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DISTANCE AND DISTANCE LAPLACIAN SPECTRUM OF THE ZERO-DIVISOR
GRAPH ON THE RING OF INTEGERS MODULO n

P. M. MAGI!, SR. MAGIE JOSE, AND A. KISHORE

ABSTRACT. For a commutative ring R with non-zero identity, let Z*(R) denote
the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by
I'(R), is a simple undirected graph with all non-zero zero-divisors as vertices and
two distinct vertices x,y € Z*(R) are adjacent if and only if zy = 0. In this paper,
we describe the computation of distance, distance Laplacian spectrum of I'(Z,,) by
exploring its combinatorial structure as the joined union of its induced subgraphs.

1. INTRODUCTION

In this paper GG denotes a simple, finite, undirected and connected graph with
vertex set V(G) and edge set E(G) . The order of a graph G is the cardinality of
V(G). If w and v are distinct vertices in a graph G, dg(u,v) denotes the distance
between u and v; which is the length of a shortest path between u and v. Clearly
dg(u,u) = 0 and dg(u,v) = oo if there is no path between v and v. If u € V(G),
the open neighborhood of u; denoted by Ng(u) is the set of vertices adjacent to
u in G. The cardinality of Ng(u) is the degree of u. In a connected graph G,
the transmission degree of a vertex v is defined as T'r(v) = > cy(g) da(u, v). The
adjacency matrix, A(G) of a graph G of order n is a 0 — 1 matrix of order n x n
with entries a;; such that a,; is 1, if the ;—th and j—th vertices are adjacent, and 0
otherwise.

Ycorresponding author

2020 Mathematics Subject Classification. 05C50, 15A18.
Key words and phrases. distance matrix, distance Laplacian matrix, zero-divisor graph, block
matrix.
10591



10592 P. M. MAGI, SR. MAGIE JOSE, AND A. KISHORE

For a graph G, The Laplacian matrix is defined as L(G) = A(G) — Deg(G), and
signless Laplacian matrix of G is defined as Q(G) = A(G) + Deg(G) where Deg(G)
is the diagonal matrix of degree of verices. Note that L(G) and Q(G) are positive
semi definite matrices. The distance matrix of a simple connected graph G of order
n is the symmetric matrix D = (d;;), ..,
two distinct vertices v; and u;. In [17], M. Aouchiche and P. Hansen, initiated the
study of distance Laplacian and distance signless Laplacian. For a connected graph
G, the distance Laplacian matrix is given by D*(G) = Tr(G) — D(G) and distance
signless Laplacian matrix is D?(G) = Tr(G) + D(G); where Tr(G) is the diagonal
matrix of vertex transmission of G.

Let Z*(R) = Z(R)\(0) be the set of non-zero zero-divisors of a commutative ring
R, with non zero identity. In [12], Beck introduced the zero-divisor graph G(R)
of a commutative ring R. Anderson and Livingston redefined the concept of zero-
divisor graph and introduced the subgraph I'(R)(of G(R)) as zero-divisor graph
whose vertices are the non-zero zero-divisor of R. In [26], the authors described
the structure of I'(Z,) as the join of pairwise disjoint induced subgraphs which are
regular. In [22] Magi P.M and et. al. has described the analysis of the adjacency
matrix and some graph parameters of /'(Z,») and described the computation of the
eigen values of I'(Z,») exploring its structure as the generalized join of its induced
subgraphs. This paper aims to find the distance, distance Laplacian spectrum of
rz,).

This paper is organized in the following manner. In Section 2, some basic defi-

where d; ; denotes the distance between

nitions and notations are given. The role of Fiedler’s result and its generalization
(Linear Algebra), to the computation of the distance related spectrum of the gen-
eralized join of regular graphs, is described in Section 3. In Section 4, the distance
spectrum of ['(Z,) is investigated and illustrated with example and in particular
the distance spectrum of I'(Z,) is described. In Section 5, the distance Laplacian
spectrum of ['(Z,), k = 3 is found .

2. BASIC DEFINITIONS AND NOTATIONS

In this paper K, denotes a complete graph on n vertices. The complement of
K, is a null graph and is denoted by K,. A partition {Vi, V5, ..., V,} of the vertex
set of V(@) is said to be an equitable partition, if any two vertices in V; have the
same number of neighbours in V; for 1 < ¢ < j < k. In [24], Sabidussi has
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defined the generalized join of a family of graphs {Y,}, ., indexed by V' (X), as
the graph Z with V(Z) = {(z,y) 1z € X,y e Y,} and E(Z) = {((z,y), (z",v)) :
(x,2') € E(X) or else z = 2/ and (y,y') € E(Y,)}. Let G be a finite graph with
vertices labeled as 1,2,3,...,n and let Hy, H,, ..., H, be a family of vertex disjoint
graphs. The generalized join of Hy, H, ..., H, denoted by G [H;, Hs, ..., H,] is
obtained by replacing each vertex ¢ of G by the graph H; and inserting all or
none of the possible edges between H; and H; depending on whether or not i
and j are adjacent in G. ie, Z = G[Hy, H»,..., H,]| is obtained by taking the
union of H;, H, ..., H, and joining each vertex of H; to all vertices of H; if and
only if ij € E(G). Refer [14, 21], for the basic definitions of graph theory . The
eigenvalues of a square matrix M, are the roots of the characteristic polynomial,
det(xI — M) and the spectrum of M is the multi set of all the eigenvalues of M
counted with multiplicities. An eigenvalue of a matrix is simple, if its algebraic
multiplicity is 1. For a real symmetric matrix, all eigenvalues are real and the
algebraic multiplicity of each eigenvalue is same as its geometric multiplicity. A
graph is said to be integral if all the eigenvalues are integers.

