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ESTIMATION OF p-ADIC SIZES OF PARTIAL DERIVATIVE FOR CERTAIN
QUARTIC POLYNOMIAL

SITI HASANA SAPAR1, HONG KEAT YAP, AND KAMEL ARIFFIN MOHD ATAN

ABSTRACT. The objective of this paper is to estimate the p-adic sizes of common
zeros of partial derivative polynomials associated with a certain quartic polyno-
mial at any point of neighbourhood restricted to some conditions by using Newton
polyhedron technique. The p-adic sizes of such common zeros can be obtained
from intersection points of indicator diagrams associated with the polynomials.
Subsequently, p-adic sizes of common zeros will be determined explicitly in terms
of coefficients of dominant terms of polynomials.

1. INTRODUCTION

In our discussion, we use notation of Zp as the ring of p-adic integers , (Ωp) is
the completion of algebraic closure of Qp the field of rational p-adic numbers and
(ordpx) as the highest power of p which divides x. It follows that for any rational
number x and y, ordpx = ∞ if and only if ordpx = 0; ordp(xy) = ordpx + ordpy
and ordp(x + y) ≥ min{ordpx, ordpy}, with equality if ordpx 6= ordpy. Let x =

(x1, x2, x3, . . . , xn) denote a vector in the space Zn where Z denotes the ring of
integers. Let q be a positive integer and f a polynomial in Z[x]. The multiple
exponential sums associated with f is defined as

S(f ; q) = Σxmodqe
((2pif(x))/q),

1corresponding author
2020 Mathematics Subject Classification. 11L07, 11T23.
Key words and phrases. Exponential sums, Cardinality, p-adic sizes, Newton polyhedron.

10939



10940 S.H. SAPAR, H.K. YAP, AND K.A. MOHD ATAN

where the sum is taken over a complete set of x mod q. Obtaining the precise
upper bound of multiple exponential sums have been the interest of many number
theorist. Earlier works of some researchers related to a polynomial f(x, y) over Zp,
showed that such estimations can be obtained from the number and p-adic sizes
of the common zeros of partial derivative polynomials associated with the f(x, y)

considered. Mohd Atan [4] first showed that the p-adic sizes of the zeros of a
polynomial can be obtained by using Newton polyhedral method. Subsequently,
Mohd Atan [5] determined the p-adic sizes of the common zeros to two polynomi-
als by studying the intersection points of the indicator diagrams associated with
the polynomials considered.

Newton polyhedron technique a tool developed by Mohd Atan and Loxton [6]
is an analogue of Newton polygon as defined by Koblitz [3]. In order to ove-
come the problem of construction of such a Newton polyhedron, Mohd Atan and
Loxton [6] introduced the indicator diagram as a tool that captures the essentials
of Newton polyhedron and represents it in a simpler form. Researchers such as
Mohd Atan [1], Chan [2], Sapar and Mohd Atan [7,8] have employed the Newton
polyhedron method to obtain estimations of p-adic sizes of the common zeros of
partial derivative polynomials associated with two variable polynomials. Aminud-
din [9] concentrating of finding the cardinality of the set of solution associated
to a polynomial of cubic form. Lasaraiya [10] give an estimation the p-adic sizes
of common zeros of partial derivative polynomials associated with certain class of
polynomial of degree eleven.

2. p-ADIC ORDERS OF ZEROS OF A POLYNOMIALS

In this section, we focus on finding the p-adic sizes of common zeros of polyno-
mials associated with quartic polynomial restricted with conditions of ordpac2 >
ordpb

3. We need the following definitions and theorem developed by [4].

Definition 2.1. Let f(x, y) =
∑
aijx

iyj be a polynomial of degree n in Ωp[x, y]. By
mapping the terms Tij = aijx

iyj of f(x, y) to the points Pij = aijx
iyj in the three-

dimensional Euclidean space R3. The set of points Pij is called as the Newton diagram
of f(x, y).

