
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.12, 10699–10706
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.12.54

EXTENSION OF BM-ALGEBRA INTO AN ALGEBRAIC STRUCTURE WITH
TWO BINARY OPERATIONS

JULIE THOMAS AND K. INDHIRA1

ABSTRACT. In this article, we combine the notions of BM-algebra and semigroup
to introduce a ring like structure with two binary operations, which is named as a
"BM-semigroup". The concepts of left and right ideals of a BM-semigroup are also
introduced and related properties are studied. Some results on homomorphism
defined on a BM-semigroup are also given.

1. INTRODUCTION

Several researchers have considered different types of logical algebras (see [1])
and studied their characterizations. Here, we consider the algebraic structure -
BM-algebra - introduced by Kim and Kim [2]. Megalai and Tamilarasi [3] renamed
it as TM-algebra. Later on, many authors have considered different characteriza-
tions of BM-algebra ( [6], [9], [10], [11]) and made fuzzifications to BM/TM-
algebra ( [4], [5], [7], [8]). In this article, we try to add one more binary opera-
tion to the BM-algebra and study its properties. For this, first let us see the basic
definition of BM-algebra.

Definition 1.1. A BM-algebra is a triple (X, ∗, θ) where X( 6= φ) is a set with a fixed
element θ and a binary operation ∗, satisfying the two conditions: (i) x ∗ θ = x and
(ii) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ X.
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2. BM-SEMIGROUP

Definition 2.1. A (right) BM-semigroup (X, ∗, ·, θ) is a non-empty set together with
two binary operations ∗ and ·, defined on X such that the following axioms are
satisfied:

(i) (X, ∗, θ) is a BM-algebra
(ii) (X, ·) is a semigroup

(iii) The operation · is distributive on right over the operation ∗ : for all x, y, z in
X, the right distributive law (x ∗ y) · z = (x · z) ∗ (y · z) hold.

Similarly, it is possible to define a left BM-semigroup by replacing the right distribu-
tive law (iii) by the corresponding left distributive law, x · (y ∗ z) = (x · y) ∗ (x · z) for
all x, y, z in X. If the operation · is distributive on both sides (left as well as right)
over the operation ∗, then we call X as a BM-semigroup.

Example 1. Let X = {θ, a, b, c}. Define ∗ and · by the following Table 1. Then

TABLE 1

* θ a b c

θ θ c b a

a a θ c b

b b a θ c

c c b a θ

· θ a b c

θ θ θ θ θ

a θ b θ b

b θ θ θ θ

c θ b θ b

(X, ∗, ·, θ) is a BM-semigroup.

Example 2. Let Y = {θ′, x, y, z}. Define ∗′ and ·′ by the following Table 2. Then

TABLE 2

*’ θ′ x y z

θ′ θ′ x y z

x x θ′ z y

y y z θ′ x

z z y x θ′

·′ θ′ x y z

θ′ θ′ θ′ θ′ θ′

x θ′ x y z

y θ′ x y z

z θ′ θ′ θ′ θ′

(Y, ∗′, ·′, θ′) is a BM-semigroup.
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Definition 2.2. Assume (X, ∗, ·, θ) and (Y, ∗1, ·1, θ1) be two BM-semigroups. A map-
ping Φ : X → Y is said to be a BM-semigroup homomorphism if Φ(a ∗ b) =

Φ(a) ∗1 Φ(b) and Φ(a · b) = Φ(a) ·1 Φ(b) for all a, b ∈ X.

Example 3. Let X = {θ, a, b, c} and Y = {θ′, x, y, z} be sets with cayley tables given
in Example 1 and 2 respectively. Thus (X, ∗, ·, θ) and (Y, ∗′, ·′, θ′) are BM-semigroups.
Define a map Φ : X → Y by

Φ(p) =

θ′, if p = θ, b

z, if p = a, c.

Then Φ is a BM-semigroup homomorphism. Define ρ : X → Y by

ρ(p) =

θ′, if p = θ, b

x, if p = a, c

is a BM-homomorphism, but not a BM-semigroup homomorphism since ρ(a · c) =

ρ(b) = θ but ρ(a) · ρ(c) = x · x = x.

Proposition 2.1. Let (X, ∗, ·, θ) be a BM-semigroup. Then x · θ = θ · x = θ, ∀x ∈ X.

Proof. Let x ∈ X. Then x · θ = x · (θ ∗ θ) = (x · θ) ∗ (x · θ) = θ and θ ·x = (θ ∗ θ) ·x =

(θ · x) ∗ (θ · x) = θ. �

Definition 2.3. An element x 6= θ in a BM-semigroup (X, ∗, ·, θ) is said to be a left
(resp., right) unit divisor if ∃y 6= θ ∈ X such that x · y = θ (resp. y · x = θ). A unit
divisor is an element of X which is both a left and a right unit divisors.

Proposition 2.2. Let (X, ∗, ·, θ) be a BM-semigroup. Then X satisfies the left (resp.,
right) cancellation law for the operation · if and only if X contains no left (resp.,
right) unit divisors.

