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A MODIFIED BFGS METHOD VIA NEW RATIONAL APPROXIMATION
MODEL FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS AND

ITS APPLICATION

KAMILU KAMFA 1, SULAIMAN IBRAHIM, SULIADI FIRDAUS SUFAHANI, R. B. YUNUS,
AND MUSTAFA MAMAT

ABSTRACT. In this paper we present a new BFGS method for solving uncon-
strained optimization problems, using a modified rational approximation model.
The idea is to improve the Barzilai and Borwein approximation (BBA) [27] by
incorporating a new parameter. Under certain conditions the global convergent
result of the proposed method is established. The numerical results have shown
that, the new method is promising and outperforms other classical methods. Be-
sides, the new method was used to solve data from Covid-19 and the performance
was compared with Least Square Method (LSM). The outcome has shown that the
new method has less relative error and can be used in place of LSM in regression
analysis.

1. INTRODUCTION

For decade, the problem of finding the solution of unconstrained optimization
has received a lot of attention, from different researches [11,19,24]. This is, due
to the important role it plays, in many areas of human endeavors, such as science
engineering and economics. Generally, this kind of problem is formulated as
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(1.1) min{f(x) : x ∈ Rn},

where f : Rn → R is a nonlinear function. The general iterative procedure for
solving (1.1) is

xk+1 = xk + αkdk,(1.2)

where xk+1 and xk are the previous and current iteration point, respectively; and
αk is the step size obtained using either an exact or inexact line search [11]. There
are various inexact line searches. Popular among them is the Wolfe line search [9].
This line search provides a better step length compared to other procedures [5].
The line search is formulated as,

f(xk + αkdk) ≤ f(xk) + µαk∇f(xk)Tdk
∇f(xk + αkdk)

Tdk ≥ σ∇f(xk)Tdk,(1.3)

with 0 < µ < σ < 1. Here dk is the search direction, it ensure a sufficient decrease
of the objective function [3]. Numerous search direction have been presented by
many researchers, like Newton method, Quasi Newton and Conjugate gradient
method [3,5,12,24]. The Quasi-Newton method was developed to reduce the cost
of using the Newton direction [12, 13]. This search direction uses different ap-
proaches such as Davido-Fletcher-Powell (DFP), Broyden family, Symmetric rank
one (SR1) and BFGS formula to approximate the Hessian matrix in the Newton it-
eration formula see [10,13,14,15]. Among all the variant of quasi newton method,
the BFGS update is consider to be the best [25]. This update utilizes the identity
matrix as the first approximation to the Hessian matrix, while in the subsequent
iteration it uses the following approximation.

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
,

where sk = xk+1 − xk and yk = gk+1 − gk. In each iterations Bk, must satisfy the
standard secant condition [26]

Bk+1sk = yk.(1.4)

For decade, different researchers, have provide the global convergent of BFGS
method, when the objective function is convex and the line search is exact line
search [17]. In case of non convex function convergence could be established
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when the line is search is inexact [17]. Discussion on this is still open. Recently,
authors like Deng et al (2018), focused on proving the global convergent of BFGS
method based on Wolfe line search, this is due to its good numerical performance
compared to exact line search.

Several researchers have modified the standard secant equation (1.4) in order
to improve the performance of BFGS method, some of the improvement includes;
Al-Baali et al. [4] (1998), Zhang et al. [16] (1999), Wu and Liang [10] (2014),
and recently Babaie-Kafaki [6] (2013). The main idea behind all, this improve-
ment is to approximate the curvature of the objective function along the search
direction more accurately, then in (1.4) [26]. Other disadvantage of (1.4) is, it
only employs the gradient information, whereas the function and distance infor-
mation were ignored [26]. To overcome this shortcoming researchers, like Wei et
al (2006), Yuan and Wei (2010) have respectively present a new secant equation
which utilized the function as well as gradient information at each stage. Leong
et al. also gives a weaker secant equation as follow

sk−1Bk−1sk−1 = yk.

