

Advances in Mathematics: Scientific Journal **9** (2020), no.12, 10699–10706 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.54

EXTENSION OF BM-ALGEBRA INTO AN ALGEBRAIC STRUCTURE WITH TWO BINARY OPERATIONS

JULIE THOMAS AND K. INDHIRA¹

ABSTRACT. In this article, we combine the notions of BM-algebra and semigroup to introduce a ring like structure with two binary operations, which is named as a "BM-semigroup". The concepts of left and right ideals of a BM-semigroup are also introduced and related properties are studied. Some results on homomorphism defined on a BM-semigroup are also given.

1. INTRODUCTION

Several researchers have considered different types of logical algebras (see [1]) and studied their characterizations. Here, we consider the algebraic structure - BM-algebra - introduced by Kim and Kim [2]. Megalai and Tamilarasi [3] renamed it as TM-algebra. Later on, many authors have considered different characterizations of BM-algebra ([6], [9], [10], [11]) and made fuzzifications to BM/TM-algebra ([4], [5], [7], [8]). In this article, we try to add one more binary operation to the BM-algebra and study its properties. For this, first let us see the basic definition of BM-algebra.

Definition 1.1. A BM-algebra is a triple $(X, *, \theta)$ where $X \neq \phi$ is a set with a fixed element θ and a binary operation *, satisfying the two conditions: (i) $x * \theta = x$ and (ii) (x * y) * (x * z) = z * y for all $x, y, z \in X$.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BM-algebra, BM-semigroup, BMS-ideal.

J. THOMAS AND K. INDHIRA

2. BM-SEMIGROUP

Definition 2.1. A (right) BM-semigroup $(X, *, \cdot, \theta)$ is a non-empty set together with two binary operations * and \cdot , defined on X such that the following axioms are satisfied:

- (i) $(X, *, \theta)$ is a BM-algebra
- (ii) (X, \cdot) is a semigroup
- (iii) The operation \cdot is distributive on right over the operation *: for all x, y, z in X, the right distributive law $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ hold.

Similarly, it is possible to define a left BM-semigroup by replacing the right distributive law (iii) by the corresponding left distributive law, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ for all x, y, z in X. If the operation \cdot is distributive on both sides (left as well as right) over the operation *, then we call X as a BM-semigroup.

Example 1. Let $X = \{\theta, a, b, c\}$. Define * and \cdot by the following Table 1. Then

TABLE 1

*	θ	a	b	С	•	θ	a	b	c
θ	θ	С	b	a	θ	θ	θ	θ	θ
a	a	θ	c	b	a	θ	b	θ	b
b	b	a	θ	c	b	θ	θ	θ	θ
c	c	b	a	θ	С	θ	b	θ	b

 $(X, *, \cdot, \theta)$ is a BM-semigroup.

Example 2. Let $Y = \{\theta', x, y, z\}$. Define *' and \cdot' by the following Table 2. Then

TABLE 2

*'	θ'	x	y	z	.′	θ'	x	y	z
θ'	θ'	x	y	z	θ'	θ'	θ'	θ'	θ'
x	x	θ'	z	y	x	θ'	x	y	z
y	y	z	θ'	x	y	θ'	x	y	z
z	z	y	x	θ'	z	θ'	θ'	θ'	θ'

 $(Y, *', \cdot', \theta')$ is a BM-semigroup.

Definition 2.2. Assume $(X, *, \cdot, \theta)$ and $(Y, *_1, \cdot_1, \theta_1)$ be two BM-semigroups. A mapping $\Phi : X \to Y$ is said to be a BM-semigroup homomorphism if $\Phi(a * b) = \Phi(a) *_1 \Phi(b)$ and $\Phi(a \cdot b) = \Phi(a) \cdot_1 \Phi(b)$ for all $a, b \in X$.

