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SECOND ORDER LUCAS SEQUENCE USING FAULTS BASED ATTACK
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ABSTRACT. Elliptic Curve Cryptosystem based on second order Lucas sequence is a
cryptosystem using elliptic curves over finite fields as a mask and incorporate with
second order of Lucas sequence. The security of the Elliptic Curve Cryptography
cryptosystem depends on the discrete logarithms. In this cryptosystem, Lucas
sequence is employed to compute the ciphertext or recover the plaintext. The
Elliptic Curve Cryptosystem based on second order Lucas sequence is vulnerable
when the bit of the decryption key, d flips by using fault based attack.

1. INTRODUCTION

The coronavirus pandemic (COVID19) is spreading around the world rapidly,
causing deaths and significant disruption to the global health, economic, political
as well as social system. Consequently, remote working, remote learning as well
as remote business interactions, had been identified as the new opportunities to
reduce the rate of infection of COVID19 via social distancing. As such, the in-
crease in remote working (work from home), online learning and online shopping
become a new norm. The world is experiencing widespread use of electronic com-
merce (e-commerce) such as e-banking and internet shopping in contemplation to
stay competitive while staying at home in an increasingly borderless global econ-
omy. However, the increasing usage of internet network traffic simultaneously
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escalates the risk of cyberattacks. Cybercriminal and internet fraudster impose
immense challenge in the digital economy because prey on our sensitive infor-
mation and gain unauthorize access as people relies heavily on digital tools. The
attack includes malicious malware results in disclosure of financial information
that causing financial loss, data stolen or replication, as well as harming one’s
firm reputation. Thus, the demand of the cryptography system raises dramatically
among the public in order to counter the cyberattack. Furthermore, cryptography
also plays a crucial role in the digital rights management and copyright man-
agement infringement of digital media to prevent unauthorized redistribution of
digital media.

Public Key Cryptography (PKC) based on the discrete logarithm problem (DLP)
was firstly introduced by Diffie and Hellman in 1976 to provide confidentiality.
This is an encryption scheme with two cryptographic keys, i.e., public key or some-
times refer as encryption key and the private key or sometimes is called as the
decryption key. The public key allows the sender to encrypt their message and
distributed freely to the receiver; meanwhile, the private key must be kept secret
by the receiver and used for decrypting or create the digital signature. The RSA
and the various type of the RSA cryptosystems, which exploits integer factoriza-
tion problem (IFP) is the most widely used public key cryptosystem to safeguard
the data in e-banking and communication from unauthorized access.

Elliptic Curve Cryptosystem (ECC) is a modern family of PKC, which also con-
sists of two main components, public encryption key and private decryption key as
well. The security of ECC depends on the difficulty of the Elliptical Curve Discrete
Logarithm Problem (ECDLP). The implementation of ECC provides high security
at low computation time. For instance, A 160 bits key in ECC gives the equiva-
lents security as 1024 bit keys in RSA, and 15360 bits key in RSA cryptographic
algorithm provide the same security despite the usage of 512 bits in ECC. Taking
these advantages, nowadays, ECC gained much popularity and widely used to se-
cure data transmission, particularly in mobile phones and web browsers due to its
ability to provide the equivalent level of security. Henceforth, numerous studies
had presented by many researchers to discuss the prospects of this protocol as well
as to enhance its efficiency and security. Hakerson et al. [1] designed Menezes-
Vanstone Elliptic Curve Cryptosystem (MVECC) to increase the efficiency of ECC by
adopting a masking technique in the process of encryption and decryption which
is akin to El-Gamal Cryptosystem. This method showed significant enhancement
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in the computation of logarithms on a small and unique class of super-singular
curves. Subsequently, motivated by the work of Hakerson et al. [1], Ziad et al. [2]
improved the MVECC by reducing the computation and running time for the en-
cryption and decryption process.

Lucas sequence is used extensively in cryptography owing to the recurrence
characteristics. Lucas based cryptosystem (LUC cryptosystem) is analogous to
RSA scheme, but based on Lucas function to either generate a ciphertext, or to
recover the original plaintext through respective encryption and decryption pro-
cesses. LUC cryptosystem comparable security level with traditional system, but
with lesser key sizes. Various studies on the application of LUC cryptosystem had
been done to discuss the prospects of this protocol as well as to enhance the secu-
rity and reliability of cryptography [3,5,9].

Protection and security become critical concerns in the universal electronic con-
nectivity paradigm. The study of strength and weaknesses analysis of cryptosystem
become vital in order to overcome the vulnerability and provide the better secu-
rity design and implementation [4, 6–8]. In this study, we present cryptanalysis
of ECC based on the Lucas sequence using the transient fault-based attack [10]
whereby this type attack usually against PCR on tamper resistant devices. The
attack demonstrated the weakness of the ECC based on second order Lucas se-
quence.