There are many matrices associated to a graph G. The characteristic polynomial
of a graph G is given ®(G, x) = det(xl — A), where A is the adjacency matrix of
G, and the spectrum of G is denoted by Spec(G). Similarly SpecD(G), SpecD*(G)
and SpecD?(G) denote the spectrum of G related to the distance, distance Lapla-
cian and the distance signless Laplacian matrix of GG respectively. Let us denote
det(xl — D(QG)), det(x] — DX(@G)) and det(x] — D?(G)) by ®p(G; x); ®pe(G; x) and
®pe(G; x) respectively. The distance spectrum of a connected graph G on n ver-
tices, is denoted as 0; = 0y = -+ - = 0, and oF > 9L = --- = 0L denotes the distance
Laplacian spectrum.

As usual, ¢(n) is the number of positive integers less than n and relatively prime
to n. In this paper, J denotes an all-one matrix and O denotes a zero matrix. 1,
denotes the all-one column vector of order n x 1, and I,, denotes the unit matrix
of order n.

Domingos M Cardoso and et.al [4, 5] have contributed much to the exploration
of the graph spectrum and energy of complicated structures; especially the gener-
alized join of regular graphs. The well known Fiedler’s result plays a major role
towards this end. See [19].

A wide literature of zero-divisor graphs can be found in [1,2,3,7,8,20,23,25].
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3. FIEDLER’S RESULT AND ITS GENERALISATION APPLIED IN GRAPH THEORY

Lemma 3.1. [19] Let A and B be symmetric matrices of orders m and n, respectively,
with corresponding eigenpairs (a;,u;),i = 1,2,...,m and (B;,v;), i = 1,2,...,n,
respectively. Suppose that |u,| = 1 = |vy|. Then, for each arbitrary constant p, the

matrix
o A pupt
oviul B
has eigenvalues o, . . .,y Bay - - -y Bu, Y1, Y2, Where 71, 7o, are the eigenvalues of the
.o «
matrix C' = Lr
p B

In [4, 5], D.M. Cardoso et.al have extended the Fiedler’s result to more than
two block diagonal symmetric matrices and it was applied to the exploration of
spectra of the generalised join of regular graphs.

3.1. Generalization of Fiedler’s result. For j € {1,2,...,k}, let M; be an m; x m;
symmetric matrix, with corresponding eigenpairs (o, u,;), 1 < r < m;. Moreover,
forqe {1,2,...,k—1}and l e {¢ + 1,...,k}, let p,; be arbitrary constants. let &
be the k—tuple

(3.1) a= (a1, k),

where each «;, ; is chosen from the elements of { j, ..., au,, ;} withj e {1,2,... k}.
Then considering an arbitrary @-tuple of reals

(3.2) D= (P12, 01,35 s PLks P23« s P2k - - - » Phie1,k)

consider the symmetric matrices

(3.3)
Ca(p) =
[ T T T
M, p1,2Wi; 1W;, o p1,3Wip 10, 3 - PLEW: 10, g
T T T
p1,2Wi5 20, M, p2,3Wi5 2U;, 3 e P2,kWiz 205,
T T T
P1,3Wi5 3W; 4 p2,3Wiz 35, o M3 e P3,kWis 35 1
T T T
PLE-1Wiy k=15 1 P2—1Wi_y k—1Ug, o . M1 pr—1,Wi,_y k—14;,
T T
P1EW, kU 4 P2, kW kWG, o - .. M;.
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Q1 P12 .- P1,k—1 P1,k
P12 iy 2 .. P2,k—1 P2,k
(3.4 Ca(p) = : : :
Prk—1 P2k—1 --- Q5 k-1 Prk—1k
| PLk P2k - Pk=1k Qigk |k
Theorem 3.1. [18] For j € {1,2,...,k}, let M; be an m; x m; symmetric matrix,
with eigenpairs (o, u,;),Vr € I; = {1,2,...,m;} and suppose that for each j, the

system of eigenvecotrs {u,;,r € I} is orthonormal. Consider a —k(kz_ L.

