

$$e_{3} \uparrow^{(3,15)} S_{20} = \langle 16, 3, 1 \rangle + \langle 16, 3, 1 \rangle' + \langle 15, 3, 2 \rangle + \langle 15, 3, 2 \rangle' = K_{3} = E_{5} + E_{6}$$

$$e_{4} \uparrow^{(3,15)} S_{20} = \langle 15, 3, 2 \rangle + \langle 15, 3, 2 \rangle' + \langle 13, 4, 3 \rangle + \langle 13, 4, 3 \rangle' = K_{4} = E_{7} + E_{8}$$

$$e_{5} \uparrow^{(3,15)} S_{20} = \langle 13, 4, 3 \rangle + \langle 13, 4, 3 \rangle' + \langle 12, 5, 3 \rangle + \langle 12, 5, 3 \rangle' = K_{5} = E_{9} + E_{10}$$

$$e_{6} \uparrow^{(3,15)} S_{20} = \langle 12, 5, 3 \rangle + \langle 12, 5, 3 \rangle' + \langle 11, 6, 3 \rangle + \langle 11, 6, 3 \rangle' = K_{6} = E_{11} + E_{12}$$

$$e_{7} \uparrow^{(3,15)} S_{20} = \langle 11, 6, 3 \rangle + \langle 11, 6, 3 \rangle' + \langle 10, 7, 3 \rangle + \langle 10, 7, 3 \rangle' = K_{7} = E_{13} + E_{14}$$

$$e_{8} \uparrow^{(3,15)} S_{20} = \langle 10, 7, 3 \rangle + \langle 10, 7, 3 \rangle' + \langle 9, 8, 3 \rangle + \langle 9, 8, 3 \rangle' = K_{8} = E_{15} + E_{16}$$

Since $\langle 20 \rangle \neq \langle 20 \rangle'$ are distinct irreducible modular spin characters Property (6) and $\langle 17, 3 \rangle^*$ contains $\langle 20 \rangle$, $\langle 20 \rangle'$ with the same multiplicity [12] then K_1 split to E_1, E_2 .

 $\langle 16,3 \rangle \uparrow^{(1,0)} S_{20} = \langle 17,3 \rangle^* + \langle 16,3,1 \rangle = E_3$ since $\langle 16,3 \rangle$ i.m. in S_{19} and $\langle 16,3 \rangle' \uparrow^{(1,0)}$ $S_{20} = \langle 17,3 \rangle^* + \langle 16,3,1 \rangle' = E_4$ since $\langle 16,3 \rangle'$ i.m. in S_{19} , also we have $\langle 15,3,2 \rangle \neq \langle 15,3,2 \rangle'$, $\langle 13,4,3 \rangle \neq \langle 13,4,3 \rangle'$, $\langle 12,5,3 \rangle \neq \langle 12,5,3 \rangle'$, $\langle 11,6,3 \rangle \neq \langle 11,6,3 \rangle'$, $\langle 10,7,3 \rangle \neq \langle 10,7,3 \rangle'$, $\langle 9,8,3 \rangle \neq \langle 9,8,3 \rangle'$ on $(17,\alpha)$ -regular classes, then K_3 , K_4 , K_5 , K_6 , K_7 , K_8 are split, respectively. So, we have the Brauer tree for B_1 and the decomposition matrix for this block $D_{20,17}^{(4)}$ in Table 4.

Proposition 3.5. The Brauer tree for the block B_2 is: $\langle 19, 1 \rangle^* _ \langle 18, 2 \rangle^* _ \langle 17, 2, 1 \rangle = \langle 17, 2, 1 \rangle' _ \langle 16, 2, 1 \rangle^* _ \langle 14, 3, 2, 1 \rangle^* _ \langle 13, 4, 2, 1 \rangle^* _ \langle 12, 5, 2, 1 \rangle^* _ \langle 11, 6, 2, 1 \rangle^* _ \langle 10, 7, 2, 1 \rangle^* _ \langle 9, 8, 2, 1 \rangle^*$

Proof. deg { $\langle 19, 1 \rangle^*, (\langle 17, 2, 1 \rangle + \langle 17, 2, 1 \rangle') \langle 13, 4, 2, 1 \rangle^*, \langle 11, 6, 2, 1 \rangle^*, \langle 9, 8, 2, 1 \rangle^*$ } = 2 mod 17; deg { $\langle 18, 2 \rangle^*, \langle 14, 3, 2, 1 \rangle^*, \langle 12, 5, 2, 1 \rangle^*, \langle 10, 7, 2, 1 \rangle^*$ } = -2 mod 17 (Preliminary 4). By using (1,0)-inducing of p.i.s. of S_{19} (see $D_{19,17}^{(3)}$) to S_{20} , we have:

$$e_{1} \uparrow^{(1,0)} S_{20} = \langle 19, 1 \rangle^{*} + 2 \langle 18, 2 \rangle^{*} + \langle 17, 2, 1 \rangle + \langle 17, 2, 1 \rangle' = K_{1}$$

$$e_{2} \uparrow^{(1,0)} S_{20} = 2 \langle 18, 2 \rangle^{*} + 2 \langle 17, 2, 1 \rangle + 2 \langle 17, 2, 1 \rangle' = 2F_{2}$$

