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HOMOTOPY PERTURBATION AND ADOMIAN DECOMPOSITION METHODS
ON 12th-ORDER BOUNDARY VALUE PROBLEMS

E. U. AGOM1, F. O. OGUNFIDITIMI, AND E. V. BASSEY

ABSTRACT. In this paper, Homotopy Perturbation Method (HPM) and Adomian
Decomposition Method (ADM) are implemented on 12th-order boundary value
problems (BVP) in finite domains. The HPM is based on the traditional pertur-
bation and on homotopy while the ADM is based on modified multi-stage ADM.
Two test problems were considered to validate and demonstrate our findings with
the results compared with the analytical solutions. HPM gave numerical solutions
whose accuracy reduced as it approaches the domain boundaries, while ADM gave
exact solutions in form of Taylor’s series expansion of the closed form solutions
which were absolutely convergent. And, all the results were graphically repre-
sented in plotted graphs vis-a-vis the analytical solution.

1. INTRODUCTION

For over a decade now BVP of higher order (up to 24th-order) are being investi-
gated due to their mathematical importance, and also due to their potential for ap-
plication in diversified applied and engineering sciences. These class of problems
arise from mathematical studies of systems in astrophysics, hydrodynamics and
hydro-magnetic stability. For instance, modelling of an infinite horizontal layer
of fluid heated from below is done with the assumption that a uniform magnetic
field is subject to action of rotation. In the process instability do set in. When the
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instability sets in as ordinary convection, the system is modelled with 10th-order
BVP. But, when the instability set in as over stability, the system is modelled with
12th-order BVP. See [13,17] and the references there in.

On the whole, most mathematical models and mathematical scientific problems
and phenomena in different fields of science and engineering occur nonlinearly.
Except for a limited number of these problems, we encounter difficulties in finding
their exact analytical solutions.

Consider the 12th-Order BVP of the form

(1.1) y(xii)(t) + ϑ(t)y(t) = η(t), a 6 t 6 b,

with the boundary conditions

y2j(a) = δ2j,

y2j(b) = ξ2j,

where j = 0, 1, 2, 3, 4 and 5. Functions y(t), ϑ(t) and η(t) are continuous and
defined on [a, b], and δ and ξ are finite real constant. Existence and uniqueness of
solutions to 12th-order BVP are contain, without details, as theorems in Agarwal
[1].

Also, different numerical methods have been proposed by various authors. For
instance, the authors in [12] implemented the HPM to obtain approximate numer-
ical solutions to 12th-order BVP. The method used was based on coupling of the
traditional perturbation and homotopy methods. In the two examples considered,
the results were compared with the exact analytical solutions and were found to
be approximate. In [14] the authors applied HPM on 9th, 10th and 12th-orders
BVP to obtain numerical solutions. In the three problems considered as examples,
the overall results were found to also be approximate. In [11] the authors applied
the Galerkin weighted residue technique with Berstein polynomial as a basis func-
tion on 10th and 12th orders BVP. The numerical result obtained in the example
considered gave sizeable absolute errors when compared to the exact solutions.
In [9] the authors implemented Chebychev method on 12th-order BVP to obtain
numerical solutions. The method was based on Chebychev polynomial and the re-
sult compared with that obtained from Differential Transform method which were
found to be approximate but relatively better. [17] presented a numerical algo-
rithm to approximate 9th, 10th and 12th-order BVP. The technique was based on
modified ADM. The results provided reliable solutions with sizeable errors in the
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numerical examples considered. [16] Applied polynomial spline on linear twelfth-
order BVP to obtain approximate solutions. [13] presented HPM on 9th, 10th and
12th-order BVP which arise in the study of astrophysics, hydrodynamic and hydro-
magnetic stability. In the paper, numerical examples were considered which were
correct to at most seven significant figures. [15] Implemented Variational iteration
method to solve twelfth-order BVP with minimal computational process to obtain
approximate solutions.

The main motivation in this work is to show that ADM, for the first time, can be
used to obtain exact analytical solution of 12th-order BVP. The ADM is based on
the modified multi-stage ADM, see [2,5–7] and the references there in. The overall
results were correlated with the approximate solution obtained by implementing
HPM.

2. BASIC IDEA OF HPM AND ADM

2.1. Theory of HPM. He [10] proposed and developed the HPM in 1997. Since
then the method has systematically improved and is still evolving, see [12,14] and
the references there in. The method expresses equation (1.1) as

(2.1) L(y) = 0,

where L is a differential operator which can further be divided. The possible
homotopy formulation is defined as

(2.2) H(y, p) = (1− p)F (y) + pL(y),

where F (y) is a functional operator with known initial solution y0 and p is the
homotopy parameter p ∈ (0, 1]. For

(2.3) H(y, p) = 0,

we have H(y, 0) = F (y), H(y, 1) = L(y). And the solution of equation (2.1) is

(2.4) y =
∞∑
i=0

piyi.