D= (P12, P13 PLks 2,35+ -+ P2 - - - Ph—1,c) and the k-tuple & = (a1, ..., 04, k)
as defined in (3.1) and (3.2) . Then the matrix C5(p) in (3.3) has the multiset

of eigenvalues (V¥_ {on;, ... am, ;P\, 5}) U {, - ), where y1,7s, ...y are
eigenvalues of the matrix Cz(p) in (3.4).

tuple of scalars,

4. DISTANCE SPECTRUM OF ['(Z,,)

The concept of distance and transmission of vertices in a graph finds wide appli-
cation in the design of communication networks. A wide survey of distance spectra
of graphs can be found in [16]. In analogous with energy of graphs , the concept
of distance energy and Laplacian energy of graphs was introduced in [10, 13]. In
[5], the authors make use of the Fiedlers lemma to get the adjacency spectrum
and Laplacian spectrum of the joined union of regular graphs. The same tool of
Linear Algebra is used in [6] to get the distance related spectrum of the joined
union of regular graphs. The structure of I'(Z,) as the joined union of the induced
subgraphs I'(S(d;)), i = 1,2..., s(n); which are either complete or null graphs, the
vertex sets of which form an equitable partition for V' (I'(Z,,)); makes the task of
computing the spectrum easy. Refer[22]. In this section we describe the distance
matrix and its eigenvalues of I'(%Z,), for any n and especially for n = p* k > 3. We
also show that —1 and —2 are the distance eigenvalues of I'(Z,), for any n, and
count their multiplicities.

Consider G |Hy, Ho, ..., H;] where G is a connected graph with vertices labeled
as 1,2,...,k and H; is r;- regular and |V (H;)| = n;, forevery j = 1,2,... k. Let
A(H;) denote the adjacency matrix of H;.
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Take M; = 2(J — I),, — A(H;). Then clearly a;, ; = 2(n; — 1) — r; is the Perron
eigenvalue for M; for every j = 1,2, ..., k with corresponding Perron eigenvector,
1,,,. [ Note that since H} is r;- regular, r; is the perron eigenvalue of H; with 1,,; as
the corresponding eigenvector, for j = 1,2, ...,k ]. Thus, since G is connected and
H; is regular, M;, j = 1,2,...,k correspond to the diagonal blocks in the distance
matrix of G [Hy, Ha, ..., Hi] .

As in (3.3), taking

1
Mj = 2(J = I)n, — A(H;), (v, 5, Wi, 5) = (2(”3' —1) =, ﬁlnj)
and the real numbers p;, = d;, - \/ung, forl e {1,2,...;k—1},qe {l+1,...,k},
where d;, = d,; = ds(l,q), is the distance between the vertices [ and ¢ in the

connected graph G, it can be seen that the distance matrix of G [Hy, Hs, . .., Hy] is
obtained as in the following theorem.

Theorem 4.1. [6] Consider G [H,, Hs, ..., Hy], where G is a connected graph with
vertices labeled as 1,2, ...,k and H; is r;- regular and |V (H;)| = n;, for every j =
1,2,...,k ,and let d;, denote the distance between the distinct vertices [ snd ¢ in G
forle{l,2,....,k—1}, ge {{ +1,...,k}. Let A(H;) denote the adjacency matrix
of Hj and M; = 2(J — I),, — A(H;) . Then, the distance matrix of the generalized
GG-join of the graphs Hy, H,, . .., H}, is given by,

D(G[Hy, Hy, ..., Hy])=

Ml d1,2Jn1 Xng dl,BJnl Xns s dl,kjnl XN
dl,ZJg:l XNg M2 dQ,SJngxng s d27kjngxnk
Ak Ty sng s D2k 1y e M1 dy—1 kI xny,
deJ,:flmk dg,k(],:gxnk o e M, i

Also, applying Theorem 3.1, the distance spectrum of D(G [H;, Ha, ..., Hy]) is
given by the following theorem.

Theorem 4.2. [6] Consider G [H,, Hs, ..., Hy|, where G is a connected graph with
vertices labeled as 1,2, ...,k and H; is r;- regular and |V (H,)| = nj, for every j =
1,2,... k. Let A(H;) denote the adjacency matrix of H; and M; = 2(J—1I),,—A(H;).
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Then, the distance spectrum of G [Hy, Ho, . .., Hy] is given by,

k
(42) O'D(G[Hl,HQ,..., (U \{2 —1)—T’j}> UO'(&)
where
2(”1 - 1) — T dl,zm cee dl,km

Qe
I

dmﬁ/nlng 2(7’L2 — 1) —T9 ... dgvkﬁ/ngnk

dL;m/nlnk dgyk«/ngnk c. 2(77,k — 1) — Tk

Consider the graph G as a vertex weighted graph by assigning the weight n; =
|V(H,)| to the vertex j of G for j = 1,2,..., k and consider the diagonal matrix of
vertex weights,

sl 0 0
W= 0 N9 0
0 N

Let Tp(G) be the combinatorial ( vertex weighted) distance matrix of G,(see[9])
given by

2(711 — 1) — T dl’gng . dlvknk
d1,2n1 2(712 — 1) — T ... d27knk
Tp(G) =
denl d27kn2 Ce Q(Hk - 1) — Tk

Remark 4.1. Since Tp(G) = W 2CWs, it follows that C' and Tp(G) are simi-
lar. Thus o(C) = o(Tp(G)). Thus the distance spectrum of G [Hy, Hy, ... H,] is
completely determined by the matrices M; for j = 1,2,...,k and the combinatorial
distance matrix Tp(G) associated to G.