$$e_{3} \uparrow^{(1,0)} S_{20} = \langle 17, 2, 1 \rangle + \langle 17, 2, 1 \rangle' + \langle 14, 3, 2, 1 \rangle^{*} = F_{3}$$

$$e_{4} \uparrow^{(1,0)} S_{20} = \langle 14, 3, 2, 1 \rangle^{*} + \langle 13, 4, 2, 1 \rangle^{*} = F_{4}$$

$$e_{5} \uparrow^{(1,0)} S_{20} = \langle 13, 4, 2, 1 \rangle^{*} + \langle 12, 5, 2, 1 \rangle^{*} = F_{5}$$

$$e_{6} \uparrow^{(1,0)} S_{20} = \langle 12, 5, 2, 1 \rangle^{*} + \langle 11, 6, 2, 1 \rangle^{*} = F_{6}$$

$$e_{7} \uparrow^{(1,0)} S_{20} = \langle 11, 6, 2, 1 \rangle^{*} + \langle 10, 7, 2, 1 \rangle^{*} = F_{7}$$

$$e_{8} \uparrow^{(1,0)} S_{20} = \langle 10, 7, 2, 1 \rangle^{*} + \langle 9, 8, 2, 1 \rangle^{*} = F_{8}.$$

Since $\langle 19, 2 \rangle \downarrow_{(1,0)} S_{20} = \langle 19, 1 \rangle^* + \langle 18, 2 \rangle^* = K_1 - F_2 = F_1$ since $\langle 19, 2 \rangle$ i.m. in S_{21} . So, we have the Brauer tree for B_2 and the decomposition matrix for this block $D_{20,17}^{(5)}$ in Table 5.

The decomposition matrix for the block B_1 The spin characters $\langle 20 \rangle$ 1 $\langle 20 \rangle'$ 1 $\langle 17, 3 \rangle^*$ 1 1 1 1 (16, 3, 1)1 1 $\langle 16, 3, 1 \rangle'$ 1 1 1 $\langle 15, 3, 2 \rangle$ 1 $\langle 15, 3, 2 \rangle'$ 1 1 1 $\langle 13, 4, 2 \rangle$ 1 $\langle 13, 4, 2 \rangle'$ 1 1 $\langle 12, 5, 3 \rangle$ 1 1 $\langle 12, 5, 3 \rangle'$ 1 1 (11, 6, 3)1 1 (11, 6, 3)'1 1 $\langle 10, 7, 3 \rangle$ 1 1 $\langle 10, 7, 3 \rangle'$ 1 1 $\langle 9, 8, 3 \rangle$ 1 $\langle 9, 8, 3 \rangle'$ 1 $E_1|E_2|E_3|E_4|E_5|E_6|E_7|E_8|E_9|E_{10}|E_{11}|E_{12}|E_{13}|E_{14}|E_{15}|E_{16}$

TABLE 4. $D_{20,17}^{(4)}$

3.6. Decomposition Matrix for the Spin Characters of S_{21} . The group S_{21} has 114 irreducible spin characters and 111 of $(17, \alpha)$ -regular classes, then the decomposition matrix of the spin characters for S_{21} , p = 17 has 114 rows and 111 columns. By using (Preliminary 5), there are 89 blocks of S_{20} two of them B_1 , B_2 of defect 1. All the 87 remaining characters form their own blocks B_3, B_4, \dots, B_{89} of defect zero [11].

In the principal block B_1 , all i.m.s. of the decomposition matrix are double (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_1 contains the irreducible spin characters $\langle 21 \rangle^*$, $\langle 17, 4 \rangle$, $\langle 17, 4 \rangle'$, $\langle 16, 4, 1 \rangle^*$, $\langle 15, 4, 2 \rangle^*$, $\langle 14, 4, 3 \rangle^*$, $\langle 12, 5, 4 \rangle^*$, $\langle 11, 6, 4 \rangle^*$, $\langle 10, 7, 4 \rangle^*$, $\langle 9, 8, 4 \rangle^*$ has 17-bar core $\langle 4 \rangle$. TABLE 5. $D_{20,17}^{(5)}$

The spin	Т	he	de	co	mp	osi	tio	n			
characters			m	atı	ix	for	•				
	the block B_1										
$\langle 19^*, 1 \rangle$	1										
$\langle 18^*, 2 \rangle$	1	1									
$\langle 17, 2, 1 \rangle$		1	1								
$\langle 17, 2, 1 \rangle'$		1	1								
$\langle 14, 3, 2, 1 \rangle^*$			1	1							
$\langle 13, 4, 2, 1 \rangle^*$				1	1						
$\langle 12, 5, 2, 1 \rangle^*$					1	1					
$\langle 11, 6, 2, 1 \rangle^*$						1	1				
$\langle 10, 7, 2, 1 \rangle^*$							1	1			
$\langle 9, 8, 2, 1 \rangle^*$								1			
	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8			

In the spin block B_2 , all i.m.s. of the decomposition matrix are associate (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_2 contains the irreducible spin characters $\langle 20, 1 \rangle$, $\langle 20, 1 \rangle'$, $\langle 18, 3 \rangle$, $\langle 18, 3 \rangle'$, $\langle 17, 3, 1 \rangle^*$, $\langle 15, 3, 2, 1 \rangle$, $\langle 15, 3, 2, 1 \rangle'$, $\langle 13, 4, 3, 1 \rangle$, $\langle 13, 4, 3, 1 \rangle'$, $\langle 12, 5, 3, 1 \rangle$, $\langle 12, 5, 3, 1 \rangle'$, $\langle 11, 6, 3, 1 \rangle$, $\langle 11, 6, 3, 1 \rangle'$, $\langle 10, 7, 3, 1 \rangle$, $\langle 10, 7, 3, 1 \rangle$, $\langle 9, 8, 3, 1 \rangle$, $\langle 9, 8, 3, 1 \rangle'$ has 17-bar core $\langle 3, 1 \rangle$.