Proof. Let X satisfies the left cancellation law for the operation · and suppose
x · y = θ where x 6= θ. Then x · y = θ = x · θ which implies y = θ. Similarly it
holds for the right case also. Thus X does not contain any left (resp., right) unit
divisors. Conversely, suppose X contains no left unit divisors and let x · y = x · z
for some x 6= θ. Then x · (y ∗ z) = (x · y) ∗ (x · z) = θ. Since X has no left unit
divisor, we get y ∗ z = θ which implies y = z. Hence left cancellation law holds.
Similarly, suppose X contains no right unit divisors and let y · x = z · x for some
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x 6= θ. Then (x ∗ y) · z = (x · z) ∗ (y · z) = θ. Since X has no right unit divisor, we
get y ∗ z = θ which implies y = z. Hence X satisfies the right cancellation law. �

Definition 2.4. A subset Y 6= φ of a BM-semigroup (X, ∗, ·, θ) is said to be a BMS-
subalgebra if a, b ∈ Y implies a ∗ b ∈ Y and a · b ∈ Y .

Proposition 2.3. Let (X, ∗, ·, θ) and (Y, ∗1, ·1, θ1) be two BM-semigroups and let Φ :

X → Y be a BM-semigroup homomorphism. Then K = ker(Φ) is a BMS-subalgebra
of X.

Proof. Let a, b ∈ K. Then Φ(a) = Φ(b) = θ1. So Φ(a · b) = Φ(a) ·Φ(b) = θ1 · θ1 = θ1.
Hence a ·b ∈ K. Similarly, Φ(a∗b) = Φ(a)∗Φ(b) = θ1∗θ1 = θ1. Hence a∗b ∈ K. �

Remark 2.1. As BM-algebras, (Z,−, 0) and (2Z,−, 0) are isomorphic under the map
Φ : Z→ 2Z with Φ(x) = 2x for x ∈ Z. But Φ is not a BM-semigroup homomorphism,
for Φ(x · y) = 2xy, while Φ(x) · Φ(y) = 2x2y = 4xy.

Theorem 2.1. The set End(X) of all endomorphisms of a BM-algebra X forms a
BM-semigroup under homomorphism addition and homomorphism multiplication.

Proof. Since the composition ◦ of two homomorphisms ofX into itself is again such
a homomorphism and since ◦ is associative, we can define function composition
◦ as the multiplication on End(X). Now, define a binary operation + on End(X)

as (ϕ + ψ)(x) = ϕ(x) ∗ ψ(x) for any ϕ, ψ ∈ End(X) and for each x ∈ X. Now let
ϕ, ψ, ξ ∈ End(X). Since

(ϕ+ ψ)(x ∗ y) = ϕ(x ∗ y) ∗ ψ(x ∗ y) = [ϕ(x) ∗ ϕ(y)] ∗ [ψ(x) ∗ ψ(y)]

= [ϕ(x) ∗ ψ(x)] ∗ [ϕ(y) ∗ ψ(y)]

= (ϕ+ ψ)(x) ∗ (ϕ+ ψ)(y) for all x, y ∈ X,

we get ϕ + ψ ∈ End(X). Define an endomorphism ϑ on X as ϑ(x) = θ for all
x ∈ X. Now, (ϕ+ ϑ)(x) = ϕ(x) ∗ ϑ(x) = ϕ(x) ∗ ϑ = ϕ(x) for all x ∈ X and

((ϕ+ ψ) + (ϕ+ ξ))(x) = (ϕ+ ψ)(x) ∗ (ϕ+ ξ)(x)

= [ϕ(x) ∗ ψ(x)] ∗ [ϕ(x) + ξ(x)]

= ξ(x) ∗ ψ(x) = (ξ + ψ)(x) for all x ∈ X.
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Hence (End(X),+, ϑ) is a BM-algebra. Now for ϕ, ψ, ξ ∈ End(X) and x ∈ X,

[ϕ ◦ (ψ + ξ)](x) = ϕ[(ψ + ξ)(x)]

= ϕ[ψ(x) ∗ ξ(x)]

= ϕ(ψ(x)) ∗ ϕ(ξ(x)) (since ϕ is a BM-homomorphism)

= (ϕ ◦ ψ)(x) ∗ (ϕ ◦ ξ)(x)

= [(ϕ ◦ ψ) + (ϕ ◦ ξ)](x),

and
[(ϕ+ ψ) ◦ ξ](x) = (ϕ+ ψ)(ξ(x))

= ϕ(ξ(x)) ∗ ψ(ξ(x))

= (ϕ ◦ ξ)(x) ∗ (ψ ◦ ξ)(x)

= [(ϕ ◦ ξ) + (ψ ◦ ξ)](x).

Thus the operation ◦ is distributive on left as well as right over the operation +.
Hence (End(X),+, ◦, ϑ) is a BM-semigroup. �

Definition 2.5. A non-empty subset I of a BM-semigroup (X, ∗, ·, θ) is called a left
(resp. right) BMS-ideal of X if it satisfies

(i) x · a ∈ I (resp. a · x ∈ I) whenever x ∈ X and a ∈ I;
(ii) for any x, y ∈ X, x ∗ y ∈ I and y ∈ I imply that x ∈ I.