Example 3. Let $X = \{\theta, a, b, c\}$ and $Y = \{\theta', x, y, z\}$ be sets with cayley tables given in Example 1 and 2 respectively. Thus $(X, *, \cdot, \theta)$ and $(Y, *', \cdot', \theta')$ are BM-semigroups. Define a map $\Phi : X \to Y$ by

$$\Phi(p) = \begin{cases} \theta', & if \ p = \theta, b \\ z, & if \ p = a, c. \end{cases}$$

Then Φ is a BM-semigroup homomorphism. Define $\rho: X \to Y$ by

$$\rho(p) = \begin{cases} \theta', & \text{if } p = \theta, b \\ x, & \text{if } p = a, c \end{cases}$$

is a BM-homomorphism, but not a BM-semigroup homomorphism since $\rho(a \cdot c) = \rho(b) = \theta$ but $\rho(a) \cdot \rho(c) = x \cdot x = x$.

Proposition 2.1. Let $(X, *, \cdot, \theta)$ be a BM-semigroup. Then $x \cdot \theta = \theta \cdot x = \theta, \forall x \in X$.

Proof. Let $x \in X$. Then $x \cdot \theta = x \cdot (\theta * \theta) = (x \cdot \theta) * (x \cdot \theta) = \theta$ and $\theta \cdot x = (\theta * \theta) \cdot x = (\theta \cdot x) * (\theta \cdot x) = \theta$.

Definition 2.3. An element $x \neq \theta$ in a BM-semigroup $(X, *, \cdot, \theta)$ is said to be a left (resp., right) unit divisor if $\exists y \neq \theta \in X$ such that $x \cdot y = \theta$ (resp. $y \cdot x = \theta$). A unit divisor is an element of X which is both a left and a right unit divisors.

Proposition 2.2. Let $(X, *, \cdot, \theta)$ be a BM-semigroup. Then X satisfies the left (resp., right) cancellation law for the operation \cdot if and only if X contains no left (resp., right) unit divisors.

Proof. Let X satisfies the left cancellation law for the operation \cdot and suppose $x \cdot y = \theta$ where $x \neq \theta$. Then $x \cdot y = \theta = x \cdot \theta$ which implies $y = \theta$. Similarly it holds for the right case also. Thus X does not contain any left (resp., right) unit divisors. Conversely, suppose X contains no left unit divisors and let $x \cdot y = x \cdot z$ for some $x \neq \theta$. Then $x \cdot (y * z) = (x \cdot y) * (x \cdot z) = \theta$. Since X has no left unit divisor, we get $y * z = \theta$ which implies y = z. Hence left cancellation law holds. Similarly, suppose X contains no right unit divisors and let $y \cdot x = z \cdot x$ for some

 $x \neq \theta$. Then $(x * y) \cdot z = (x \cdot z) * (y \cdot z) = \theta$. Since X has no right unit divisor, we get $y * z = \theta$ which implies y = z. Hence X satisfies the right cancellation law. \Box

Definition 2.4. A subset $Y \neq \phi$ of a BM-semigroup $(X, *, \cdot, \theta)$ is said to be a BMSsubalgebra if $a, b \in Y$ implies $a * b \in Y$ and $a \cdot b \in Y$.

Proposition 2.3. Let $(X, *, \cdot, \theta)$ and $(Y, *_1, \cdot_1, \theta_1)$ be two BM-semigroups and let Φ : $X \to Y$ be a BM-semigroup homomorphism. Then $K = ker(\Phi)$ is a BMS-subalgebra of X.