Proposition 3.6. The Brauer tree for principal block B_1 is: $\langle 21 \rangle^* - \langle 17, 4 \rangle = \langle 17, 4 \rangle' - \langle 16, 4, 1 \rangle^* - \langle 15, 4, 2 \rangle^* - \langle 14, 4, 3 \rangle^* - \langle 12, 5, 4 \rangle^* - \langle 11, 6, 4 \rangle^* - \langle 10, 7, 4 \rangle^* - \langle 9, 8, 4 \rangle^*$

Proof. $deg \{ \langle 21 \rangle^*, \langle 16, 4, 1 \rangle^*, \langle 14, 4, 3 \rangle^*, \langle 11, 6, 4 \rangle^*, \langle 9, 8, 4 \rangle^* \} \equiv 4 \mod 17;$ $deg \{ (\langle 17, 4 \rangle + \langle 17, 4 \rangle'), \langle 15, 4, 2 \rangle^*, \langle 12, 5, 4 \rangle^*, \langle 10, 7, 4 \rangle^* \} \equiv -4 \mod 17$ (Preliminary 4). We apply (4, 14)-inducing of p.i.s. of S_{20} (see $D_{20,17}^{(4)}$) to S_{21} , we have:

$$E_{1} \uparrow^{(4,14)} S_{21} = \langle 21 \rangle^{*} + \langle 17, 4 \rangle + \langle 17, 4 \rangle' = f_{1}$$

$$E_{3} \uparrow^{(4,14)} S_{21} = \langle 17, 4 \rangle + \langle 17, 4 \rangle' + \langle 16, 4, 1 \rangle^{*} = f_{2}$$

$$E_{5} \uparrow^{(4,14)} S_{21} = \langle 16, 4, 1 \rangle^{*} + \langle 15, 4, 2 \rangle^{*} = f_{3}$$

$$E_{7} \uparrow^{(4,14)} S_{21} = \langle 15, 4, 2 \rangle^{*} + \langle 14, 4, 3 \rangle^{*} = f_{4}$$

$$E_{9} \uparrow^{(4,14)} S_{21} = \langle 14, 4, 3 \rangle^{*} + \langle 12, 5, 4 \rangle^{*} = f_{5}$$

$$E_{11} \uparrow^{(4,14)} S_{21} = \langle 12, 5, 4 \rangle^{*} + \langle 11, 6, 4 \rangle^{*} = f_{6}$$

$$E_{13} \uparrow^{(4,14)} S_{21} = \langle 11, 6, 4 \rangle^{*} + \langle 10, 7, 4 \rangle^{*} = f_{7}$$

$$E_{15} \uparrow^{(4,14)} S_{21} = \langle 10, 7, 4 \rangle^{*} + \langle 9, 8, 4 \rangle^{*} = f_{8}.$$

So we have the Brauer tree for B_1 and the decomposition matrix for this block $D_{21,17}^{(6)}$ in Table 6.

$D_{21,17}^{(6)}$

The spin	The decomposition											
characters			m	atı	rix	fo	r					
		the block B_1										
$\langle 21 \rangle^*$	1											
$\langle 17, 4 \rangle$	1	1										
$\langle 17,4\rangle'$	1	1										
$\langle 16, 4, 1 \rangle^*$		1	1									
$\langle 15, 4, 2 \rangle^*$			1	1								
$\langle 14, 4, 3 \rangle^*$				1	1							
$\langle 12, 5, 4 \rangle^*$					1	1						
$\langle 11, 6, 4 \rangle^*$						1	1					
$\langle 10, 7, 4 \rangle^*$							1	1				
$\langle 9, 8, 4 \rangle^*$								1				
	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8				

Proposition 3.7. The Brauer tree for the block B_2 is:

 $\begin{array}{c} \langle 20,1\rangle_{-}\langle 18,3\rangle & \langle 15,3,2,1\rangle_{-}\langle 13,4,3,1\rangle_{-}\langle 12,5,3,1\rangle_{-}\langle 11,6,3,1\rangle_{-}\langle 10,7,3,1\rangle_{-}\langle 9,8,3,1\rangle \\ & & \swarrow \\ & & \langle 17,1\rangle^{*} \\ & & \swarrow \\ \langle 20,1\rangle'_{-}\langle 18,3\rangle' & \langle 15,3,2,1\rangle'_{-}\langle 13,4,3,1\rangle'_{-}\langle 12,5,3,1\rangle'_{-}\langle 11,6,3,1\rangle'_{-}\langle 10,7,3,1\rangle'_{-}\langle 9,8,3,1\rangle' \\ \end{array}$