Recently, Saheya et al. [21] proposed a new rational approximation model (RAM).
This model was designed to improve the performance of the classical newton
method while keeping it quadratic convergence rate. However, the model consists
of computing the Jacobi matrix in every step. Because it was meant for solving
system of nonlinear equations. To over comes this shortcoming Kamilu et al. have
proposed number of approximation to reduce the cost of computing the Jacobian,
detail can be found in [19,20]. Furthermore, the model has not been used to solve
unconstrained optimization problems.

Motivated by this, in this paper we would use the RAM model, which consist of
BB approximation and additional parameter, to approximate the hessian matrix.
The idea is to improve the BB approximation, whenever it failed to give a descent
dire action.

The paper is structured as follows, in section 2 we present the derivation of the
new BFGS search direction as well as give the description of our new algorithm.
Global convergence is presented in section 3. Section 4 consists of the numerical
result generated by testing the new method on some benchmark test problems.
Lastly, we present the application of the new method in regression analysis and
the conclusion remark.
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2. NEW METHOD

In this section, we present the new algorithm for solving (1.1), namely, A Mod-
ified BFGS Method via a New Rational Approximation Model for Solving Uncon-
strained Optimization Problems (MBFGS-RAM). This new method utilized the
RAM approximation which consist of BB approximation and additional parame-
ter to improve the iteration procedure in (1.2). Below we gives details of our new
method.

Saheya et al. [21] improved the RALND function proposed by Sui et al [20,
19], so that it can be used to solve system of nonlinear equation. RALND function
required finding function derivative in each step. However the model was never
used to solve unconstrained optimization problems. In this paper we design a new
RALND function. Our approach is similar to [21].

Let define the RALND function with the same horizon vector bk for all nonlinear
functions, gi(x), i = 1, 2, · · · , n at xk and approximate (1.1) by Rational function
with linear denominator and numerator we get

g(xk + s) ≈ R(xk + s) = gk +
Bks

1 + bTk s
= 0,(2.1)

where bk, xk ∈ Rn, sk = xk − xk−1 and xk is the current point. Equation (2.1) is
quit different from RALND function and approximate function in [21]. Because,
this new approximation (2.1) use the same vector bk for all function Fi(x), i =
1, 2, · · · , n at each iteration step xk and it does not require any gradient or hessian
of the objective function at k iteration.

Using linearsation idea, we can derive a new iteration formula as follows, let
ωk = Bkβk

ωksk = −gk,

where βk = ykb
T
k Suppose Bkβk is define, then, using similar approach as in (1.2)

we have

xk+1 = xk − αkdk,(2.2)

where dk = Bkβk is the new RAM which will served as new Hessian approximation,
updated in each step. Now we define ykbk. It is worth important to mention that
at each step bk is updated by requiring the following interpolation condition

R(xk−1) = g(xk−1),(2.3)



A MODIFIED BFGS METHOD VIA NEW RATIONAL APPROXIMATION . . . 10775

with this the search direction in (2.2) would depend on the new RAM which will
consist of information the gradient values of the preceding point g(xk−1) as well
as the current point.

Using the conic model [19, 21], equation (2.1) and (2.3) become,

gk−1 = gk −
B+

k sk−1
1 + bTk sk−1

.(2.4)

Let the denominator of (2.4) be αk i.e. αk = 1− bTk sk−1 and yk−1 = g(xk)−g(xk−1),
then, (2.4) become,

αkyk−1 = B+
k sk−1.

Thus

αk =
yTk−1B

+
k sk−1

yTk−1yk−1
.(2.5)

From (2.1) we can write the vector bk as follows

bk =
(1− αk)ck
cTk sk−1

.(2.6)

For any value of ck ∈ Rn such that cTk sk−1 6= 0. Assuming ck = sk−1, then (2.6)
become

bk =
(1− αk)sk−1
sTk−1sk−1

=
yk−1(yk−1 −B+

k sk−1)s
T
k−1

(yTk−1yk−1)(s
T
k−1sk−1)

,(2.7)

with (2.5) and (2.7) we have a new horizon vector gkbTk using similar linearisation
approach (1.2)

ykb
T
k =

(1− αk)sk−1
sTk−1sk−1

=
yk−1(yk−1 −B+

k sk−1)

yTk−1yk−1

sTk−1yk

sTk−1sk−1
.

In what follows we present our new algorithm.