As p → 1, equation (2.4) corresponds to equation (2.2) and becomes an approxi-
mate solution of the form

(2.5) y = lim
p→1

y =
∞∑
i=0

yi.
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The HPM is heavily dependent on a careful selection of the initial solution y0.
With that taken care of, equation (2.5) is convergent and the rate of convergence
depend on L(y). The method is applied without any discretization, restrictive as-
sumption or transformation.

2.2. Theory of ADM. The ADM by G. Adomian has been widely reported in
[3, 4, 7, 8]. Theoretically, ADM start by splitting equation (1.1) into linear and
nonlinear parts. Then, inverting the highest order derivative operator contained
in the linear operator on both sides of the equation. The Adomian polynomials is
then calculated. See [2,3,8], and the references there in, and finally the successive
terms of the series solution are then found by a recurrent relation.

Traditionally, ADM expresses equation (1.1) as

(2.6) Ly(t) +Ry(t) +Ny(t) = f(t).

Here, L is a 12th-order differential operator in this paper, R is the remaining linear
operator, which in this case is ϑ(t)y(t), and, N is a nonlinear differential operator,
which in this case is zero. So,

(2.7) f(t) = η(t).

Suppose L−1 exist, the solution of equation (1.1) is given as

(2.8) y(t) =
∞∑
k=0

yk(t).

We modify f(t) by applying Taylors’ series expansion on it as contain in [2]. That
is

(2.9) f(t) =
∞∑
k=0

ηk(t).

Substituting equations (2.7), (2.8) and (2.9) in equation (2.6), we have

(2.10)
∞∑
k=0

yk(t) = Ψ(t) + L−1

[
∞∑
k=0

ηk(t)− ϑ(t)
∞∑
k=0

yk(t)

]
,

where L−1 is a 12-fold integral in this case. By the principle of ADM, it becomes
trivial to see that

(2.11) y0(t) = Ψ(t),
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where Ψ(t) is the term arising from the source term that may or may not include
the initial/boundary conditions. Subsequently,

y1(t) = L−1 [η0(t)− ϑ(t)y0(t)] ,

y2(t) = L−1 [η1(t)− ϑ(t)y1(t)] ,

...

yk+1(t) = L−1 [ηk(t)− ϑ(t)yk(t)] .

Theorem 2.1. y(t) =
∑∞

k=0 yk(t) is a power series that converges absolutely ∀t with
|t| < |φ|.

Proof. Since y(t) is a convergent power series
∑∞

k=0 βkt
k, βkφk −→ 0 as k −→ ∞

and βkφ
k is bounded. βk is independent on tk. Choose α 3 ∀k > 0 |βkφk| 6 α.

Then for |t| < |φ| and n > 1, |βktk| = |βkφk|| tφ |
n 6 α| t

φ
|n. Since | t

φ
| is independent

on k and | t
φ
| < 1,

∑∞
n=1 |

t
φ
|n converges. And, by comparison,

∑∞
k=0 βkt

k converges
absolutely �

3. NUMERICALLY COMPUTED EXAMPLES

In this section we take two numerically computed examples to justify our claim.

Example 1. In relation to equation (1.1), consider the 12th-order BVP which is also
found in [9,12,16]

ϑ(t) = −1, η(t) = −12(2 cos t+ 11 sin t), a = −1 and b = 1,

with the boundary conditions

y(−1) = y(1) = 0,

y
′
(−1) = y

′
(1) = 2 sin 1,

y
′′
(−1) = −y′′

(1) = −4 cos 1− 2 sin 1,

y
′′′

(−1) = y
′′′

(1) = 6 cos 1− 6 sin 1,

y(iv)(−1) = −y(iv)(1) = 8 cos 1 + 12 sin 1,

y(v)(−1) = y(v)(1) = −20 cos 1 + 10 sin 1.

The exact solution is
y = sin t(t2 − 1)
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and the Taylor’s series equivalent is

y = −t+
7

6
t3 − 7

40
t5 +

43

5040
t7 − 73

362880
t9 +

37

13305600
t11

− 157

6227020800
t13 +

211

1307674368000
t15 − · · · .

Applying the HPM by using equations (2.1)-(2.5), we have the result as shown in
Table 1. See [12] for details.

TABLE 1. Absolute errors obtained using HPM on Example 1

t Exact solution Absolute Error of HPM [12]

-1.0 0.0000000000 1.6E-09
-0.8 0.2582481927 2.0E-10
-0.6 0.3613711830 1.0E-09
-0.4 0.3271114075 3.0E-09
-0.2 0.1907225576 3.9E-19
0.0 0.0000000000 0
0.2 -0.1907225576 3.3E-09
0.4 -0.3271114075 2.9E-09
0.6 -0.3613711830 1.0E-08
0.8 -0.2582481927 5.0E-10
1.0 0.0000000000 1.6E-09