 $\langle 15, 3, 2, 1 \rangle', \langle 12, 5, 3, 1 \rangle, \langle 12, 5, 3, 1 \rangle', \langle 10, 7, 3, 1 \rangle, \langle 10, 7, 3, 1 \rangle' \} \equiv -4 \mod 17$ (Preliminary 4). By using (1, 0)-inducing of p.i.s. of S_{20} (see $D_{20,17}^{(4)}$) to S_{21} , we have:

$$E_{1} \uparrow^{(1,0)} S_{21} = \langle 20, 1 \rangle + \langle 18, 3 \rangle + \langle 18, 3 \rangle' + \langle 17, 3, 1 \rangle^{*} = K_{1}$$

$$E_{2} \uparrow^{(1,0)} S_{21} = \langle 20, 1 \rangle' + \langle 18, 3 \rangle + \langle 18, 3 \rangle' + \langle 17, 3, 1 \rangle^{*} = K_{2}$$

$$E_{3} \uparrow^{(1,0)} S_{21} = \langle 18, 3 \rangle + \langle 18, 3 \rangle' + 2 \langle 17, 3, 1 \rangle^{*} = K_{3}$$

$$E_{5} \uparrow^{(1,0)} S_{21} = \langle 17, 3, 1 \rangle^{*} + \langle 15, 3, 2, 1 \rangle = g_{5}$$

$$E_{6} \uparrow^{(1,0)} S_{21} = \langle 17, 3, 1 \rangle^{*} + \langle 15, 3, 2, 1 \rangle' = g_{6}$$

$$E_{7} \uparrow^{(1,0)} S_{21} = \langle 15, 3, 2, 1 \rangle + \langle 13, 4, 3, 1 \rangle = g_{7}$$

$$E_{8} \uparrow^{(1,0)} S_{21} = \langle 15, 3, 2, 1 \rangle' + \langle 13, 4, 3, 1 \rangle' = g_{8}$$

$$E_{9} \uparrow^{(1,0)} S_{21} = \langle 13, 4, 3, 1 \rangle + \langle 12, 5, 3, 1 \rangle = g_{9}$$

$$E_{10} \uparrow^{(1,0)} S_{21} = \langle 12, 5, 3, 1 \rangle + \langle 11, 6, 3, 1 \rangle = g_{10}$$

$$E_{11} \uparrow^{(1,0)} S_{21} = \langle 12, 5, 3, 1 \rangle + \langle 11, 6, 3, 1 \rangle = g_{11}$$

$$E_{12} \uparrow^{(1,0)} S_{21} = \langle 11, 6, 3, 1 \rangle + \langle 10, 7, 3, 1 \rangle = g_{13}$$

$$E_{14} \uparrow^{(1,0)} S_{21} = \langle 10, 7, 3, 1 \rangle + \langle 9, 8, 3, 1 \rangle = g_{15}$$

$$E_{16} \uparrow^{(1,0)} S_{21} = \langle 10, 7, 3, 1 \rangle' + \langle 9, 8, 3, 1 \rangle' = g_{16}$$

 $\langle 18,3,1\rangle \downarrow_{(1,0)} S_{21} = \langle 18,3\rangle + \langle 17,3,1\rangle^* = g_1 \text{ since } \langle 18,3,1\rangle \text{ i.m. in } S_{22}, \text{ and}$ $\langle 18,3,1\rangle' \downarrow_{(1,0)} S_{21} = \langle 18,3\rangle' + \langle 17,3,1\rangle^* = g_2 \text{ since } \langle 18,3,1\rangle' \text{ i.m. in } S_{22}.$ Then K_3 split to g_3 and g_4 . Since $F_1 \uparrow^{(3,15)} S_{21} = \langle 19,1\rangle^* + \langle 18,2\rangle^* \uparrow^{(3,15)} S_{21} = \langle 20,1\rangle + \langle 20,1\rangle' + \langle 18,3\rangle + \langle 18,3\rangle' = K_4 = K_1 + K_2 - g_3 - g_4 \text{ and } \langle 20,1\rangle \neq \langle 20,1\rangle',$ $\langle 18,3\rangle \neq \langle 18,3\rangle' \text{ on } (17,\alpha)$ -regular classes, then $K_1 - g_4 = g_1, K_2 - g_3 = g_2$. So, we have the Brauer tree for B_2 and the decomposition matrix for this block $D_{21,17}^{(7)}$ in Table 7.

3.7. Decomposition Matrix for the Spin Characters of S_{22} . The group S_{22} has 133 irreducible spin characters and 121 of $(17, \alpha)$ -regular classes, then the decomposition matrix of the spin characters for S_{22} , p = 17 has 133 rows and 121 columns. By using (Preliminary 5), there are 101 blocks of S_{22} two of them B_1 , B_2 , B_3 of defect 1. All the 98 remaining characters form their own blocks B_4, B_5, \dots, B_{101} of defect zero [11].

