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AN ALGORITHM FOR REDUCING LUC4,6 AND LUC4,6ELG CRYPTOSYSTEMS
COMPUTATIONAL TIME

TZE JIN WONG1, IZZATUL NABILA SARBINI, LEE FENG KOO, FATIN HANA NANING,
MOHAMED OTHMAN, AND MOHAMAD MAULANA MAGIMAN

ABSTRACT. A new algorithm modified from Doubling Rule and Lucas Chains is
proposed. The algorithm omits several terms of Lucas sequences in order to in-
crease the efficiency of LUC4,6 and LUC4,6ELG cryptosystem. Comparison with
existing method show that the modified algorithm successfully reduces the num-
ber of terms in calculation. Thus, reduce the computational efforts significantly.

1. INTRODUCTION

The revolution of information and communication technologies (ICT) has pro-
moted the emergence of the cloud-based system, the Internet of Things (IoT),
Big data, Industry 4.0 and BYOD (Bring Your Own Device) Security is one of the
essential concerns in the revolution of ICT. Network engineering and security be-
come a vital component in information security, for it is responsible for securing
all the data and information contained in their system against the abuse, misuse,
unauthorized access, and theft. The development of network engineering and se-
curity procedures require the implementation of the cryptographic function. Con-
sequently, modern and classical cryptography which employ various mathematical
technique needs primary attention in order to ensure that security and privacy
concerns be comprehensively addressed.
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Public key cryptography is an encryption technique utilizing a public key and a
private key for secret writing. The public key is used to encrypt plaintexts while
the ciphertexts can be decrypted by using the private key. This cryptography con-
cept was introduced by Diffie and Hellman in 1976. The well known RSA is the
pioneer of public-key encryption and signature scheme (or called as public key
cryptosystem) and is widely employed for secure date transmission. The RSA
scheme is based on a hard mathematical problem, i.e. the intractability of factor-
ing large integers. In [1,2] the authors improved the various of RSA scheme with
high security measure.

LUC based cryptosystem is a modification of RSA scheme but based on Lucas
sequence. LUC type cryptosystem implemented the Lucas function in encryption
and decryption process. It was developed by Smith and Lennon in 1993 after
invented the weakness of RSA. LUC cryptosystem comparable security level with
classic system, but with lesser key sizes. Wong et al. [3] advocated the fourth and
sixth order of Lucas sequences to develop their LUC4,6 cryptosystem by utilizing
the characteristics of quartic polynomials. Furthermore, the fourth and sixth order
Lucas sequence also employed to develop the LUC4,6ELG cryptosystem.

Most of the current research focuses on security aspect for quartic Lucas based
cryptosystem [4–6] and seldom focus on efficiency aspect for quartic Lucas based
cryptosystem. Therefore, this paper focuses on the efficiency of LUC4,6 and
LUC4,6ELG cryptosystems that related to computational time. The computational
time for a Lucas based cryptosystem greatly depends on the number of terms in
the Lucas sequences. Knuth [7] introduced a "Doubling rule" to omit some terms
of the sequences during calculation. However, the "Doubling rule" was not cus-
tomized to compute and rectify the fourth order of the Lucas sequence because
the "Doubling rule" unable to fill the gaps in between the fourth order Lucas se-
quence, i.e. V2a−1, V2a−3, V2a+1, V2a+3, Va−1 and Va+1. These gaps are important
during the final step of computing.

Montgomery [8] was credited for being the first person to consider the Lucas
chains for developing the gaps filling rules in the early eighties. Similar work had
been done by Yen and Laih [9] who proposed an improved algorithm to compute
the Lucas chain. The sequences of Va−b, Va and Vb were used to generate their spe-
cial type of additional sequences. For fourth order Lucas sequence, Va−2b and Va−3b

or higher sequences are necessary to generate specialty sequences. However, Lu-
cas chains still unable to fill these gaps. Therefore, the "Doubling rule" and Lucas
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chains are deemed as not suitable to compute the fourth order of Lucas sequences
or higher. In this paper, a new algorithm to reduce the computational time LUC4,6

and LUC4,6ELG cryptosystems compare to classical method is proposed. The sug-
gested algorithm increase the efficiency of LUC4,6 and LUC4,6ELG cryptosystems by
omitting some terms in the Lucas sequences during the calculation.

2. PRELIMINARIES

Here, we recall some related concepts which will be useful in our study. Details
can be found in [3,4,6].

An N -th order linear recurrence of Lucas sequence is a sequence of integers, Tk
defined by

Tk =
N∑
i=1

(−1)i+1aiTk−i,

with initial values, T0, T1, . . . , TN−1 and ai are coefficients in N -th order polyno-
mial,

xN +
N−1∑
i=1

(−1)iaix
N−i + aN = 0.