I is said to be a BMS-ideal of BM-semigroup X if it is both left and right BMS-ideal
of X.

Remark 2.2. For any BM-semigroup X, the subset {θ} and X are always BMS-ideals
ofX. Also, if I is a left (resp. right) BMS-ideal of BM-semigroupX, then θ ∈ I. Hence
I is a BM-ideal of the underlying BM-algebra X.

Theorem 2.2. Let a mapping Φ : X → Y be an epimorphism of BM-semigroups.
Then we have the following:

(i) ker(Φ) is a BMS-ideal of X;
(ii) If I is a left (resp. right) BMS-ideal of X, then Φ(I) is a left (resp. right)

BMS-ideal of Y ;
(iii) If I ′ is a left (resp. right) BMS-ideal of Y , then Φ−1(I ′) is a left (resp. right)

BMS-ideal of X.

Proof. It is easily seen as similar the proofs of the ring theory. �
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Remark 2.3. Let (X, ∗, ·, θ) be a BM-semigroup and I be a BMS-ideal of X. For any
x, y ∈ X, define a binary relation ∼I on X as follows:

x ∼I y if and only if x ∗ y ∈ I and y ∗ x ∈ I.

Then ∼I is an equivalence relation on X. Denote the equivalence class containing x
by Ix and the set of equivalence classes in X by X/I. Then Iθ = I.

Theorem 2.3. If I is a BMS-ideal of a BM-semigroup (X, ∗, ·, θ), then (X/I, ∗∼, ·∼, Iθ)
is a BM-semigroup under the operations Ix ∗∼ Iy = Ix∗y and Ix ·∼ Iy = Ix·y for all
Ix, Iy ∈ X/I.

Proof. Clearly, (X/I, ∗∼, Iθ) is a BM-algebra. Also, ∗∼ and ·∼ are well defined since
I is a BMS-ideal and hence (X/I, ·∼) is a semigroup. Now, for any Ix, Iy, Iz ∈ X/I,
we get (Ix ∗∼ Iy) ·∼ Iz = Ix∗y ·∼ Iz = I(x∗y)·z = I(x·z)∗(y·z) = I(x·z) ∗∼ I(y·z) = (Ix ·∼ Iz)∗∼
(Iy ·∼ Iz). Similarly, Ix ·∼ (Iy ∗∼ Iz) = (Ix ·∼ Iy) ∗∼ (Ix ·∼ Iz). Thus (X/I, ∗∼, ·∼, Iθ) is
a BM-semigroup. �

Proposition 2.4. If I and J are BMS-ideals of a BM-semigroup X and I ⊂ J , then
J/I is a BMS-ideal of X/I.

Theorem 2.4. Let Φ : X → Y be a BM-homomorphism of BM-semigroups with
ker(Φ) = K. Then for any BMS-ideal I of X, we have I/(K ∩ I) ∼= Φ(I).

Proof. Clearly, J = K ∩ I is a BMS-ideal of I. Define a map ρ : I/J → Φ(I) by
ρ(Jx) = Φ(x) for all x ∈ I. Then for any Jx, Jy ∈ I/J ,

Jx = Jy ⇐⇒ x ∗ y, y ∗ x ∈ J,

⇐⇒ Φ(x ∗ y) = θ,Φ(y ∗ x) = θ,

⇐⇒ Φ(x) ∗∼ Φ(y) = θ,

⇐⇒ Φ(x) = Φ(y),

⇐⇒ ρ(Jx) = ρ(Jy)

Hence ρ is well defined and one-to-one. For all Jx, Jy ∈ I/J , we have

ρ(Jx ∗∼ Jy) = ρ(Jx∗y) = Φ(x ∗ y) = Φ(x) ∗ Φ(y) = ρ(Jx) ∗ ρ(Jy),

and
ρ(Jx ·∼ Jy) = ρ(Jx·y) = Φ(x · y) = Φ(x) · Φ(y) = ρ(Jx) · ρ(Jy).

Hence ρ is a BM-homomorphism of BM-semigroups. Also, Im(ρ) = {ρ(Jx)|x ∈
I} = {Φ(x)|x ∈ I} = Φ(I). Hence ρ is onto. Hence the proof. �
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Corollary 2.1. Let Φ : X → Y be a BM-epimorphism of BM-semigroups with
ker(Φ) = K. Then X/K ∼= Y .

Theorem 2.5. If Φ : X → Y be a BM-epimorphism of BM-semigroups and X is
Noetherian, then so is Y .

Proof. Let K = ker(Φ). By Corollary 2.1, X/K ∼= Y . By Proposition 2.4, every
BMS-ideal of X/K is of the form I/K, where I is a BMS-ideal of X with K ⊆ I.
Let I1/K ⊆ I2/K ⊆ · · · be any ascending chain of BMS-ideals in Y . Then K ⊆
I1 ⊆ I2 ⊆ · · · is an ascending chain of BMS-ideals of X. Since X is Noetherian,
we have In = In+1 = · · · for some natural number n. Hence we obtain In/K =

In+1/K = · · · . Hence Y is Noetherian. �
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