Definition 2.2. Let f(x, y) =
∑
aijx

iyj be a polynomial of degree n in Ωp[x, y]. By
mapping the terms Tij = aijx

iyj of f(x, y) to the points Pij = aijx
iyj in the Euclidean
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space, the Newton polyhedron of f(x, y) is defined to be the lower convex hull of the
set S of points Pij, 0 < i, j < n. It is the highest convex connected surface which
passes through or below the points in S. If aij = 0 for some (i, j) then ordpaij =∞.

Definition 2.3. The set of lines associated with the Newton polyhedron is denoted
by Nf . Let (µi, λi, 1) be the normalized upward-pointing normals to the faces F(i)

of Nf for a polynomial f(x, y) in Ωp[x, y]. The point (µi, λi, 1) is mapping to the
point (µi, λi) in the x − y plane. If Fr and Fs are adjacent faces in Nf , sharing
a common edge, we construct the straight line joining (µr, λr) and (µs, λs). If Fr
shares a common edges with a vertical face F say αx + βy = γ in Nf , we construct
the straight line segment joining (µr, λr) and the appropriate point at infinity that
corresponds to the normal F , that is the segment along a line with a slope −α/β.

Theorem 2.1. Let p be a prime. Suppose f and g are polynomials in Zp[x, y]. Let
(µ, λ) be a point of intersection of the indicator diagrams associated with f and g at
the vertices or simple points of intersections. Then, there are ξ and η in Ω2

p satisfying
f(ξ, η) = g(ξ, η) = 0 and ordpξ = µ1, ordpη = µ2.

3. MAIN RESULT

In this section, we find the p-adic sizes of common zeros for the certain quartic
polynomial of the form f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 + rx + sy + t in
the neighbourhood of (x0, y0) subject to the condition ordp bc > ordpλ > ordp

a
b
. Two

cases will be shown in this section, that is ordpλ = 1
2
ordp

a
b

and ordpλ = 1
2
ordp

c
e
.

From this study, the result is in the following theorem:

Theorem 3.1. Let f(x, y) = ax4+bx3y+cx2y2+dxy3+ey4+rx+sy+t be a polynomial
in Zp[x, y] with p > 3. Let α > 0, δ = max {ordpa, ordpb, ordpc, ordpd, ordpe} and
ordp(36ae−c2)2 > ordp9(6be−cd)(6ad−bc). Suppose (x0, y0) ∈ ω2

p, ordpb
2 > ordpac,

CEI − DEH − AI2 = 0 and DE2 − BEI + AHI = 0 where A = 108b2e − 8c3,
B = 864abe+ 27b2d−36bc2, C = 1728a2e+ 216abd−54b2c, D = 432a2d−27b3, E =

9bd− 4c2, H = 6(6ad− bc) and I = 3(4ac− 3b2). If ordpfx(x0, y0), ordpfy(x0, y0) ≥
α > δ and ordpλ = 1

2
ordp

a
c
, then there exists (ξ, η) such that fx(ξ, η) = 0, fy(ξ, η) = 0

and ordp(ξ − x0) > 1
3
(α− 2δ), ordp(η − y0) > 1

3
(α− 2δ).

In order to prove this theorem, we begin with several lemmas and corollaries
before arriving at the estimation of p-adic sizes of common zeros. It can be shown
that all these lemmas and corollaries are true.
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In the following lemma, we show that ordpγi = ordp(3b + 2λc) − ord(4a + λb)

and ordp(γ1−γ2) = ordp(8ac−3b2)−2ordp(4a+λb) where γi = 3b+2λic
3(4a+λib)

for i = 1, 2

and λ is either λ1 or λ2 the roots of k(x). This lemma will then be applied in the
proof of Lemma 3.3.