2. PRELIMINARIES

2.1. Lucas Sequence. Lucas sequence is an integer sequence that satisfies the
linear recurrence relation. A second order Lucas sequence Vk is defined by [9]

(2.1) Vk(x1, 1) = x1Vk−1(x1, 1)− Vk−2(x1, 1),

with initial value V0(x1, 1) = 2 and V1(x1, 1) = x1, where x1 is coefficient quadratic
polynomial

(2.2) x2 − x1x+ 1 = 0.

The composite function of the Lucas sequence is defined as

Vhk(x1, 1) = Vh(Vk(x1, 1), 1).

The inverse function can be determined from the composite of the Lucas sequence.
Consider hk ≡ 1 mod φ(n) such that hk = aφ(n) + 1 for some integer a and φ(n)
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is Euler function. Then, the inverse of the Lucas sequence can be defined as

Vhk(x1, 1) ≡ V1(x1, 1) ≡ x1 mod n.

These composite and inverse of Lucas sequences are employed to validate that the
original plaintext can be recovered through the process of decryption.

The addition rule of second order Lucas sequence is defined as

Vh+k(x1, 1) = Vh(x1, 1)Vk(x1, 1) + (x21 − 4)Uh(x1, 1)Uk(x1, 1),

where Uk(x1, 1) and Uk(x1, 1) are the Fibonacci sequence, which will be defined in
the next sub-section.

2.2. Fibonacci Sequence. The Fibonacci sequence is a sequence of integers Uk

defined recurrently by [3]

Uk(x1, 1) = PUk−1(x1, 1)− Uk−2(x1, 1),

with initial values U0 = 0 and U1 = 1. In addition, x1 is the coefficient of quadratic
polynomial defined in (2.2).

2.3. Elliptical Curve. Suppose that finite field or Galois field denote as Fp with p
elements, then the equation for the elliptic curve over Fp is defined as [4,5]

y2 = x3 + αx+ β,

where α and β are elements for Fp and 4α3+27β2 6= 0. The set group G is defined
as

G(H) = {(x, y) ∈ H ×H|y2 = x3 + αx+ β} ∪ {∞}

for field H contains Fp.

3. THE CRYPTOSYSTEM

In the Lucas based ECC, the modulus of the cryptosystem is a large prime num-
ber denoted as n, and which is also the order of a general group of G. Akin to
other asymmetric cryptosystems, the Lucas based ECC consists of three distinct
operations: key generation, encryption, and decryption. The ciphertext will be
produced through the encryption process while the ciphertext will be decrypted
back to the original plaintext through the decryption process.
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3.1. Process of Encryption. Let a, b, R,Q ∈ G , R is the shared secret number
by the sender and receiver; a and b are the chosen secret numbers of sender and
receiver, respectively. The receiver employed secret number to generate the public
key Q = bR, which later used to decrypt the cipher message back to its plain
message.

A message or plaintext, m = (x, y), is a set of coordinates lying on the elliptical
curve that was encrypted by the sender. In order to encrypt the plaintext message,
the sender computes the first and second ciphertext, c1, c2 which are defined as

c1 = aR and C2 = VaQ(m, 1) mod n,

where c2 = (cx, cy). The second ciphertext c2 is aQth terms of the Lucas sequence,
which defined in (2.1). The ciphertext (c1, c2) afterward send to the receiver.

3.2. Process of Decryption. In this process, the encrypted information will be
decoded based on the concept of the inverse of recurrence. In order to calculate
the decryption key, the receiver must be adequate to evaluate the encryption key

e = bc1,

which afterward adapted to calculate the decryption key

d = e−1 mod

(
n−

(
c22 − 4

n

))
,

where
(

c22−4

n

)
is the Legendre symbol.

Finally, the original plaintext can be revealed easily by computing

Vd(c2, 1) ≡ Ve−1(c2, 1) mod n

≡ V(bc1)−1(c2, 1) mod n

≡ V(baR)−1(c2, 1) mod n

≡ V(baR)−1(VaQ(m, 1), 1) mod n

≡ V(baR)−1(VabR(m, 1), 1) mod n

≡ V1(m, 1) mod n

≡ m mod n.

Literally, the receiver evaluates the Legendre symbol from second ciphertext, c2
but not the plaintext, m since the sender sent the ciphertext to the receiver. The
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quadratic polynomial for receiver defined as

f(x) = x2 − c2x+ 1

whereby the original quadratic polynomial is

g(x) = x2 −mx + 1.

As such, the Legendre symbol for both quadratic polynomials should be the
same, that is

(
c22−4

n

)
=
(

m2−4
n

)
if both quadratic polynomials are the same type of

polynomial. Hence, the values of a, b and R must be relatively prime to the Euler
function of the modulus n in order to ensure both of the quadratic polynomials
have to satisfy the similar identities to the familiar properties of the quadratic
function. Hereinafter, the original plaintext can be revealed by the receiver pre-
cisely.