TABLE 7. $D_{21,17}^{(7)}$

The spin characters	Tl	ne	de	co	m	po	sit	ior	n n	nati	rix	for	the	blo	ock	B_2
characters																
$\langle 20,1\rangle$	1															
$\langle 20,1\rangle'$		1														
$\langle 18, 3 \rangle$	1		1													
$\langle 18,3\rangle'$		1		1												
$\langle 17, 3, 1 \rangle^*$			1	1	1	1										
$\langle 15, 3, 2, 1 \rangle$					1		1									
$\langle 15, 3, 2, 1 \rangle'$						1		1								
$\langle 13, 4, 3, 1 \rangle$							1		1							
$\langle 13, 4, 3, 1 \rangle'$								1		1						
$\langle 12, 5, 3, 1 \rangle$									1		1					
$\langle 12, 5, 3, 1 \rangle'$										1		1				
$\langle 11, 6, 3, 1 \rangle$											1		1			
$\langle 11, 6, 3, 1 \rangle'$												1		1		
$\langle 10, 7, 3, 1 \rangle$													1		1	
$\langle 10, 7, 3, 1 \rangle'$														1		1
$\langle 9, 8, 3, 1 \rangle$															1	
$\langle 9, 8, 3, 1 \rangle'$																1
	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}	g_{16}

In the principal block B_1 , all i.m.s. of the decomposition matrix are associate (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The principal block B_1 contains the irreducible spin characters $\langle 22 \rangle$, $\langle 22 \rangle'$, $\langle 17, 5 \rangle^*$, $\langle 16, 5, 1 \rangle$, $\langle 16, 6, 1 \rangle'$, $\langle 15, 5, 2 \rangle$, $\langle 15, 5, 2 \rangle'$, $\langle 14, 5, 3 \rangle$, $\langle 14, 5, 3 \rangle'$, $\langle 13, 5, 4 \rangle$, $\langle 13, 5, 4 \rangle'$, $\langle 11, 6, 5 \rangle$, $\langle 11, 6, 5 \rangle'$, $\langle 10, 7, 5 \rangle$, $\langle 10, 7, 5 \rangle'$, $\langle 9, 8, 5 \rangle$, $\langle 9, 8, 5 \rangle'$ has 17-bar core $\langle 5 \rangle$.

In the block B_2 , all i.m.s. of the decomposition matrix are double (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_2 contains the irreducible spin characters $\langle 21, 1 \rangle^*$, $\langle 18, 4 \rangle^*$, $\langle 17, 4, 1 \rangle$, $\langle 17, 4, 1 \rangle'$, $\langle 15, 4, 2, 1 \rangle^*$, $\langle 14, 4, 3, 1 \rangle^*$, $\langle 12, 5, 4, 1 \rangle^*$, $\langle 11, 6, 4, 1 \rangle^*$, $\langle 10, 7, 4, 1 \rangle^*$, $\langle 9, 8, 4, 1 \rangle^*$ has 17-bar core $\langle 4, 1 \rangle$.

In the block B_3 , all i.m.s. of the decomposition matrix are double (Preliminary 9) and $\langle \beta \rangle \neq \langle \beta \rangle'$. The block B_3 contains the irreducible spin characters $\langle 20, 2 \rangle^*$, $\langle 19, 3 \rangle^*$, $\langle 17, 3, 2 \rangle$, $\langle 17, 3, 2 \rangle'$, $\langle 16, 3, 2, 1 \rangle^*$, $\langle 13, 4, 2, 1 \rangle^*$, $\langle 12, 5, 3, 2 \rangle^*$, $\langle 11, 6, 3, 2 \rangle^*$, $\langle 10, 7, 3, 2 \rangle^*$, $\langle 9, 8, 3, 2 \rangle^*$ has 17-bar core $\langle 3, 2 \rangle$.

Proposition 3.8. The Brauer tree for principal block B_1 is: $\langle 22 \rangle$ $\langle 16, 5, 1 \rangle _ \langle 15, 5, 2 \rangle _ \langle 14, 5, 3 \rangle _ \langle 13, 5, 4 \rangle _ \langle 11, 6, 5 \rangle _ \langle 10, 7, 5 \rangle _ \langle 9, 8, 5 \rangle$ $\langle 17, 5 \rangle^*$ $\langle 22 \rangle'$ $\langle 16, 5, 1 \rangle' _ \langle 15, 5, 2 \rangle' _ \langle 14, 5, 3 \rangle' _ \langle 13, 5, 4 \rangle' _ \langle 11, 6, 5 \rangle' _ \langle 10, 7, 5 \rangle' _ \langle 9, 8, 5 \rangle'$

Proof. deg $\{\langle 22 \rangle, \langle 22 \rangle', \langle 16, 5, 1 \rangle, \langle 16, 5, 1 \rangle', \langle 14, 5, 3 \rangle, \langle 14, 5, 3 \rangle', \langle 11, 6, 5 \rangle, \langle 11, 6, 5 \rangle', \langle 9, 8, 4 \rangle, \langle 9, 8, 4 \rangle'\} \equiv 4 \mod 17; deg \{\langle 17, 5 \rangle^*, \langle 15, 5, 2 \rangle, \langle 15, 5, 2 \rangle', \langle 13, 5, 4 \rangle, \langle 13, 5, 4 \rangle', \langle 10, 7, 5 \rangle, \langle 10, 7, 5 \rangle'\} \equiv -4 \mod 17$ (Preliminary 4). By using (4, 14)-inducing of p.i.s. of S_{21} (see $D_{21,17}^{(6)}$) to S_{22} , we have:

$$f_{1} \uparrow^{(4,14)} S_{22} = \langle 22 \rangle + \langle 22 \rangle' + 2 \langle 17, 5 \rangle^{*} = K_{1} = G_{1} + G_{2}$$