In the LUC4,6 and LUC4,6ELG cryptosystems, the fourth and sixth order of Lucas
sequences are selected for encryption and decryption processes. The fourth order
Lucas sequence is applied to create the first and third plaintext or ciphertext, whilst
the sixth order Lucas sequence is used to create the second plaintext or ciphertext.
Consequently, three plaintexts or ciphertext in each set in the system.

Let n be the product of two large secret primes, p and q. The encryption key,
(e, n) is made public. (m1,m2,m3) is set of plaintext. The prime number, e must
be relatively prime to the Euler totient function φ(n) = p̄q̄ because it is necessary
to solve the congruence ed ≡ 1 mod φ(n) to find the decryption key d. The Euler
totient function can be defined as

φ(n) = pb1−1
1 p̄1p

b2−1
2 p̄2 . . . p

br−1
r p̄r,

where
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p̄l =



p3i + p2i + pi + 1, if f(x) is of type of t[4] mod pi

p3i − 1, if f(x) is of type of t[3, 1] mod pi
p2i − 1, if f(x) is of type of t[2, 1] mod pi
pi + 1, if f(x) is of type of t[2] mod pi

pi − 1, if f(x) is of type of t[1] mod pi

and f(x) = x4−m1x
3+m2x

2−m3x+1. As a matter of fact, the receiver receives the
ciphertext, (c1, c2, c3) but not the plaintext, (m1,m2,m3). Therefore, it is necessary
to make sure that the type of g(x) = x4 − c1x

3 + c2x
2 − c3x + 1 equivalent to the

type of f(x). In practice, since φ(n) depends on the type of auxiliary polynomial,
the encryption key, e must be relatively prime to p− 1, q − 1, p + 1, q + 1, p2 + p +

1, q2 + q + 1, p3 + p2 + p+ 1, and q3 + q2 + q + 1 to cover all possible cases.
With these preliminary evaluations, a public-key cryptosystem will be set based

on the Lucas sequence Vk d erived from the quartic polynomial, x4−m1x
3+m2x

2−
m3x+ 1 = 0.

3. THE CRYPTOSYSTEMS

3.1. LUC4,6. The encryption function is defined as

E(m1,m2,m3) = (c1, c2, c3)

= (Ve(m1,m2,m3, 1),

Ve(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1),

Ve(m3,m2,m1, 1)) mod n,

where n = pq as above; (m1,m2,m3) constitutes the plaintexts and the coeffi-
cients of quartic polynomial; (e, n) is the encryption key. Ve(m1,m2,m3, 1) and
Ve(m3,m2,m1, 1) are the e-th term of the fourth order of Lucas sequence. Whilst,
Ve(m2,m1m3− 1,m2

1 +m2
3− 2m2,m1m3− 1,m2, 1) is e-th term in the sixth order of

Lucas sequence.
The decryption key is (d, n) where d is the inverse of e modulo φ(n). In order

to decipher the message, the receiver must be adequate to compute φ(n) and then
calculate
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D(c1, c2, c3) = (m1,m2,m3)

= (Vd(c1, c2, c3, 1),

Vd(c2, c1c3 − 1, c21 + c23 − 2c2, c1c3 − 1, c2, 1),

Vd(c3, c2, c1, 1)) mod n

to recover the original message of (m1,m2,m3).

3.2. LUC4,6ELG. The encryption function is defined as

E(m1,m2,m3) = (c1, c2, c3, c4)

= (VaQ(m1,m2,m3, 1),

VaQ(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1),

VaQ(m3,m2,m1, 1), aR) mod n,

with n = pq as above and Q = bR is public key. a and b are the secret numbers
chosen by sender and receiver, respectively. R is a shared secret number chosen by
sender and receiver. (m1,m2,m3) constitutes the plaintexts and the coefficients of
quartic polynomial; VaQ(m1,m2,m3, 1) and VaQ(m3,m2,m1, 1) are the aQ-th term
of the fourth order of Lucas sequence; VaQ(m2,m1m3 − 1,m2

1 +m2
3 − 2m2,m1m3 −

1,m2, 1) is aQ-th term in the sixth order of Lucas sequence.
The decryption key is (d, n) where d is the inverse of e modulo φ(n) and e = b·c4.

In order to decipher the message, the receiver must know or be able to compute
φ(n), and subsequently evaluate

D(c1, c2, c3, c4) = (m1,m2,m3)

= (Vd(c1, c2, c3, 1),

Vd(c2, c1c3 − 1, c21 + c23 − 2c2, c1c3 − 1, c2, 1),

Vd(c3, c2, c1, 1)) mod n

to recover the original message of (m1,m2,m3).