4.1. The zero-divisor graph I'(Z,,). Asusual, let Z,, denote the commutative ring
of integers modulo n. When n is a prime, Z,, is an integral domain and has no zero
divisors. Thus to avoid triviality, we assume that n is not a prime. Also we note
that if n = p?, 23; I'(Z,) is complete. So, through out this paper we assume that
n # p?,23. We recall that in any finite commutative ring with unity, every non-zero
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element is either a unit or a zero-divisor. The number of non-zero zero-divisors of
Zyisn — ¢(n) — 1. [22].

In [26], Sriparna Chattopadhyay et.al. describe the structure of I'(Z,) as the
generalised join of its induced subgraphs .

By a proper divisor of n, we mean a positive divisor d such that d/n, 1 < d < n.
Let s(n) denote the number of proper divisors of n. Then, s(n) = 0q(n) — 2, where
o(n) is the sum of k& powers of all divisors of n, including »n and 1.

If n = pi* - py?---plir, where py, po, ..., p, are distinct primes, and ny, no,...,n,
are positive integers,

T

s(n) =] J(ni+1) -2

=1
Let S(d) = {k € Z, : gcd(k,n) = d}. Clearly {S(d1), S(d2),...,S(dn))} is a collec-
tion of pairwise disjoint sets of vertices and is an equitable partition for the vertex
set of I'(Z,) such that S(d;) n S(d;) = ¢,i # j, and any two vertices in S(d;)
have the same number of neighbours in S(d;) for all divisors d;, d; of n. Using
elementary number theory, it can be seen that

|S(d;)| = ¢(n/d;), forevery i=1,2,... n.
Let the subgraph of I'(Z,), induced by S(d;) be denoted by I'(S(d;)) for i =
1,2,...,s(n). Then,

Fqb(%) if n )( d?

I'S(d;)) =
( ( )) qu(d%) lfTL/Cl,L2

It is obvious that I'(S(d;)) is regular for each i = 1,2,...,s(n). For example, in
I'(Zy), S(p) induces K -1y and S(p?) induces K,_1. In I'(Z,2,), S(p), S(q), S(p*)
induce K (p—1)(g-1), Kpp-1), K41 respectively while S(pq) induces K, ;.

The compressed zero-divisor graph, denoted by T, ( in fact a subgraph of
I'(Z,)) is a simple connected graph associated with I'(Z,) with vertices labeled
as dy,dy, ..., dyyn. See[3]. In [11], the authors designate this graph as proper
divisor graph, where as in [20] it is named as projection graph. The vertices d;
and d; are adjacent in T, if and only if n/d;d; [26]. For example the compressed
zero-divisor graph of I'(Zs) is given in figure 1.

Thus the zero divisor graph on the ring of integers modulo n can be constructed
as

(4.3) I(Zn) = Ta[L(S(dh)), T(S(d2)), - .., T(S(dsm)))]
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6

FIGURE 1. Ysg

and the study of spectrum of I'(Z,) can be facilitated through the compressed
zero-divisor graph in a better way.

Throughout this paper we use d; ; to denote the distance between the vertices
d;and d; in Y,,. Thatis d; ; = dv, (d;, d;) We have the following lemmas which are
used in the main theorem of this section.

Lemma 4.1. For any two distinct vertices d; and d; in the compressed zero-divisor
graph 1, ,
1 ifn/ddj,
dij =122 ifnfdd; ged(d;d;)#1,

3 otherwise.

Proof. n = pi*-py*---piv, where py, p, ..., p, are distinct primes, and ny, na, ..., n,
are positive integers. Let dy,d, . . ., dy,) be the proper divisors of n.

Case (i) is trivial.

Case (ii): Let n f did;, and let ged(d;,d;) = g > 1. Clearly, n/(%)d; and n/(%)d;.
Thus % ~ d; and g ~ d;. Hence % is a common neighbor of d; and d; in T,,.

Conversely we prove that if n / d;d; and d; and d; have a common neighbor in
T,, then ged(d;, d;) > 1. Let dj;, be the common neighbor of d; and d; .Then n/d;dy
and n/d;dy . Thus it is obvious that (3-)/d; and (7-)/d;. Hence - is a common
divisor of d; and d;. Thus the gecd(d;,d;) > > 1L Thus when n / d;d;, d; and d;
have a common neighbor in T, iff gcd(d;, d;) > 1.
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Case (iii): Letn f d;d;, and ged(d;,d;) = 1. Then, as proved in the above case, d;
and d; do not have a common neighbor. Now,

n n
di ~ —, dj ~ —.
Cody T d
Since n divides T ;, it follows that > ~ %. Thus, d; ~ + ~ + ~ d;is a
i J

shortest path between d; and d;. Thus dyn(dz,d ) = 3, in this case. Thus the
result immediately follows since for any commutative ring R, diam(I'(R)) < 3.