$$f_{2} \uparrow^{(4,14)} S_{22} = 2 \langle 17, 5 \rangle^{*} + \langle 16, 5, 1 \rangle + \langle 16, 5, 1 \rangle' = K_{2} = G_{3} + G_{4}$$

$$f_{3} \uparrow^{(4,14)} S_{22} = \langle 16, 5, 1 \rangle + \langle 16, 5, 1 \rangle' + \langle 15, 5, 2 \rangle + \langle 15, 5, 2 \rangle' = K_{3} = G_{5} + G_{6}$$

$$f_{4} \uparrow^{(4,14)} S_{22} = \langle 15, 5, 2 \rangle + \langle 15, 5, 2 \rangle' + \langle 14, 5, 3 \rangle + \langle 14, 5, 3 \rangle' = K_{4} = G_{7} + G_{8}$$

$$f_{5} \uparrow^{(4,14)} S_{22} = \langle 14, 5, 3 \rangle + \langle 14, 5, 3 \rangle' + \langle 13, 5, 4 \rangle + \langle 13, 5, 4 \rangle' = K_{5} = G_{9} + G_{10}$$

$$f_{6} \uparrow^{(4,14)} S_{22} = \langle 13, 5, 4 \rangle + \langle 13, 5, 4 \rangle' + \langle 11, 6, 5 \rangle + \langle 11, 6, 5 \rangle' = K_{6} = G_{11} + G_{12}$$

$$f_{7} \uparrow^{(4,14)} S_{22} = \langle 10, 7, 5 \rangle + \langle 10, 7, 5 \rangle' + \langle 9, 8, 5 \rangle + \langle 9, 8, 5 \rangle' = K_{8} = G_{15} + G_{16}$$

Since $\langle 22 \rangle \neq \langle 22 \rangle'$, $\langle 16, 5, 1 \rangle \neq \langle 16, 5, 1 \rangle'$, $\langle 15, 5, 2 \rangle \neq \langle 15, 5, 2 \rangle'$, $\langle 14, 5, 3 \rangle \neq \langle 14, 5, 3 \rangle'$, $\langle 13, 5, 4 \rangle \neq \langle 13, 5, 4 \rangle'$, $\langle 11, 6, 5 \rangle \neq \langle 11, 6, 5 \rangle'$, $\langle 10, 7, 5 \rangle \neq \langle 10, 7, 5 \rangle'$, $\langle 9, 8, 5 \rangle \neq \langle 9, 8, 5 \rangle'$ on $\langle 17, \alpha \rangle$ -regular classes, then $K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8$ are split, respectively. So we have the Brauer tree for B_1 and the decomposition matrix for this block $D_{22,17}^{(8)}$ in Table 8.

Proposition 3.9. The Brauer tree for spin block B_2 is: $\langle 21, 1 \rangle^* - \langle 18, 4 \rangle^* - \langle 17, 4, 1 \rangle = \langle 17, 4, 1 \rangle' - \langle 15, 4, 2, 1 \rangle^* - \langle 14, 4, 3, 1 \rangle^* - \langle 12, 5, 4, 1 \rangle^* - \langle 11, 6, 4, 1 \rangle^* - \langle 10, 7, 4, 1 \rangle^* - \langle 9, 8, 4, 1 \rangle^*$

The spin			Th	- de	200	mn	oci	tion	. m	otri	x foi	the			2	
characters			1110	e ue	200	mp	051		1 111	aun	x 101		: DIC	ICK I	\mathcal{I}_1	
$\langle 22 \rangle$	1															
$\langle 22 \rangle'$		1														
$\langle 17, 5 \rangle^*$	1	1	1	1												
$\langle 16, 5, 1 \rangle$			1		1											
$\langle 16, 5, 1 \rangle'$				1		1										
$\langle 15, 5, 2 \rangle$					1		1									
$\langle 15, 5, 2 \rangle'$						1		1								
$\langle 14, 5, 3 \rangle$							1		1							
$\langle 14, 5, 3 \rangle'$								1		1						
$\langle 13, 5, 4 \rangle$									1		1					
$\langle 13, 5, 4 \rangle'$										1		1				
$\langle 11, 6, 5 \rangle$											1		1			
$\langle 11, 6, 5 \rangle'$												1		1		
$\langle 10, 7, 5 \rangle$													1		1	
$\langle 10, 7, 5 \rangle'$														1		1
$\langle 9, 8, 5 \rangle$															1	
$\langle 9, 8, 5 \rangle'$																1
	G_1	G_2	G_3	G_4	G_5	G_6	G_7	G_8	G_9	G_{10}	G_{11}	G_{12}	G_{13}	G_{14}	G_{15}	G_{16}