4. THE ALGORITHM

4.1. Computing Fourth Order Lucas Sequence. The method to compute fourth
order Lucas sequence has been discussed by Wong et al. [10]. Let define some
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abbreviations as follow:
Vk(M1) = Vk(m1,m2,m3, 1),

Vk(M2) = Vk(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1),

Vk(M3) = Vk(m3,m2,m1, 1).

(4.1)

The (a+ b)-th term of fourth order of Lucas sequence can be written as

V(a+ b)(M1) = Va(M1)Vb(M1) − V(a− b)(M1)Vb(M2)

+ V(a− 2b)(M1)Vb(M3) − V(a− 3b)(M1),

where m1,m2, and m3 constitute the coefficients of a quartic polynomial.

Definition 4.1. For x ≥ 1, the three special values (which are used in following
proposition) are given as

V2x(M1) = V2x−1(M1)
2 − 2V2x−1(M2)

V2x(M2) = V2x−1(M2)
2 − 2(V2x−1(M1)V2x−1(M3) − 1)

V2x(M3) = V2x−1(M3)
2 − 2V2x−1(M2),

with special initial values of

V2(M1) = m2
1 − 2m2

V2(M2) = m2
2 − 2(m1m3 − 1)

V2(M3) = m2
3 − 2m2.

(4.2)

Proposition 4.1 below can be used to decrease the number of terms of sequences
which is defined in equation (4.1) .

Proposition 4.1. Let 2i+2 < e < 2i+3, rx ≡ e mod 2x where 0 ≤ rx < 2x, 1 ≤ b ≤ i

and special initial values of the sequence as defined in (4.2) at Definition 4.1. If the
secondary initial values Vrx , Vrx+2x , Vrx+2(2x), and Vrx+3(2x) are given, then the e-th
term of the fourth order Lucas sequence will be able to be generated via the following
equations

Vkx(M1) =Vkx−2x(M1)V2x(M1) − Vkx−2(2x)(M1)V2x(M2)

+ Vkx−3(2x)(M1)V2x(M3) − Vkx−4(2x)(M1),
(4.3)

where rx + 4(2x) ≤ kx ≤ e and kx = rx + 2xs, for s is an integer.

Proof. We can see the proof of proposition 4.1 in Wong et al. [10], Proposition
1. �
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The secondary initial values can be generated using (4.3) with primary initial
values of,

V0(m1,m2,m3, 1) = 4

V1(m1,m2,m3, 1) = m1

V2(m1,m2,m3, 1) = m2
1 − 2m2 and

V3(m1,m2,m3, 1) = m3
1 − 3m2m1 + 3m3.

Making use of Proposition 4.1, some terms of the sequence involving the e-th term
of fourth order Lucas sequence can be omitted during the calculation.

4.2. Computing Sixth Order Lucas Sequence. Since the second plaintext or ci-
phertext in the LUC4,6 and LUC4,6ELG cryptosystems are compute from sixth order
Lucas sequence, computational time can be reduced by omitting some terms in the
sequence.

The (a+ b)-th term in the sixth order of the Lucas sequence can be written as

Va+b(M2) =Va(M2)Vb(M2) − Va−b(M2)(Vb(M1)Vb(M3) − 1)

+ Va−2b(M2)(Vb(M1)
2 + Vb(M3)

2 − 2Vb(M2))

− Va−3b(M2)(Vb(M1)Vb(M3) − 1) + Va−4b(M2)Vb(M2)

− Va−4b(M2),

where Vk(M1), Vk(M2), and Vk(M3) as defined in Equation (4.1), while m1,m2 and
m3 constitute the coefficients for the quartic polynomial.

Definition 4.2. Let 6j+1 < e < 6j+2, rb ≡ e mod 6b where 0 ≤ rb < 6 and 1 ≤ b ≤ j,
then the special values for Va+b(m2,m1m3 − 1,m2

1 +m2
3 − 2m2,m1m3 − 1,m2, 1) can

be defined as follow:

V6b(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1)

≡Q2
b−1 − 2(Pb−1Rb−1 − 1) mod n,

V6b(m1,m2,m3, 1) ≡ P 2
b−1 − 2Qb−1 mod n and

V6b(m3,m2,m1, 1) ≡ R2
b−1 − 2Qb−1 mod n,
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where

Pb−1 =V3(V6b−1(M1), V6b−1(M2), V6b−1(M3), 1),

Qb−1 =V3(V6b−1(M2), V6b−1(M1)V6b−1(M3) − 1,

V6b−1(M1)
2 + V6b−1(M3)

2 − 2V6b−1(M2),

V6b−1(M1)V6b−1(M3) − 1, V6b−1(M2), 1) and

Rb−1 =V3(V6b−1(M3), V6b−1(M2), V6b−1(M1), 1),

with V6b−1(M1), V6b−1(M2), and V6b−1(M3), as defined in (4.1).