Algorithm 1: (MBFGS-RAM)

Initialization, Given x0, let β0 = I for k = 0 choose ε0.
Step 1: Compute g(x0) set d0 = −β0gk, ε = ε0 and k = 0.
Step 2: If ‖gk‖ ≤ ε then stop.
Step 3: Compute βk+1 = yk+1b

T
k+1 and dk+1 by

ykb
T
k =

yTk−1(yk−1 −B+
k sk−1)s

T
k−1yk

yTk−1yk−1 s
T
k−1sk−1

,
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dk+1 =

−βkgk if sTk sk ≥ 0

−(θk + βk)gk otherwise
.

B+
k is updated using B+

k+1 =
sTk yk
sTk sk

and θk =
sTk sk
sTk yk

.
Step 4: Compute αk using (1.3) and update xk+1 using (1.2).
Step 5: Set k = k + 1. Go to Step 2.

Unlike in BB method, MBFGS-RAM method utilizes a new approximation which
consist of the RAM and BB approximation, based on the Wolfe line search

3. CONVERGENCE ANALYSIS OF THE NEW METHODS

In this section we present the global convergence of MBFGS-RAM method based
on the Wolfe line search. For an algorithm to convergence the following assump-
tion are important All the proof will be supported with Numerical results gener-
ated using different benchmark problems.

Assumption 1.

(1) The level set L = {x | f(x) ≤ f(x0)} is bounded with x0 as initial point for
Algorithm 1.

(2) The objective function f is twice continuously differentiable and there is a
constant M > 0, such as

‖G(x)−G(y)‖ ≤M‖x− y‖, x, y ∈ L.

Now following the same way as in [15,17] with assumption that βk is a good
approximation to G(x) at xk we add the following Assumption.

Assumption 2.
Assuming the βk is a good approximation to G(x) at xk, i.e,

‖βk −G(x)‖ ≤ εk,

where εk ∈ (0, 1) similarly, we have

‖βk‖ − ‖G(xk)‖ ≤ ‖βk −G(xk)‖ ≤ εk.

Therefore, we can give

‖βk‖ ≤ σ, ∀k ≥ 0.



A MODIFIED BFGS METHOD VIA NEW RATIONAL APPROXIMATION . . . 10777

Now with Assumption 1 and line search condition (1.3) the following equation is
true

lim
k→∞

f(xk) = f(x∗).(3.1)

Before proving the convergence of Algorithm 1, we also need the following lemma.

Lemma 3.1. Let f satisfies the two assumption above and xk be generated by the
algorithm 1 there exist a constant c1 and c2 such that

‖θk + βksk‖ ≤ ‖Bksk‖ ≤ c1‖sk‖ and sTk θk + βksk ≥ sTkBksk ≥ c2‖sk‖2(3.2)

for large number k. Then, we have,

lim
k→∞

inf g(xk) = 0.(3.3)

Proof. Suppose we change sk with dk then, sk = αkdk, is true holds by (3.2). Also
from (3.2) and the relation gk = (θk + βk)dk = Bkdk we have

dTk (θk + βk)dk ≥ dTkBkdk ≥ c2‖dk‖2 and c2‖dk‖ ≤ ‖gk‖ ≤ c1‖dk‖.(3.4)

Let ω be the set of indices k for which (3.2) is true. Based on the second condition
of Wolfe line search and Assumption 2, we have

Mαk‖dk‖2 ≥ (gk+1 − gk)Tdk ≥ −(1− σ2)gTk dk.(3.5)

This means that for any k ∈ ω,

αk ≥
−(1− σ2)gTk dk

M‖dk‖2
=

(1− σ2)dTk (θk + βk)dk
M‖dk‖2

=
(1− σ2)dTkBkdk

M‖dk‖2
≥ (1− σ2)c2

M
.

(3.6)

In addition, based on (3.1), we get
∞∑
k=1

(fk − fk+1) = lim
N→∞

N∑
k=1

(fk − fk+1) = lim
N→∞

f1 − fN = f1 − f ∗,

which gives
∞∑
k=1

(fk − fk+1) <∞.