TABLE 8. $D_{22,17}^{(8)}$

Proof. deg { $\langle 21, 1 \rangle^*, (\langle 17, 4, 1 \rangle + \langle 17, 4, 1 \rangle'), \langle 14, 4, 3, 1 \rangle^*, \langle 11, 6, 4, 1 \rangle^*, \langle 9, 8, 4, 1 \rangle^*$ } = 12 mod 17; deg { $\langle 18, 4 \rangle^*, \langle 15, 4, 2, 1 \rangle^*, \langle 12, 5, 4, 1 \rangle^*, \langle 10, 7, 4, 1 \rangle^*$ } = -12 mod 17 (Preliminary 4). We apply (0, 1)-inducing of p.i.s. of S_{21} (see $D_{21,17}^{(6)}$) to S_{22} , we have:

$$f_{1} \uparrow^{(0,1)} S_{22} = \langle 21, 1 \rangle^{*} + 2 \langle 18, 4 \rangle^{*} + \langle 17, 4, 1 \rangle + \langle 17, 4, 1 \rangle' = K_{1}$$

$$f_{2} \uparrow^{(0,1)} S_{22} = 2 \langle 18, 4 \rangle^{*} + 2 \langle 17, 4, 1 \rangle + 2 \langle 17, 4, 1 \rangle' = 2h_{2}$$

$$f_{3} \uparrow^{(0,1)} S_{22} = \langle 17, 4, 1 \rangle + \langle 17, 4, 1 \rangle' + \langle 15, 4, 2, 1 \rangle^{*} = h_{3}$$

$$f_{4} \uparrow^{(0,1)} S_{22} = \langle 15, 4, 2, 1 \rangle^{*} + \langle 14, 4, 3, 1 \rangle^{*} = h_{4}$$

$$f_{5} \uparrow^{(0,1)} S_{22} = \langle 14, 4, 3, 1 \rangle^{*} + \langle 12, 5, 4, 1 \rangle^{*} = h_{5}$$

$$f_{6} \uparrow^{(0,1)} S_{22} = \langle 12, 5, 4, 1 \rangle^{*} + \langle 11, 6, 4, 1 \rangle^{*} = h_{6}$$

$$f_7 \uparrow^{(0,1)} S_{22} = \langle 11, 6, 4, 1 \rangle^* + \langle 10, 7, 4, 1 \rangle^* = h_7$$

$$f_8 \uparrow^{(0,1)} S_{22} = \langle 10, 7, 4, 1 \rangle^* + \langle 9, 8, 4, 1 \rangle^* = h_8.$$

Since $\langle 20,1 \rangle + \langle 18,3 \rangle \uparrow^{(4,14)} S_{22} = \langle 21,1 \rangle^* + \langle 18,4 \rangle^* = K_1 - h_2 = h_1$. So we have the Brauer tree for B_2 and the decomposition matrix for this block $D_{22,17}^{(9)}$ in Table 9.

TABLE 9.
$$D_{22,17}^{(9)}$$

The spin	The decomposition										
characters	matrix for										
	the block B_2										
$\langle 21,1\rangle^*$	1										
$\langle 18,4\rangle^*$	1	1									
$\langle 17, 4, 1 \rangle$		1	1								
$\langle 17, 4, 1 \rangle'$		1	1								
$\langle 15, 4, 2, 1 \rangle^*$			1	1							
$\langle 14, 4, 3, 1 \rangle^*$				1	1						
$\langle 12, 5, 4, 1 \rangle^*$					1	1					
$\langle 11, 6, 4, 1 \rangle^*$						1	1				
$\langle 10, 7, 4, 1 \rangle^*$							1	1			
$\langle 9, 8, 4, 1 \rangle^*$								1			
	h_1	h_2	h_3	h_4	h_5	h_6	h_7	h_8			

Proposition 3.10. The Brauer tree for spin block B_3 is: $\langle 20, 2 \rangle^* (19, 3)^* (17, 3, 2) = \langle 17, 3, 2 \rangle' (16, 3, 2, 1)^* (13, 4, 3, 2)^* (12, 5, 3, 2)^* (11, 6, 3, 2)^* (10, 7, 3, 2)^* (9, 8, 3, 2)^*$

Proof. deg { $\langle 20, 2 \rangle^*, (\langle 17, 3, 2 \rangle + \langle 17, 3, 2 \rangle'), \langle 13, 4, 3, 2 \rangle^*, \langle 11, 6, 3, 2 \rangle^*, \langle 9, 8, 4, 1 \rangle^*$ } \equiv 8 mod 17; deg { $\langle 19, 3 \rangle^*, \langle 16, 3, 2, 1 \rangle^*, \langle 12, 5, 3, 2 \rangle^*, \langle 10, 7, 3, 2 \rangle^*$ } \equiv -8 mod 17 (Preliminary 4). We apply (r, r')-inducing of p.i.s. of S_{21} (see $D_{20,17}$) to S_{22} , we have:

$$g_{1} \uparrow^{(2,16)} S_{22} = \langle 20, 2 \rangle^{*} + 2 \langle 19, 3 \rangle^{*} = H_{1}$$

$$g_{3} \uparrow^{(2,16)} S_{22} = 2 \langle 19, 3 \rangle^{*} + \langle 17, 3, 2 \rangle + 2 \langle 17, 3, 2 \rangle' = H_{2}$$

$$g_{5} \uparrow^{(2,16)} S_{22} = \langle 17, 3, 2 \rangle + \langle 17, 3, 2 \rangle' + \langle 16, 3, 2, 1 \rangle^{*} = H_{3}$$

$$g_{7} \uparrow^{(2,16)} S_{22} = \langle 16, 3, 2, 1 \rangle^{*} + \langle 13, 4, 3, 2 \rangle^{*} = H_{4}$$

$$g_{9} \uparrow^{(2,16)} S_{22} = \langle 13, 4, 3, 2 \rangle^{*} + \langle 12, 5, 3, 2 \rangle^{*} = H_{5}$$

$$g_{11} \uparrow^{(2,16)} S_{22} = \langle 12, 5, 3, 2 \rangle^{*} + \langle 11, 6, 3, 2 \rangle^{*} = H_{6}$$

$$g_{13} \uparrow^{(2,16)} S_{22} = \langle 11, 6, 3, 2 \rangle^{*} + \langle 10, 7, 3, 2 \rangle^{*} = H_{7}$$

$$g_{15} \uparrow^{(2,16)} S_{22} = \langle 10, 7, 3, 2 \rangle^{*} + \langle 9, 8, 3, 2 \rangle^{*} = H_{8}.$$