[27] O
Lemma 4.2. Let n = p{* - py*---pl'", where py,po, ..., p, are distinct primes, and
ni,Ng, ..., N, are positive integers. Then, the number of proper divisors d of n such

that n | d? is

[1(151+1)

Proof. The number of proper divisor of n is given by

r

s(n) = [ [(ni + 1).

i=1
The number of proper divisors d of n such that n f d? is exactly the number of
ni n2 nr
proper divisors ofpg el -pL2 I -p,[ >| which is Il ([B]1+1) —2. O
The following lemma is the immediate consequence of Lemma 4.2.

Lemma 4.3. The number of proper divisors d of n such that n divides d?, is
T r n
i+ 1) — — 1].
[Tes=0-TT(151+1)

The next theorem describes the distance spectrum of I'(Z,) for any n.

4.2. Distance matrix of I'(Z,,).

Theorem 4.3. Let dy,ds,. .., dyuy) be the proper divisors of n. Then, the distance
spectrum of I'(Z,) is given by

Ml d1721]¢(dil)><¢(;42) e dl’s(n)l]d)(%)ng(ds?n))
dl 2J ) x M2 d2,s(n)J¢(l)x¢( n_)
D(I'(Z)) = e | ) Bals

| ootz ooz M |
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where,
2(J — I)y(n lfn )( d?
M, - (J = Doz rnd g
(J=Dozy  Fn/dj
and forle {1.,2,...,s(n) —1}andqe {l+1,...,s(n)}, | #q,
1 lfn/dldq
dlq =42 lfn * dldq, ng(dladq) #1..
3 otherwise
Proof For n = p? for any prime p or n = 8, the zero divisor graph I'(Z,) is
a complete graph and the result is trivial. By (4.3), I'(Z,) is the Y, - join of
I'(S(dy)), I'(S(d2)), - .., T'(S(dswy)). Also, the adjacency matrix of I'(S(d;)) is given
by,
qu(%) if n )( d?
CICANER B .
(J — [)d)(dlj) if n/d]

Thus, taking G = T, and H; = I'(S(d;)) and M; = 2(J — I)4n) — A(T(S(d;))),
the conclusion is an immediate consequence of Theorem 4.1 and Lemma 4.1. [

4.3. Distance spectrum of I'(Z,). For the proper divisors di, . ..., dyq), and the
matrices,

2(J — Ig(n if n )( d2-
(J— I)¢>(ﬁ) lfn/d?,

the distance spectrum of I'(Z,,) are completely determined by the matrices )/;, for
j =1,2,...,s(n) and the combinatorial (vertex weighted) distance matrix of Y,
as in (4.1) and (4.2). The spectrum of }M; as described above are, if n / d?,

(4.4) O(Mj) = ( ¢(n

and if n/d;,

4.5) o (M) = ( . _)1_ 1 ¢(d%i -1 ) |
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Also we note that the subgraphs I'(S(d;)), for j = 1,2,...,s(n) are r;- regular,
where
L qﬁ(dﬂj) -1 ifn/d}

0 ifn t d3.

While taking the union of all eigenvalues of M, as described above in (4.4) and
(4.5), the multiplicity of —2 as the distance eigenvalue of I'(Z,) is X, 42 (¢(%) —
1), where the ¥ runs over all divisors d of n such that d/n and n / d?. By Lemma
4.2, this count amounts to 3, .2 #(5) —[Ti_; ([%5] + 1) +2. Similarly, while tak-
ing the union of all eigenvalues of }/;, the multiplicity of —1 as the distance eigen-

value of I'(Zy) is 3y, a2 (¢(3) — 1), which counts to 3, e ¢(5) — 15, (ni +
1) +][,_; ([%]+1), by Lemma 4.3. Thus, applying Theorem 4.2 and Remark 4.1,
we have the following theorem.

Theorem 4.4. For any n = p}*-p3? - - - p}'~, the zero-divisor graph I'(Z,,) has distance
eigen values —2 and —1 with multiplicities 3./, ., #(5) — [T, ([% ]+ 1) +2 and
Simmgaz 0(5) = TTizy (ni + 1) + T1i_, (I%] + 1) respectively and the remaining dis-

tance eigenvalues are the eigenvalues of the vertex weighted distance matrix of 1,,, as

follows
t dipd() - dism ()
@s  Tpry- | MO detlai)
dismy(3)  dosmd(g) - t

where

di,j = 2 lfn * didj, ng(dl,d]) # 1.
3 otherwise.

Remark 4.2. The matrix Tp(Y,,) as in (4.6) can be described as the vertex weighted
distance matrix of the compressed zero-divisor graph Y,,. Refer[9]. Thus the distance
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eigenvalues of I'(Z,,) are completely determined by this vertex weighted distance ma-
trix Tp(Y,,). Thus we have the following corollory.