Proof. Let $a, b \in K$. Then $\Phi(a) = \Phi(b) = \theta_1$. So $\Phi(a \cdot b) = \Phi(a) \cdot \Phi(b) = \theta_1 \cdot \theta_1 = \theta_1$. Hence $a \cdot b \in K$. Similarly, $\Phi(a * b) = \Phi(a) * \Phi(b) = \theta_1 * \theta_1 = \theta_1$. Hence $a * b \in K$. \Box

Remark 2.1. As BM-algebras, $(\mathbb{Z}, -, 0)$ and $(2\mathbb{Z}, -, 0)$ are isomorphic under the map $\Phi : \mathbb{Z} \to 2\mathbb{Z}$ with $\Phi(x) = 2x$ for $x \in \mathbb{Z}$. But Φ is not a BM-semigroup homomorphism, for $\Phi(x \cdot y) = 2xy$, while $\Phi(x) \cdot \Phi(y) = 2x2y = 4xy$.

Theorem 2.1. The set End(X) of all endomorphisms of a BM-algebra X forms a BM-semigroup under homomorphism addition and homomorphism multiplication.

Proof. Since the composition \circ of two homomorphisms of X into itself is again such a homomorphism and since \circ is associative, we can define function composition \circ as the multiplication on End(X). Now, define a binary operation + on End(X) as $(\varphi + \psi)(x) = \varphi(x) * \psi(x)$ for any $\varphi, \psi \in End(X)$ and for each $x \in X$. Now let $\varphi, \psi, \xi \in End(X)$. Since

$$\begin{aligned} (\varphi + \psi)(x * y) &= \varphi(x * y) * \psi(x * y) = [\varphi(x) * \varphi(y)] * [\psi(x) * \psi(y)] \\ &= [\varphi(x) * \psi(x)] * [\varphi(y) * \psi(y)] \\ &= (\varphi + \psi)(x) * (\varphi + \psi)(y) \text{ for all } x, y \in X, \end{aligned}$$

we get $\varphi + \psi \in End(X)$. Define an endomorphism ϑ on X as $\vartheta(x) = \theta$ for all $x \in X$. Now, $(\varphi + \vartheta)(x) = \varphi(x) * \vartheta(x) = \varphi(x) * \vartheta = \varphi(x)$ for all $x \in X$ and

$$((\varphi + \psi) + (\varphi + \xi))(x) = (\varphi + \psi)(x) * (\varphi + \xi)(x)$$
$$= [\varphi(x) * \psi(x)] * [\varphi(x) + \xi(x)]$$
$$= \xi(x) * \psi(x) = (\xi + \psi)(x) \text{ for all } x \in X.$$

Hence $(End(X), +, \vartheta)$ is a BM-algebra. Now for $\varphi, \psi, \xi \in End(X)$ and $x \in X$,

$$\begin{split} [\varphi \circ (\psi + \xi)](x) &= \varphi[(\psi + \xi)(x)] \\ &= \varphi[\psi(x) * \xi(x)] \\ &= \varphi(\psi(x)) * \varphi(\xi(x)) \text{ (since } \varphi \text{ is a BM-homomorphism)} \\ &= (\varphi \circ \psi)(x) * (\varphi \circ \xi)(x) \\ &= [(\varphi \circ \psi) + (\varphi \circ \xi)](x), \end{split}$$

and

$$[(\varphi + \psi) \circ \xi](x) = (\varphi + \psi)(\xi(x))$$
$$= \varphi(\xi(x)) * \psi(\xi(x))$$
$$= (\varphi \circ \xi)(x) * (\psi \circ \xi)(x)$$
$$= [(\varphi \circ \xi) + (\psi \circ \xi)](x).$$

Thus the operation \circ is distributive on left as well as right over the operation +. Hence $(End(X), +, \circ, \vartheta)$ is a BM-semigroup.

Definition 2.5. A non-empty subset I of a BM-semigroup $(X, *, \cdot, \theta)$ is called a left (resp. right) BMS-ideal of X if it satisfies

(i) $x \cdot a \in I$ (resp. $a \cdot x \in I$) whenever $x \in X$ and $a \in I$;

(ii) for any $x, y \in X$, $x * y \in I$ and $y \in I$ imply that $x \in I$.

I is said to be a BMS-ideal of BM-semigroup X if it is both left and right BMS-ideal of X.