So we have the Brauer tree for B_3 and the decomposition matrix for this block $D_{22,17}^{(10)}$ in Table 10.

The spin		The decomposition										
characters			n	nati	ix f	for						
			the	e bl	ock	B_3	3					
$\langle 20,2\rangle^*$	1											
$\langle 19,3 \rangle^*$	1	1										
$\langle 17, 3, 2 \rangle$		1	1									
$\langle 17, 3, 2 \rangle'$		1	1									
$\overline{\langle 16, 3, 2, 1 \rangle^*}$			1	1								
$\langle 13, 4, 3, 2 \rangle^*$				1	1							
$\langle 12, 5, 3, 2 \rangle^*$					1	1						
$(11, 6, 3, 2)^*$						1	1					
$\langle 10, 7, 3, 2 \rangle^*$							1	1				
$\langle 9, 8, 3, 2 \rangle^*$								1				
	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8				

TABLE 10. $D_{22,17}^{(10)}$

4. CONCLUSION

In this work, motivated by previous results given in the papers [3, 10, 12, 13], we conclude that all blocks of defect one or zero and the decomposition numbers are one or zero. Also we compute the Brauer trees of the symmetric group S_n , $17 \le n \le 22$ modulo P = 17. Finally, all the 17-decomposition matrices of spin characters of S_n , $17 \le n \le 22$ are found.

References

- I. SCHUR: Uber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare subtituttionen, J. Reine Angew. Math., 139 (1911), 155–250.
- [2] A.O. MORRIS: The spin representation of the symmetric group, Proc. London Math. Soc., 12 (1962), 55–76.
- [3] A. O. MORRIS, A. K. YASEEN: Decomposition matrices for spin characters of symmetric group, Proc. of Royal Society of Edinburgh, **108 A** (1988), 145–164.
- [4] A. K. YASEEN: *Modular spin representations of the symmetric groups*, Ph.D. Dissertation, Aberystwyth University, Aberystwyth, United Kingdom, 1987.
- [5] J. F. HUMPHREYS: Blocks of the Projective representations of symmetric groups, J. London Math. Society, **33** (1986), 441–452.
- [6] S. A. TABAN, M. M. JAWAD: Brauer trees for spin characters of S_n , $13 \le n \le 20$ modulo p = 13, Basrah Journal of Science (A), **35** (2017), 106–112.
- [7] A. K. YASEEN: The Brauer trees of the symmetric groups S_{21} , modulo p = 13, Basrah Journal of Science, **37** (2019), 126–140.
- [8] A. K. YASEEN, M. B. TAHIR: 13-Brauer Trees of the Symmetric Group S₂₂, Appl. Math. Inf. Sci., 14 (2020), 1–8.
- [9] A. O. MORRIS: *The spin representation of the symmetric group*, Canada J. Math., **17** (1965), 543–549.
- [10] L. DORNHOFF: *Group Representation Theory, Part A and B*, Marcel Dekker Inc., New York, USA, 1971; 1972.
- [11] G. JAMES, A. KERBER: The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, 1981.
- [12] B. M. PUTTASWAMAIAH, J. D. DIXON: Modular representation of finite groups, Academic press, New York, San Francisco, London, 1977.
- [13] G. JAMES: The modular characters of Mathew groups, J. Algebra, 27 (1973), 57–111.
- [14] D. B. WALES: Some projective representations of S_n , J. Algebra, **61** (1979), 37–57.
- [15] C. BESSENRODT, A. O. MORRIS, J. B. OLSSON: Decomposition matrices for spin Characters of symmetric groups at characteristic 3, J. Algebra, 164 (1994), 146–172.
- [16] I. M. ISAACS: Character Theory of Finite Group, Academic press, New York, San Francisco, London, 1976.
- [17] W. LEDERMANN: *Introduction to group characters*, Camb. Uni.Press, Cambridge, United Kingdom, 1977.
- [18] L. MASS: Modular spin characters of symmetric group, Ph.D. Dissertation, Universität Duisburg–Essen, Duisburg, German, 2011.

DEPARTMENT OF MATHEMATICS AND SCIENCES, COLLEGE OF HUMANITIES AND SCIENCES AJMAN UNIVERSITY P.O.Box: 346 Ajman, United Arab Emirates *Email address*: a.yaseen@ajman.ac.ae

DEPARTMENT OF MATHEMATICS AND SCIENCES, COLLEGE OF HUMANITIES AND SCIENCES AJMAN UNIVERSITY P.O.Box: 346 Ajman, United Arab Emirates *Email address*: m.alzubaidi@ajman.ac.ae