Corollary 4.1. ['(Z,) is distance integral if and only if Tp(Y,,) is integral.

Example 1. SpecD(I'(Zy,)) =

-2 prq—A4+ PP+ P —pi—pt+a)+1l pra—4—\P+@—-pi—(p+q) +1
p+q—4 1 1

Consider I'(Z,,), where p < ¢ are distinct primes. Counting the number of
non-zero zero-divisors of Z,,, it can be easily seen that the zero-divisor graph
I'(Z,,), has p + g — 2 vertices. The proper divisors of pg are p and ¢ and the
compressed zero divisor graph T,, = K, with vertices labeled as p and ¢. Clearly

I'(Zyg) = Ko[D(S(p)), T(S(q))], where T(S(p)) = K,—1 and I(S(q)) = K. - Using
Theorem 4.3, the distance matrix of I'(Z,,) is given by

DIy = | 2= Duvean | i

Note that n = pq has no proper divisor d such that n/d*. Also it is obvious that a
square matrix M has eigenvalue —1 if and only if the matrix M + [ has nullity at
least one. Thus —1 is not an eigenvalue of I'(Z,,) for any primes p < ¢. Thus using
Theorem 4.4, we see that —2 is an eigenvalue of I'(Z,,) with multiplicity p + ¢ — 4.
And by Theorem 4.4, the other distance eigenvalues of I'(Z,,) is determined by its
vertex weighted distance matrix,

2(¢—-2) p-1
g—1 2p-2) |

TD(qu) = [

Thus the remaining two distance eigenvalues of this graph are determined by the
polynomial, Q(z) = 22 — 2z(p + ¢ — 4) + 3pq — 7(p + q) + 15.

Remark 4.3. We note that for n = pq, where p < q are distinct primes, —1 is not a
distance-eigenvalue of I'(Z,,). Also, since I'(Z,,) for n = p?,23; is a complete graph
(hence adjacency matrix and distance matrix are equal), —2 is not a distance eigen-
value of I'(Z,,). For all other values of n, both —1 and —2 are distance eigenvalues of
(7).
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4.4. Distance spectrum of I'(Z,), k > 3. The proper divisors of p* are p, p?, . . .,
p"tand {S(p),S(p?),...,S("')} forms an equitable partition for V(I'(Z,)). The
order of the graph I'(Z,.) is p"~' — 1. The analysis of the adjacency matrix and
some graph parameters of I'(Z,.) can be seen in [22],

E¢(pk—j) lfj < [ ]

I,

where ?d)(pk—j) is a null graph which is 0- regular and Ky, is a complete graph
which is ¢(p*~7) — 1- regular. In the compressed zero-divisor graph Y, p' ~ p? for
distinct 7 and 7, if and only if i + j > k. Also the vertex p* ! is adjacent to every
other vertices of T,.Thus T, is a connected graph with diameter 2. [11]. Also,
forie{l,2,....k—=2},jefi+1,....k—1},i+# 7,

D(S@)) =

N[F N3

K¢>(p’“*j) ifj=]

1 ifi+j=k
d%] == .
2 otherwise
The zero-divisor graph,
(4.7) [(Zy) = T [T(S(0), D(SP%)), ..., T(SE)]
For j = 1,2,...,k — 1, we take, as in Theorem 4.1,
M. = Q(J — I>¢(pk—j) lfj < [g-l
J o - :
(J — I)d,(pk—j) if j > [g]
Then, it is obvious that, if j < [£],
2 2l - )
.8 M;) = .
(4 ) U( ]) < ¢(pk_]) _1 1
and if j > [%],
-1 o(p*7) -1
4. M;) = )
( 9) O'( ]) ( Qb(pki]) -1 1
Taking the union of the eigenvalues of M;, for j = 1,2,... k — 1, the number of

times —2 is counted as an eigenvalue is, from (4.8) and (4.9),

S

Sy (007) = 1) = SV () — 1) =t =8 - [
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similarly the eigenvalue —1 is counted png — [gj —1 times while taking the union of
M;, for j =1,2,..., k—1. Thus considering (4.8) and (4.9) and applying Theorem
4.1 and Theorem 4.2, we have the following theorem.

Theorem 4.5. For k > 3, the zero-divisor graph I'(Z,) has distance eigenvalue —2
and —1 with multiplicities p* ' — plzl — [£] + 1 and pl] —|&| — 1 respectively and the
remaining distance eigenvalues are the eigenvalues of the vertex weighted distance
matrix of order k — 1,

i dipp(p*2) ... dig10(p)
R e |
dl,kfl(b(pk_l) dz,k71¢(17k_2) e te—1
1 . . . 2 2 k_] o 1 . . E
where, d; ; = fitj=zk and t; = (((b(p )=1) i<l )
2 otherwise d(p"=7) —1 i=1%