Example 1. Supposed we have two communicating parties, namely Rara as the
sender of message and Tata as its corresponding receiver. Let the system modulus
denoted as n = 1993.

Key generation:

(1) Both know the shared secret key, R = 7.
(2) Rara keeps her secret key, a = 13.
(3) Tata keeps her secret key, b = 17.
(4) Tata publishes her public key, Q = 119.

Encryption
Rara received Tata’s public key, Q. She would like to send a message, m = (20, 91)

to Tata. She

(1) computes

c1 = 91

c2 = V1547(20, 1) mod 1993 ≡ 1545

c2 = V1547(91, 1) mod 1993 ≡ 1845,

(2) sends the ciphertext (91, 1545, 1845) to Tata.

Decryption
Tata received a set of ciphertext (91, 1545, 1845) from Rara. To decrypt the cipher-
text, Tata then
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(1) calculates the Legendre symbol(
15452 − 4

1993

)
= −1 and

(
18252 − 4

107

)
= −1,

(2) calculates Encryption key, e = bc1 = 1791 = 1547,
(3) calculates the decryption key from the encryption key and Legendre sym-

bol

dx = 1547−1 ≡ 1481 mod 1994

dy = 1547−1 ≡ 1481 mod 1994,

(4) recovers the original plaintext by computing Vd(c2, 1)

x = Vdx(c2, 1) = V1484(1545, 1) ≡ 20 mod 1993

x = Vdy(c3, 1) = V1484(1825, 1) ≡ 91 mod 1993.

4. THE ATTACK

Suppose that n denotes the modulus of system and order of elliptic curve group
G. Let R ∈ G is the sender’s and receiver’s secret number, a ∈ G is the sender’s
secret number, and b ∈ G is the receiver’s secret number. The public key Q = bR ∈
G is generated by the receiver. Let the secret key or decryption key,

d =
t−1∑
i=0

di2
i

be the binary expansion of d. Unfortunately, one bit of decryption or secret key
d flips when the receiver generates the signature. The corrupted secret key or
decryption key is denoted by d̂ . If bit t of d flips, then

d̂ =

{
d+ 2t, dt = 0

d− 2t, dt = 1.

The attack goes as follows. Firstly, the cryptanalyst chooses a plaintext m and
computes

c2 = Ve(m, 1) mod n

H ≡ (m2 − 4)Ue(m, 1)

αj ≡ V2j(c2, 1) mod n
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and
βj ≡ U2j(c2, 1) mod n.

Secondly, the cryptanalyst requests the sender to decrypt the plaintext m using the
corrupted decryption key d̂. As such, the cryptanalyst adequate to determine the
flipped bit of d as

(4.1) 2Ve(ŝ, 1) ≡

{
αjm+ βjH mod n, dj = 0

αjm− βjH mod n, dj = 1.

And hence, break the system after obtaining the faulty signature, ŝ from the
sender,

ŝ ≡ Vd̂(m, 1) mod n.

It implies that this system is vulnerable to cryptanalytic attacks since the cryptana-
lyst able to decrypt the original plaintext or message, providing the sender decrypt
the original plaintext with a corrupted secret key or decryption key, and the bit of
the real secret key or decryption key flips.

Employed the (−k) Lucas sequence and Fibonacci sequence defined as [3]

V−k(P, 1) = Vk(P, 1) amd U−k(P, 1) = −Uk(P, 1),

equation (4.1) can be proved as follows

2Ve(ŝ, 1) ≡ 2Ve(Vd̂(m, 1), 1)

≡ 2Ve(Vd̂−d+d(m, 1), 1)

≡ 2Ve(d̂−d)+1(m, 1)

≡ Ve(d̂−d)(m, 1)V1(m, 1) + (m2 − 4)Ue(d̂−d)(m, 1)U1(m, 1)

≡ Ve(d̂−d)(m, 1)m+ (m2 − 4)Ue(d̂−d)(m, 1)

≡ Vd̂−d(Ve(m, 1), 1)m+ (m2 − 4)Ue(m, 1)Ud̂−d(Ve(m, 1), 1)

≡ Vd̂−d(c2, 1)m+HUe(m, 1)Ud̂−d(c2, 1) mod n.

5. CONCLUSION

The study demonstrated the pitfall in the implementation of ECC based on the
second order Lucas sequence using fault based attack. The result shows that the
attack is applicable if the bit of the decryption key, d flips. Therefore, the cryptan-
alyst able to decrypt the original plaintext or message without knowledge of the



FAULTS BASED ATTACK ON LUCECC 10853

secret number of either receiver, sender, or both providing the sender decrypt the
original plaintext with a corrupted secret key or decryption key, and the bit of the
real secret key or decryption key flips. Thus, the sender must be very careful when
decrypting the original plaintext to prevent fatal leakage of the secret key and
which will cause inefficiency and insecurity of the system. Further investigation
are necessary in order to enhance the design of cryptosystem of ECC based on the
second order Lucas sequence in its encryption and attack resistance performance.
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