Remark 2.2. For any BM-semigroup X, the subset $\{\theta\}$ and X are always BMS-ideals of X. Also, if I is a left (resp. right) BMS-ideal of BM-semigroup X, then $\theta \in I$. Hence I is a BM-ideal of the underlying BM-algebra X.

Theorem 2.2. Let a mapping $\Phi : X \to Y$ be an epimorphism of BM-semigroups. Then we have the following:

- (i) $ker(\Phi)$ is a BMS-ideal of X;
- (ii) If I is a left (resp. right) BMS-ideal of X, then $\Phi(I)$ is a left (resp. right) BMS-ideal of Y;
- (iii) If I' is a left (resp. right) BMS-ideal of Y, then $\Phi^{-1}(I')$ is a left (resp. right) BMS-ideal of X.

Proof. It is easily seen as similar the proofs of the ring theory.

Remark 2.3. Let $(X, *, \cdot, \theta)$ be a BM-semigroup and I be a BMS-ideal of X. For any $x, y \in X$, define a binary relation \sim_I on X as follows:

 $x \sim_I y$ if and only if $x * y \in I$ and $y * x \in I$.

Then \sim_I is an equivalence relation on X. Denote the equivalence class containing x by I_x and the set of equivalence classes in X by X/I. Then $I_{\theta} = I$.

Theorem 2.3. If I is a BMS-ideal of a BM-semigroup $(X, *, \cdot, \theta)$, then $(X/I, *_{\sim}, \cdot_{\sim}, I_{\theta})$ is a BM-semigroup under the operations $I_x *_{\sim} I_y = I_{x*y}$ and $I_x \cdot_{\sim} I_y = I_{x\cdot y}$ for all $I_x, I_y \in X/I$.

Proof. Clearly, $(X/I, *_{\sim}, I_{\theta})$ is a BM-algebra. Also, $*_{\sim}$ and \cdot_{\sim} are well defined since I is a BMS-ideal and hence $(X/I, \cdot_{\sim})$ is a semigroup. Now, for any $I_x, I_y, I_z \in X/I$, we get $(I_x *_{\sim} I_y) \cdot_{\sim} I_z = I_{x*y} \cdot_{\sim} I_z = I_{(x*y)\cdot z} = I_{(x\cdot z)*(y\cdot z)} = I_{(x\cdot z)} *_{\sim} I_{(y\cdot z)} = (I_x \cdot_{\sim} I_z) *_{\sim} (I_y \cdot_{\sim} I_z)$. Similarly, $I_x \cdot_{\sim} (I_y *_{\sim} I_z) = (I_x \cdot_{\sim} I_y) *_{\sim} (I_x \cdot_{\sim} I_z)$. Thus $(X/I, *_{\sim}, \cdot_{\sim}, I_{\theta})$ is a BM-semigroup.

Proposition 2.4. If I and J are BMS-ideals of a BM-semigroup X and $I \subset J$, then J/I is a BMS-ideal of X/I.

Theorem 2.4. Let $\Phi : X \to Y$ be a BM-homomorphism of BM-semigroups with $ker(\Phi) = K$. Then for any BMS-ideal I of X, we have $I/(K \cap I) \cong \Phi(I)$.

Proof. Clearly, $J = K \cap I$ is a BMS-ideal of I. Define a map $\rho : I/J \to \Phi(I)$ by $\rho(J_x) = \Phi(x)$ for all $x \in I$. Then for any $J_x, J_y \in I/J$,

$$J_x = J_y \iff x * y, y * x \in J,$$

$$\iff \Phi(x * y) = \theta, \Phi(y * x) = \theta,$$

$$\iff \Phi(x) *_{\sim} \Phi(y) = \theta,$$

$$\iff \Phi(x) = \Phi(y),$$

$$\iff \rho(J_x) = \rho(J_y)$$

Hence ρ is well defined and one-to-one. For all $J_x, J_y \in I/J$, we have

$$\rho(J_x *_{\sim} J_y) = \rho(J_{x*y}) = \Phi(x*y) = \Phi(x) * \Phi(y) = \rho(J_x) * \rho(J_y),$$

and

$$\rho(J_x \cdot J_y) = \rho(J_x \cdot y) = \Phi(x \cdot y) = \Phi(x) \cdot \Phi(y) = \rho(J_x) \cdot \rho(J_y).$$