Based on the first condition of Wolfe line search (1.3) leads to

lim
k∈ω, k→∞

dTk (θk + βk)dk = lim
k∈ω, k→∞

dTkBkdk = lim
k∈ω, k→∞

−gTk dk = 0,

which along with (3.4) give rise to (3.3). �
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Theorem 3.1. (Global convergence) Let f satisfy the assumption 1 and 2 respectively,
and {xk} be generated using Algorithm 1. Then, we have

lim
k→∞

inf gk = 0.(3.7)

Proof. Based on Lemma 3.1 it is enough to show that condition (2.5) is true for
infinitely many k. Using (3.1), we have

‖(θk + βk)sk‖ ≤ ‖Bksk‖ ≤ ‖Bk‖‖sk‖ ≤ σ‖sk‖.(3.8)

from Algorithm, assuming Bk is positive definite. Then by (3.2),

sTk θk + βksk ≥ sTkBksk ≥ c2‖sk‖2.(3.9)

Therefore, Lemma 3.1 complete the proof. �

4. NUMERICAL RESULTS

In this section, we present the numerical performance of MBFGS-RAM. We com-
pared MBFGS-RAM with BB and classical BFGS methods in [7,26] respectively. We
made use of the following benchmark test problems by Andrei [1,25], to test the
efficiency and robustness of the methods.

The code was written on PC computer Intel core i3-3217u 4GB DDR3 Memory
500 GB HDD using a Matlab R2015b software.we choose the ‖gk‖ ≤ ε as our stoop-
ing condition or when the number of iteration exceed 1000 and report the method
as failed. A popular performance profile, introduced by Dolan and More [2], was
employed to analyses the numerical results. This profile, gives the performance of
a solver efficiency and probability of success in a concise way.

Figure 1 and 2 shows that, MBFGS-RAM method is effective with a good nu-
merical performance, that is, why, its curves appear at top and reach 1. BB and
BFGS method have good convergent rate, but there numerical performance is not
as good MBFGS-RAM. Hence, there curves appears below with 0.33 and 0.83 suc-
cess respectively in term of number of iteration. The performance of MBFGS-RAM
method is not surprising because it required a modified RAM, which keeps it, from
going to a non-decent search direction as in the case of BB method.
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TABLE 1. A list of all the test problems

Test problem n−dimension

Six-hump camel back 2
Booth 2
Treccani 2
Zettle 2
Hager Function 2,4,10
Extended Penalty 2,4,10,50,100
Raydan 2 function 2,4,10,100
Generalised Quartic 2,4,100
Fletcher 2,4,10,100,500
Diagonal 4 2,4,10,100,500
Quadratic QF2 2,4,10,100,500
Extended Maratos 2,4,100,500,1000
Extended shallow 2,4,10,100,500,1000
Extended Beale 2,4,10,100,500,1000
Extended Trigonometry 2,4,100,500,1000
Extended Denschnb 2,4,100,500,1000

FIGURE 1. Performance Profile Based on the Number of Iteration
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FIGURE 2. Performance Profile Based on CPU Time

5. APPLICATION IN REGRESSION ANALYSIS

Regression Analysis is a statistical technique used to describe a relationship
among different variables [28]. These variables are of two types, the dependent
and independent variable. A simple regression analysis consist of two variable, Y
and X, where Y is called a target variable and X is called a regressor. Further-
more, when solving real life problems, this kind of method may involve three or
more variables. A general mathematical expression of a regression model is

y = g(x1, x2, x3, ·, xr + ε),(5.1)

where ε stands for error and r > 0.
The main idea when solving a regression model is to find a regression line. This

line can be linear in a simple case or nonlinear. There are various approaches of
finding this line [23]. Popular among them is the least square method. Detail can
be found in [22,23]. In this paper, we consider a set of data from the number of
infection and death by Covid-19 in Nigeria. The data is transformed into a lin-
ear and quadratic regression model. Both models were obtained with the help of
Matlab software. We applied the MBFGS-RAM to solve all the models the perfor-
mance is then compared with the LSM. Table 2 present the data. It was retrieve
from Nigerian center of diseases.
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TABLE 2. A Data from Covid-19 Number OF Infections and Death in Nigeria

Number of
data x

Data Number of Infections y1 Number of Death y2

1 07-Aug 443 6
2 08-Aug 453 6
3 09-Aug 437 3
4 10-Aug 290 5
5 11-Aug 423 6
6 12-Aug 453 0
7 13-Aug 373 10
8 14-Aug 329 7
9 15-Aug 325 1

For each of the models we calculate the relative error using the following for-
mula

Realtive Error =
|exact value− approximate value|

|exact value|
.(5.2)

At the end, we consider the regression model with less relative error, to be more
efficient. In what follows, Table 3 presents the linear and quadratic least square
method, for the number infections and death respectively.