Proposition 4.2. Let 6j+1 < e < 6j+2, rb ≡ e mod 6b where 0 ≤ rb < 6 and
1 ≤ b ≤ j, and the special values of the sequence were defined at Definition 4.2. If the
secondary initial values Vrb , Vrb+6b , Vrb+2(6b), Vrb+3(6b), Vrb+4(6b) and Vrb+5(6b) are given,
then, the e-th term of the sixth order Lucas sequence, Ve(m2,m1m3 − 1,m2

1 + m2
3 −

2m2,m1m3 − 1,m2, 1) can be generated by using the following equation,

Vkb(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1)

≡Vrb(M2)V6b(M2) − Vrb+6b(M2)[V6b(M1)V6b(M3) − 1]

+ Vrb+2(6b)(M2)[V6b(M1)
2 + V6b(M3) − 2V6b(M2)]

− Vrb+3(6b)(M2)[V6b(M1)V6b(M3) − 1]

+ Vrb+4(6b)(M2)Vrb+6b(M2)

− Vrb+5(6b)(M2) mod n,

(4.4)

where rb + 6b+1 ≤ kb ≤ e, kb = rb + 6bs and s is an integer.

Proof. This proposition can be proved by mathematical induction. Let 6j+1 < e <

6j+2, rb ≡ e mod 6b where 0 ≤ rb < 6 and 1 ≤ b ≤ j, then e = rb+6bt, where t is an
integer greater or equal to 6. Therefore, rb < 6j+1, rb + 6b < 6j+1, rb + 2(6b) < 6j+1,
rb + 3(6b) < 6j+1, rb + 4(6b) < 6j+1, and rb + 5(6b) < 6j+1. Thus, if the secondary
initial values,Vrb , Vrb+6b , Vrb+2(6b), Vrb+3(6b), Vrb+4(6b) and Vrb+5(6b) are given, the i-th
term in the sixth order of Lucas sequence can be generated from rb + 6b+1 until
e = rb + 6b+1t. �



LUC4,6 AND LUC4,6ELG COMPUTATION ALGORITHM 10877

5. RESULT AND DISCUSSION

This section describes the algorithm for computations based on Proposition 4.1
and 4.2. The algorithm for the process of encryption and can be summarized as
follow:

Step 1. Determine the values of i and j, where 2i+2 < e < 2i+3 and 6j+1 < e <

6j+2 where e is the encryption key.
Step 2. Define the primary initial values. The four primary initial values of the

fourth order of Lucas sequence are

V0(x1, x2, x3, 1) = 4,

V1(x1, x2, x3, 1) = x1,

V2(x1, x2, x3, 1) = x21 − 2x2,

V3(x1, x2, x3, 1) = x31 − 3x1x2 + 3x3,

where (x1, x2, x3) = (m1,m2,m3) for the first ciphertext and (x1, x2, x3) = (m3,m2,

m1) for the third ciphertext. The six primary initial values of the sixth order of
Lucas sequence are

V0(y1, y2, y3, y4, y5, 1) = 4,

V1(y1, y2, y3, y4, y5, 1) = y1,

V2(y1, y2, y3, y4, y5, 1) = y21 − 2y2,

V3(y1, y2, y3, y4, y5, 1) = y31 − 3y1y2 + 3y3,

V4(y1, y2, y3, y4, y5, 1) = y41 − 4y21y2 + 2y22 + 4y1y3 − 4y4,

V5(y1, y2, y3, y4, y5, 1) = y51 − 5y31y2 + 5y22y3 − 5y2y3 − 5y1y4 + 5y5,

where (y1, y2, y3, y4, y5) = (m2,m1m3− 1,m2
1 +m2

3− 2m2,m1m3− 1,m2) for second
ciphertext.

Step 3. Generate the special values for fourth and sixth order Lucas sequence.
Loop a from a = 2 until i, for the sequences as defined in Definition 4.1 and loop
b from b = 1 until j, for sequences as defined in Definition 4.2.