Applying equations (2.6)-(2.11) of ADM theory, we have

∞∑
k=0

yk =
n−1∑
j=0

tj

j!
aj + L−1(η(t) + y),

where n = 12, k and j are non-negative integers, aj ’s are y(0), y′
(0), y′′

(0), . . . ,
y(xi)(0) respectively. The aj ’s, j = 0, 1, . . . , 11 are not given in the boundary con-
ditions so we solve the system of equations using the multi-stage ADM in [5]. We
easily obtain the aj ’s, as 0,−1, 0, 7, 0,−21, 0, 43, 0,−73, 0 and 111 respectively. This
automatically produces

y0(t) = −t+
7

6
t3 − 7

40
t5 +

43

5040
t7 − 73

362880
t9 +

37

1330560
t11
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Subsequently, using the modification of η(t) as found in [2], we have

y1 = L−1[η0(t)− ϑ(t)y0(t)]

= L−1[−156t+ y0]

= − 157

6227020800
t13 +

1

186810624000
t15 − 1

16937496576000
t17 + · · · ,

y2 = L−1[η1(t)− ϑ(t)y1(t)]

= L−1[34t3 + y1]

=
17

10897284000
t15 − 157

155112100043330985984000000
t25 − · · · .

Continuing in this order, we obtain

y =
∞∑
k=0

yk = sin t(t2 − 1),

which is the exact analytical solution of Example 1. The graphical representation
of the results in the two method is as shown in figure 1. To demonstrate a clear
behaviour of the plotted graph, we deliberately used y =

∑2
k=0 yk of the solution

by ADM.

FIGURE 1. Graphical results of Example 1
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Example 2. Similarly, in relation to equation (1.1), consider the 12th-order BVP
which is also found in [9,11,12,16]:

ϑ(t) = t, η(t) = −(120 + 23t+ t3)et, a = 0 and b = 1,

with the boundary conditions

y(0) = 0, y(1) = 0,

y
′
(0) = 1, y

′
(1) = −e,

y
′′
(0) = 0, y

′′
(1) = −4e,

y
′′′

(0) = −3, y
′′′

(1) = −9e,

y(iv)(0) = −8, y(iv)(1) = −16e,

y(v)(0) = −15, y(v)(1) = −25e.

The exact solution is

y = tet(1− t),

and the Taylor’s series form is expressed as

y = t− t3

2
− t4

3
− t5

8
− t6

30
− t7

144
− t8

840
− t9

5760
− t10

45360

− t11

403200
− t12

3991680
− t13

43545600
− t14

518918400
− ...

Applying the HPM by using equations (2.1)-(2.5), we have the result as shown in
table 2. See [12] for details.

Also, applying equations (2.6)-(2.11) of ADM theory, we have

∞∑
k=0

yk =
n−1∑
j=0

tj

j!
aj + L−1(η(t)− ty)

Where n = 12, k and j are non-negative integers, aj ’s are y(0), y′
(0), y′′

(0), . . . ,
y(xi)(0) respectively. The aj ’s, j = 0, 1, . . . , 5 are given in the boundary conditions.
Using the Multi-stage ADM in [5] we easily obtain the aj ’s, j = 6, 7, . . . , 11 as
−24,−35,−48,−63,−80 and −99 respectively. This automatically produces

y0 = t− t3

2
− t4

3
− t5

5
− t6

30
− t7

144
− t8

840
− t9

5760
− t10

45360
− t11

403200
.
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TABLE 2. Absolute errors obtained using HPM on Example 2

t Exact solution Absolute Error of HPM [12]

0.0 0.0000000000 0.000E-00
0.1 0.0994653826 3.000E-11
0.2 0.1954244413 0.000E-00
0.3 0.2834703497 -1.000E-10
0.4 0.3580379275 2.000E-10
0.5 0.4121803178 1.100E-09
0.6 0.4373085120 4.400E-09
0.7 0.4228880685 1.350E-08
0.8 0.3560865484 3.680E-08
0.9 0.2213642800 9.010E-08
1.0 0.0000000000 2.027E-07

Subsequently, following similar steps as in example 1 and using the modification of
η(t) as contain in [2] we have

y1 = − t12

3991680
− t14

43589145600
+

t16

1743565824000
− · · · ,

y2 = − t13

43545600
+

t25

994308336110960
+ · · · ,

and

y =
∞∑
k=0

yk = tet(1− t),

which is the exact solution of example 2. Similarly, the graphical representation of
the results in the two method is as shown in figure 2. And, to demonstrate a clear
behaviour of the plotted graph, we deliberately used y =

∑4
k=0 yk of the solution by

ADM.

4. CONCLUSIONS

We have, in this work, for the first time been able to show that ADM can also be
used to obtain exact solutions of 12th-order boundary value problems in a finite
domain. The HPM on the same class of equations gave approximate solutions that
gradually deviated from normal as t→ a/b. And, the ADM expressed the solutions
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FIGURE 2. Graphical results of Example 2

in rapidly converging series which were the same as the Taylor’s series expansion
of the exact analytical solutions.
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