ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.12, 10815–10821 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.65

A NOTE ON VERTEX-EDGE DOMINATING COLORING

R. MADHIYALAGAN¹ AND A. WILSONBASKAR

ABSTRACT. A vertex u in a graph is said to *ve-dominate* an edge e = vw if $u \in \{v, w\}$ or $uv \in E(G)$ or $uw \in E(G)$. An edge coloring is said to be a ve-dominating if no two edges ve - dominated by a single vertex receive the same color. The minimum number of colors required for a ve - dominating coloring of a graph G is called *ve* - *chromatic number* of G and is denoted by $\chi_{ve}(G)$. In this paper we find ve - chromatic number for special type of graph, called necklace.

1. INTRODUCTION

Let G = (V, E) be a non-trivial connected graph of finite order. A vertex v in a graph is said to *ve-dominate* an edge e = uw if either $v \in \{u, w\}$ or $vu \in E(G)$ or $vw \in E(G)$. A subset $D \subseteq V(G)$ is said to be a *ve - dominating set* of a graph G if every edge in the graph is dominated by a vertex in D. The minimum cardinality of a *ve - dominating set* of a graph is called *ve - domination number* of the graph and is denoted by $\gamma_{ve}(G)$. The study of *ve* - dominating coloring if the edges *ve* - dominated by a single vertex receive different colors. The minimum number of colors required for a *ve* - dominating coloring of a graph G is called *ve - chromatic number* of G and is denoted by $\chi_{ve}(G)$. For a vertex v of a graph G, the *ve* - degree of v is defined as the number of edges *ve* - dominated by the vertex v and is denoted by $deg_{ve}(v)$. The minimum and maximum *ve* - degrees of the graph are defined

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C15, 05C69.

Key words and phrases. ve-domination, ve-chromatic number.

as $\delta_{ve}(G) = \min\{deg_{ve}(v)|v \in V(G)\}$ and $\Delta_{ve}(G) = \max\{deg_{ve}(v)|v \in V(G)\}$, respectively.

Observation 1.1. [2] For any graph G, $\chi_{ve}(G) \ge \Delta_{ve}(G)$.

2. χ_{ve} of necklace graph

Definition 2.1. A Halin graph G is a plane graph obtained from a planar embedding of a tree T of order at least 4, whose vertices are of degree one or atleast 3 by joining all the vertices of degree 1 in tree T as a cycle C', so that C' is the boundary of the unbounded face.

Definition 2.2. *The tree T and the cycle C' is called the characteristic tree and the adjoint cycle of G respectively.*

Definition 2.3. A caterpillar is a tree such that the removal of the leaves becomes a path.

Definition 2.4. A Halin graph G is called a cubic Halin graph if deg(v) = 3 for all $v \in G$. A cubic Halin graph in which the characteristic tree is a caterpillar is called necklace.

Lemma 2.1. Let G be a graph with $\chi_{ve}(G) \ge 9$. Let A, B, C, D be four vertices of degree 3 on C_4 . Let X,Y,Z,W be the other neighbors of A and B, C and D respectively. Then LE(G) is a graph obtained from G by replacing edge-induced subgraph G[< A, B, C, D >] by a ladder of length 7. Then $\chi_{ve}(LE(G)) \le \chi_{ve}(G)$

Proof.

Notation 1. Let $G_i = LE(G_{i-1})$ where $i \ge 2$ and $G_1 = LE(G)$.

10816

Theorem 2.1.

$$\chi_{ve}(Ne_h) = \begin{cases} 6, & \text{if } h = 1 \\ 9, & \text{if } h \equiv 2(mod \ 3) \\ 10, & \text{if } h \equiv 0 \text{ or } 1(mod \ 3) \text{ and } h \ge 15, h = 9, 12 \\ 11, & \text{if } h = 6, \ 10, \ 13 \\ 12, & \text{if } h = 3, \ 7 \\ 14, & \text{if } h = 4 \end{cases}$$

Proof. Case 1: When h = 1, $|E(Ne_1)| = 6$. A single vertex dominates all the six edges. Therefore, $\chi_{ve}(Ne_1) = 6$.