Step 4. Generate the secondary initial values. Loop a = 0 to i for ra ≡ e

mod 2a. Then, loop again for ka from ka = ra + 4(2a) until ra+1 + 3(2a+1) for
sequence defined in (4.3). Loop b = 0 to j for rb ≡ e mod 6b. Then, loop again
for kb from kb = rb + 6(2b) until rb+1 + 5(6b+1) for sequence defined in (4.4).
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Step 5. Generate the ciphertext. The first ciphertext can be generated by

Ve(m1,m2,m3, 1) ≡Vki−2i(M1)V2i(M1) − Vki−2(2i)(M1)V2i(M2)

+Vki−3(2i)(M1)V2i(M3) − Vki−4(2i)(M1) mod n.

The second ciphertext can be generated by

Ve(m2,m1m3 − 1,m2
1 +m2

3 − 2m2,m1m3 − 1,m2, 1)

≡Vkj(M2)V6j(M2) − Vkj+6j(M2)[V6j(M1)V6j(M3) − 1]

+ Vkj+2(6j)(M2)[V6j(M1)
2 + V6j(M3) − 2V6j(M2)]

− Vkj+3(6j)(M2)[V6j(M1)V6j(M3) − 1]

+ Vkj+4(6j)(M2)Vkj+6j(M2)

− Vkj+5(6j)(M2) mod n.

The third ciphertext can be generated by

Ve(m3,m2,m1, 1) ≡Vki−2i(M3)V2i(M3) − Vki−2(2i)(M3)V2i(M2)

+Vki−3(2i)(M3)V2i(M1) − Vki−4(2i)(M3) mod n.

The algorithm for the process of decryption is similar to the algorithm of the
encryption process. The plaintexts (m1,m2,m3) are replaced by the ciphertexts
(c1, c2, c3). Whilst, the encryption key e is replaced by the decryption key d. In
this manner, the algorithm can be transformed into the algorithm of the process
decryption.

The computation time depends on the number of terms in the sequence. The
computational time can be shortened if the number of terms is reduced. In the
LUC4,6 and LUC4,6ELG, each set of plaintext or ciphertext contains three messages.
If the encryption key e is the term of the sequence, then the total number of terms
to compute is 3e for the common computational method.

In this paper, we propose a method requires to compute primary initial values
for fourth order of Lucas sequence and six primary initial values for sixth order of
Lucas sequence. The special values for fourth order Lucas sequence are V2a where
2 ≤ a ≤ i and 2i+2 < e < 2i+3. Therefore, the number of special values for fourth
order Lucas sequence is i−1. The special values for sixth order Lucas sequence are
V6b where 2 ≤ b ≤ j and 6j+1 < e < 6j+2. However, it is necessary to determine V3b
before finding the special values. Therefore, the number of special values for sixth
order Lucas sequence is 2j−2. The number of terms for secondary initial values of
the fourth order Lucas sequence is

∑i−1
a=0(ka+1− ka)/2

a, while the number of terms
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for secondary initial values of the sixth order Lucas sequence is
∑j−1

b=0(kb+1−kb)/6b,
where ka+1, ka, kb+1 and kb are secondary initial values for level a+ 1, a, b+ 1 and
b, respectively.

Finally, the number of terms to compute at the final step in both of fourth and
sixth order Lucas sequence are (e − ki)/2

i and (e − kj)/6
j respectively. There are

some repeating terms like V4 in fourth order Lucas sequence and V6,V18 for sixth
order Lucas sequence.

The comparison between the number of terms compute using common method
and proposed method is tabulated in Table 1. Result shows that the number of
terms decreased and consequently reducing the computational efforts in proposed
method.

TABLE 1. A comparison between the number of terms compute for
the common method and the proposed method

e Common method Proposed method Number of terms to omit

517 1551 145 1406
1031 3093 175 2918
2053 6159 198 5961
4099 12297 215 12082
8209 24627 233 24394

6. CONCLUSION

In this study, a method to decrease the computational time in LUC4,6 and
LUC4,6ELG cryptosystems had been proposed. The equation (a + b)-th term of
fourth and sixth order Lucas sequence have been rewritten based on the charac-
teristic of high order Lucas sequence. An algorithm has been constructed based on
the equation. This algorithm can be extracted/explain in five steps. Firstly, based
on the encryption key or decryption key, the values i and j for the following steps
used are determined. Secondly, the primary initial values based on the plaintexts
or ciphertexts are computed. Thirdly, special values, which depend on values i
and j is calculated. Fourthly, special values are used to calculate the secondary
initial values. Finally, after computing the secondary initial values, the ciphertexts
can be generated or the plaintexts can be recovered based on special values and
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secondary initial values. Compared with existing algorithm, the proposed algo-
rithm reduce the number of terms in calculation. The computational efforts is
reduced significantly. These effort making LUC4,6 and LUC4,6ELG cryptosystems
more efficient for security implementation.
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