Example 2. The distance spectrum of I'(Z,s) is given by,

SpecD(I'(Zy3))
2p? —p—A4+4/4p*—8p3 +p2+4dp  2p?—p—4—4/4pt—8p3+p2+4p
= —2 —1 2 2
pPP—p—1 p—2 1 1

The number of non-zero zero-divisors of Z,s is p* — 1. The proper divisors of p* are p
and p? and the compressed zero-divisor graph Y is isomorphic to K,. The distance
matrix of I'(Z,s), for p # 2 is given by,

2(J = I pip—1) xp(p— VTN
D(I'(Zy3)) = ( 7 p(r=1)xp(pr=1) ‘ J_p(§ Dx(p=1) ‘
(p=1)xp(p—1) ‘ ( Jp-1)x(p—1)

The distance eigenvalues of D(I'(Z,3)) are —2 and —1 with multiplicities p* — p — 1

and p — 2 respectively and the remaining two distance eigenvalues are the eigenvalues
of the vertex weighted distance matrix Tp(Y ,3) given by,

2(p* —p—1) p—ll'

T (T ) =
o [ P-p  p-2
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5. DISTANCE LAPLACIAN SPECTRUM OF ['(Z,)

Let G = I'(Z,), n # p* 2. In this section we investigate the distance Laplacian
matrix of I'(Z,) and describe the explicit way of computing its distance Laplacian
eigenvalues. Also the spectrum of the distance Laplacian matrix of I'(Z,:),k = 3
is explored. It can be noted that the distance Laplacain matrix of any connected
graph is positive semi-definite and the least distance Laplacian eigenvalue, 0, is of
multiplicity 1. [18]

Let dy,ds,...,d; be the proper divisors of n such that I'(S(d,)),I'(S(d2)),. ..,
I'(S(dk)) are null graphs and let I'(S(di+1)), - . . , I'(S(ds(n))) be complete subgraphs
of I'(Z,). Then, since I'(Z,) is a generalised join of its induced subgraphs which
are either null (corresponding to the divisors d;,ds,...,d;) or complete (cor-
responding to the divisors dj1,...,dys)); the distance between any two distinct
vertices of S(d;) for fixed j € {1,2,...,k} is 2 and the distance between any two
distinct vertices of S(d;), for fixed j € {k + 1,...,s(n)} is 1. Let M, be the ma-
trix as described in section:4, and let \,(/;) be the Perron eigenvalue of M; for
j=1,2,...,s(n). It is easy to see that,

Then for any vertex vy, € S(d;), the transmission degree of v, is given by

TT’(Udl) = EueV(G)dG(u7 Udl) = 2(¢(£) - 1) + d1,2¢(dﬁ2) + d1,3¢(d%)

dy
)
ds(n)
n
= (M) + Bjda6( ).
J

n

+ ...+ dl,s(n)Qb(

Similar results hold for Tr(vg,), ..., Tr(vs, ) and we have for any vertex v; € S(d;),
T’I“(Udi) = )\1(M1) + Zj;éidi,jqb(dﬁ)a 1= 1, 27 ceey k.
J

Since, S(dk+1),---,S5(dsny) induce complete subgraphs, we see that the trans-
mission degree of any vertex vy, € S(d;),i = k +1,...,s(n) is given by

n n n .
TT(Udi) = ¢(d—) —1+ Z]¢1d27j¢(d—) = Al(Mz) + Ej#idi,qu(z)az =k + 1, c. ,s(n).
% J J
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Thus the diagonal matrix of vertex transmission of G is given by,

n O ... O
O T, ... O
Tr(l(Zn) = . . . .
O O ... Ty
where the diagonal blocks 7; is given by
(5.1) Ti = (M(M;) + 73) Ly,

1

where T; = Zj#idi,jgb(dﬂj)ai =1,2,... 75(71).
Since the distance laplacian matrix of any connected graph G is 7r(G) — D(G),
it follows that,

DY(I'(Zy)) =
| Ly ~diadsge) e s dagei) |
~ 2Tz L s o2 )xo(2)
| s i) s o Ly |
where the diagonal blocks L; is given by, using (5.1),
Li =T, — M; = (\M(M;) + 7;) I¢((%) —M;, i1=1,2,...,s(n).
Since T; and M; commute each other, for i = 1,2,...,s(n), it can be easily seen

that, each eigenvalue \(L;) is given by
Also, A\ (M;) + 7; is the Perron eigenvalue of 7; such that

T;]'Qb(dj.) = (/\1(MZ) + Ti) 1¢(d7).

Thus, 7; is the Perron eigenvalue of L; for i = 1,2,...,s(n). Thus applying Theo-
rem 4.2, we arrive at the following theorem.