Hence ρ is a BM-homomorphism of BM-semigroups. Also, $Im(\rho) = \{\rho(J_x) | x \in I\} = \{\Phi(x) | x \in I\} = \Phi(I)$. Hence ρ is onto. Hence the proof. \Box

Corollary 2.1. Let $\Phi : X \to Y$ be a BM-epimorphism of BM-semigroups with $ker(\Phi) = K$. Then $X/K \cong Y$.

Theorem 2.5. If $\Phi : X \to Y$ be a BM-epimorphism of BM-semigroups and X is Noetherian, then so is Y.

Proof. Let $K = ker(\Phi)$. By Corollary 2.1, $X/K \cong Y$. By Proposition 2.4, every BMS-ideal of X/K is of the form I/K, where I is a BMS-ideal of X with $K \subseteq I$. Let $I_1/K \subseteq I_2/K \subseteq \cdots$ be any ascending chain of BMS-ideals in Y. Then $K \subseteq I_1 \subseteq I_2 \subseteq \cdots$ is an ascending chain of BMS-ideals of X. Since X is Noetherian, we have $I_n = I_{n+1} = \cdots$ for some natural number n. Hence we obtain $I_n/K = I_{n+1}/K = \cdots$. Hence Y is Noetherian.

REFERENCES

- M. KAVIYARASU, K. INDHIRA: *Review on BCI/BCK-algebras and development*, International Journal of Pure and Applied Mathematics, 117(11) (2017), 377–383.
- [2] C. B. KIM, H. S. KIM: *On BM-algebras*, Scientiae Mathematicae Japonicae, **63** (3) (2006), 421–428.
- [3] K. MEGALAI, A. TAMILARASI: *TM-algebra an introduction*, IJCA, Special Issue on CASCT., (2010), 17–23.
- [4] K. MEGALAI, A. TAMILARASI: *Fuzzy subalgebras and fuzzy T-ideals in TM-algebra*, Journal of Mathematics and Statistics, **7**(2) (2011), 107–111.
- [5] S. M. MOSTAFA, M. A. NABY, O. R. ELGENDY: *Fuzzy TM-ideals of TM-algebras*, Journal of American Science, 7(9) (2011), 17–21.
- [6] C. PRABPAYAK: Some Homomorphism Properties of TM-algebras, Applied Mechanics and Materials, 866 (2017), 406–409.
- [7] A. B. SAEID: *Fuzzy BM-algebras*, Indian Journal of Science and Technology, **3**(5) (2010), 523–529.
- [8] J. THOMAS, K. INDHIRA, V. M. CHANDRASEKARAN: T-normed fuzzy TM-subalgebra of TM-algebras, International Journal of Computational Intelligence Systems, 12(2) (2019), 706–712.
- [9] J. THOMAS, K. INDHIRA, V. M. CHANDRASEKARAN: *BM-algebra with quasi-valuation map*, AIP Conference Proceedings, **2177**(1) 2019, 020029-1–020029-5.
- [10] A. WALENDZIAK: BM-algebras and related topics, Mathematica Slovaca, 64(5) (2014), 1075– 1082.
- [11] A. WALENDZIAK: BG/BF₁/B/BM-algebras are congruence permutable, Mathematica Aeterna, 5(2) (2015), 351–356.

J. THOMAS AND K. INDHIRA

10706

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *Email address*: julietp369@gmail.com

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *Email address*: kindhira@vit.ac.in