Case 2: If $h \equiv 2 \pmod{3}$, then $Ne_h = G_i$ for some *i*. By Lemma 2.1, $\chi_{ve}(Ne_h) \leq \chi_{ve}(Ne_5) \leq 9$. Since $\chi_{ve}(Ne_h) \geq \Delta_{ve} = 9$, $\chi_{ve}(Ne_h) = 9$.

Case 3: If $h \equiv 0 \pmod{3}$. Then $|E(Ne_h)| = 3(3k) + 3 = 9k + 3$. Using 9 colors to color its edges, each color class contains atmost k edges. Therefore, the remaining 3 edges cannot be colored with 9 colors. Hence, $\chi_{ve}(Ne_h) \ge 10$. By Lemma 2.1 $10 \le \chi_{ve}(Ne_h) \le \chi_{ve}(Ne_9) \le 10$. Therefore, $\chi_{ve}(Ne_h) = 10$.

Case 4: If $h \equiv 1 \pmod{3}$. Then $|E(Ne_h)| = 3(3k+1)+3 = 9k+6$. Using 9 colors to color its edges, each color class contains atmost k edges. Therefore, the remaining 6 edges cannot be colored with 9 colors. Hence, $\chi_{ve}(Ne_h) \ge 10$. By Lemma 2.1, $10 \le \chi_{ve}(Ne_h) \le \chi_{ve}(Ne_{16}) \le 10$. Therefore, $\chi_{ve}(Ne_h) = 10$.

Case 5: When h = 6, 10, 13. When h = 6.

10818

For Ne_6 , $|E(Ne_6)| = 21$. If we use 9 colors, then each ve-color class contains atmost 2 edges and atleast 3 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 2 edges and atleast one edge is uncolored. Therefore, $\chi_{ve}(Ne_6) \ge 11$.

When h = 10.

For Ne_{10} , $|E(Ne_{10})| = 33$. If we use 9 colors, then each ve-color class contains atmost 3 edges and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 3 edges and atleast 3 edges are uncolored. Therefore, $\chi_{ve}(Ne_{10}) \ge 11$.

When h = 13.

For Ne_{13} , $|E(Ne_{13})| = 42$. If we use 9 colors, then each ve-color class contains atmost 4 edges and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 4 edges and atleast 2 edges are uncolored. Therefore, $\chi_{ve}(Ne_{13}) \ge 11$.

Case 6: When h = 3, 7. When h = 3.

For Ne_3 , $|E(Ne_3)| = 12$. Any two edges are ve-dominated by a vertex. Therefore, $\chi_{ve}(Ne_3) = |E(Ne_3)| = 12$.

When h = 7.

For Ne_7 , $|E(Ne_7)| = 24$. If we use 9 colors, then each ve-color class contains atmost 2 edges and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 2 edges and atleast 4 edges are uncolored. If we use 11 colors, then each ve-color class contains atmost 2 edges and atleast 2 edges are uncolored. Therefore, $\chi_{ve}(Ne_7) \ge 12$.

Case 7: When h = 4

For Ne_4 , $|E(Ne_4)| = 15$. If we use 9 colors, then each ve-color class contains atmost 1 edge and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 1 edge and atleast 5 edges are uncolored. If we use 11 colors, then each ve-color class contains atmost 1 edge and atleast 4 edges are

10820

uncolored. If we use 12 colors, then each ve-color class contains at most 1 edge and at least 3 edges are uncolored. If we use 13 colors, then each ve-color class contains at most 1 edge and at least 2 edges are uncolored. Therefore, $\chi_{ve}(Ne_4) \ge 14$. \Box

REFERENCES

- [1] J. R. LEWIS, S. T. HEDETNIEMI, T. W. HAYNES, G. H. FRICKE: Vertex-edge domination, Util. Math., 81(2010), 193 213.
- [2] R. MADHIYALAGAN, A. WILSON BASKAR: *Vertex-Edge dominating coloring of graphs*, Communicated.

GOVERNMENT HIGHER SECONDARY SCHOOL AVANAM, THANJAVUR DISTRICT Email address: mdmatialagan@gmail.com

RAMANUJAN RESEARCH CENTER IN MATHEMATICS SARASWATHI NARAYANAN COLLEGE MADURAI *Email address*: arwilvic@yahoo.com