Theorem 5.1. For n # p?, 23, the distance Laplacain spectrum of G = I'(Z,) is given
by
s(n) R
opr (@) = | {o(L\r} v a(C),
i=1
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where C'is the vertex weighted distance Laplacian matrix of the compressed zero-
divisor graph Y,,, given by

1 —d1,2¢(§_2) ce —d1,s(n)¢(d:(ln))
po| Thd o hwd(E)
_dLS(n)(b(g_l) _dQ,S(n)(b(%) e Th

For example, I'(Z,,) = Y,,[I'(S(p)),I'(S(q))], where T,, = K,. In this case,
Th={p+2¢q—5)1, 1, My =2(J —1)g1,To = 2p+q—5)1, 1, My =2(J — 1), 4
and thus the distance Laplacian matrix of I'(Z,,) is given by

DL(F(qu)) =

(p+29—5)1 —2(J = I)g1yx(q-1) \ —Jg-1)xp-1)
—Jp—1)x(g-1) | 2p+q—5)1 —2(J — I)p-1)x (1)

Here
Li=(p+2¢—3), 1 — 2],
Lo=(2p+q—3)I,_1 —2J, 1.
Clearly, 71 = \(L1) =p—1land 5 = M\ (L2) = q— 1;
o(Ly) = (pzl Pﬂ;2_q2_3> and o(Ly) = (q;l 2p;_g}2—3 )

Thus we see that p + 2¢ — 3 and 2p + ¢ — 3 are distance Laplacian eigenvalues
of I'(Z,,) with multiplicities ¢ — 2 and p — 2 respectively and the remaining dis-
tance Laplacian eigenvalues are the eigenvalues of the vertex weighted distance
Laplacian matrix of T, given by

L | -1 —(-1

The characteristic of the above matrix is z? — (p + ¢ — 2)z and has eigenvalues 0
and p + g — 2. Thus the distance Laplacian spectrum of this graph is obtained as

0 p+qg—2 p+2¢g—3 2p+q—3
SP€CDL(F(qu)) = ( 1 1 ¢ —2 p—2 :
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5.1. Distance Laplacian spectrum of I'(Z,:), k > 3. For any connected graph
G with n vertices, the distance Laplacian matrix D*(G) is positive semi definite
and the least distance Laplacain eigenvalue is 0 with multiplicity 1. ie o > o >

- > oL = 0. refer[18]. The the distance Laplacian eigenvalues of a graph of
diameter at most 2, can be expressed in terms of its Laplacian eigenvalues as in
the following theorem.

Theorem 5.2. [15] Let GG be a connected graph on n vertices with diameter d < 2.
Let 111 (G) = p2(G) = -+ = u,(G) = 0, be the Laplacian eigenvalues of G. Then the
distance Laplacian eigenvalues of G are
20 — fn_1(G) = 20 — pp_o(G) = --- = 2n — 11 (G) > o~ = 0.
The next theorem explores the Laplacian spectrum of I'(Z), k > 3.

Theorem 5.3. [26] Consider I'(Z,:), k = 3. Then the following hold
(1) If k = 2m for some m = 2, then the Laplacian spectrum of I'(Z,) is given by

prml ] pIme2 L ogpmtl 1 gm_ 1 gpml_ L. p—1 0
( ¢(p) op?) o M) (M) -1 G - (™) 1 )

(i) If k = 2m + 1 for some m > 1, then the Laplacian spectrum of I'(Z,x) is given
by

pPm—1 pPmt—1 ... pmtl_1 pm—1 pmt—1 -~ p—1 0
( op) o) - ™) e -1 S@™) - G(p) 1 ) |

Thus we have the following theorem.

Theorem 5.4. Let k > 3.
(i) If k = 2m for some m > 2, then the distance Laplacian spectrum of I'(Z,x) is
given by

2p2m—1 2p2m—1 2p2m—1 2p2m—1 2p2m—1 . p2m—1 -1 0
—-p—-1 —p*-1 —p"h =1 —pm =1 -1
o> d(P*™2) - (™Y (™) -1 (™Y - elp) 1

(ii) If k = 2m + 1 for some m > 1, then the distance Laplacian spectrum of I'(Z,x) is
given by

2p2m 2p2m 2]7 2p2m 2p2m p2m -1 0

—p — 1 _p2 -1 _pm—l -1 _pm -1 _pm+1 -1

o(P*™) o™ o (™) (™ -1 (™) -+ 9lp) 1
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Proof. The compressed zero-divisor graph T, is a connected graph of diameter 2
for k > 4, since p*~! ~ p/,Vj =1,2,...,k—2. And for k = 3, T, = K, and hence it
is of diameter 1. Thus from equation (4.7), it follows that I'(Z,« ) is of diameter at
most 2 for k& > 3. The number of vertices in I'(Z,) is p*~* — 1. Thus the conclusion
follows from Theorem 5.2 and Theorem 5.3. [Kindly note that, for convenience,
each eigenvalue is spread into first two rows where as the multiplicity is given
against each eigenvalue, in the third row.] O

6. CONCLUSION

The special combinatorial structure as well as the typical block structure of the
distance related matrices of the zero-divisor graph on the ring of integers modulo
n plays a major role to motivate us to inculcate the tools of matrices in the compu-
tation of the spectrum. We conclude that the distance related spectrum of I'(Z,)
is completely determined by its compressed zero-divisor graph.
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