TABLE 3. Approximation Function in Respect of Infections and
Death Using LSM

Least Square method Result Approximation Function

Linear (Infec) y = 459.194444444444 - 13.483333333333 x
Linear (Death) y = 5.555555555556 - 0.133333333333 x

Quadratic (Infec) y = 447.428571428572 - 7.065584415584 x -
0.0641774891775 x2

Quadratic (Death) y = 5.119047619 + 0.104761905 x - 0.023809524 x2

The linear and quadratic model are then used to approximate the corresponding
number of infections and Death. Next, using (5.2) we present the sum and average
error for each of the model in Table 4. Detail of how we arrived at table can be
found in [23,22].



10782 K. KAMFA, S. IBRAHIM, S. F. SUFAHANI, R. B. YUNUS, AND M. MAMAT

TABLE 4. A Relative error in case of Infections and Death Using LSM

Linear Relative Error Quadratic Relative Error

Sum of Error (Infec) 0.8592669242 1.0577542783
Average Error (Infec) 0.0954741027 0.1175282531
Sum of Error (Death) 5.3750264579 5.2223809412
Average Error (Death) 0.6718783072 0.6527976176

In the other hand, the set of the data in Table 2 was transformed into an uncon-
strained linear and quadratic regression mode using the following approach:

min f(x) =
2∑
n

{yi − a(1, x1)T}2 (a ∈ R2),(5.3)

min f(x) =
3∑
n

{yi − a(1, x1x2)T}2 (a ∈ R3).(5.4)

And the resulting function is solved using algorithm 1. The out come is pre-
sented in Table 5.

TABLE 5. Approximation Function in Respect of Infections and
Death Using MBFGS-RAM

MBFGS-RAM Method Result Approximation Function

Linear (Infec) y = 459.19434432315 - 13.4833173890732 x
Linear (Death) y = 5.55460481028 - 0.1331804609291 x

Quadratic (Infec) y = 447.42857142857 - 7.0655844155847 x -
0.6417748917750 x2

Quadratic (Death) y = 5.11045258237 + 0.184759943115 x -
0.0241402989881 x2

And the corresponding relative error using (5.2) is presented in Table 6.
Based on Table 4 and 6, the linear and quadratic model (Infections) solved by

MBFGS-RAM method has a less relative error compare to the least square method
(LSM). Even though, the quadratic model (Death) for MBFGS-RAM has higher rel-
ative error than LSM, however, the new model is comparable and a good method
in describing the data set in Table 2. As a result, the Linear and Quadratic model
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TABLE 6. A Relative error in case of Infections and Death Using
MBFGS-RAM

Linear Relative Error Quadratic Relative Error

Sum of Error (Infec) 0.85926661232 0.82676522675137
Average Error (Infec) 0.0954741020 0.09186280297237
Sum of Error (Death) 5.3750103836 5.80293189611362
Average Error (Death) 0.6717300479 0.72536648701420

(Infections) and linear (Death) are good methods in estimating the number of
infection and death for next day. In general, the new method can serve as an
alternative to LSM.

6. CONCLUSION

In this paper, we present a new algorithm for solving unconstrained optimiza-
tion problems. It is a variant of Quasi newton method that utilize the modified
RAM which consist of BB approximation formula and an additional parameter to
form a new search direction based on Wolfe line search. Different standard test
function have been used to generate the numerical results. The outcomes shows
that MBFGS-RAM is efficient, reliable and effective. In addition, the MBFGS-RAM
is used to solve the data set from Covid-19 in Nigeria. And the performance is
attractive.
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