Lemma 3.1. Let p > 3 be a prime and a, b, c, d and e in Zp. Let λ1, λ2 be the zeros of
k(x). Let γi = (3b+2λic)

3(4a+λib)
for i = 1, 2. If ordp(36ae− c2)2 > ordp9(6be− cd)(6ad− bc),

then ordpγi = ordp(3b+ 2λc)− ordp(4a+ λb) and ordp(γ1− γ2) = ordp(8ac− 3b2)−
2ordp(4a+ λb) where λ is either λ1 or λ2.

In Lemma 3.2, the sizes of ordpx and ordpy are given in terms of W ,γ1 and γ2.
This assertion will be applied in the proof of Lemma 3.3.

Lemma 3.2. Suppose p > 3 be a prime. Let (x, y) be a point in Ω2
p and U = x+ γ1y,

V = x + γ2y where γi are rational numbers for i = 1, 2. Then ordpx ≥ ordpW −
ordp(γ1− γ2) and ordpy ≥ ordpW − ordp(γ1− γ2) where W is either U or V and γ is
either γ1 or γ2.

In the lemma below, we show that ordp bc >
1
2
ordp

a
c
> ordp

a
b

can be obtained
from the condition ordpb2 > ordpac.

Lemma 3.3. Let p > 3 be a prime and a, b and c in Zp. If ordpb2 > ordpac, then
ordp

b
c
> 1

2
ordp

a
c
> ordp

a
b
.

In the following lemma, we apply the condition ordp
b
c
> ordpλ > ordp

a
b

in the
estimate of common zeros in terms of a, c, λ and H0, where λ is the roots of k(x)

and H0 ∈ Ωp.

Lemma 3.4. Let p > 3 be an odd prime, λi be the roots of k(x) for i = 1, 2 , and
a, b, c be integers. Let γi = (3b+2λic)

3(4a+λib)
for i = 1, 2 and λ be either λ1 or λ2. Suppose

ordp
b
c
> ordpλ > ordp

a
b
. Let (µ, η) be a common solution of U = x + γ1y and

V = x + γ2y. If ordp(µ + γiη) =1
3
ordp

H0

(4a+λb)
for i = 1, 2 where H0 ∈ Ωp, then

ordpµ ≥ 1
3
(ordpH0 − ordpa) and ordpη ≥ 1

3
(ordpH0 + 2ordpa− 3ordpc− 3ordpλ).

Corollary below is a consequence of Lemma 3.4 where ordpλ = 1
2
ordp

a
c
.

Corollary 3.1. Let p be an odd prime and λi be the roots of k(x), γi = (3b+2λic)
3(4a+λib)

for
i = 1, 2 and λ be either λ1 or λ2. (µ, η) be a common solution of U = x + γ1y and
V = x + γ2y. Suppose ordpb2 > ordpac. If ordp = 1

2
ordp

a
c

and ordp(µ + γiη) =
1
3
ordp

H0

(4a+λb)
for i = 1, 2 where H0 ∈ Ωp, then ordpµ ≥ 1

3
(ordpH0 − ordpa) and

ordpη ≥ 1
3
(ordpH0 + 1

2
ordpa− 3

2
ordpc).
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Corollary below is obtained from Lemma 3.4 by considering ordpλ = 1
2
ordp

c
e
. Its

result will be applied in Lemma 3.6.

Corollary 3.2. Let p be an odd prime and λi be the roots of k(x) for i = 1, 2.
Let γi = (3b+2λic)

3(4a+λib)
for i = 1, 2 and λ be either λ1 or λ2 where ordp bc > ordpλ >

ordp
a
b
. Let (µ, η) be a common solution of U = x + γ1y and V = x + γ2y. If

ordpλ = 1
2
ordp

c
e

and ordp(µ + γiη) = 1
3
ordp

H0

(4a+λb)
for i = 1, 2 where H0 ∈ ωp, then

ordpµ ≥ 1
3
(ordpH0 − ordpa) and ordp ≥ 1

3
(ordpH0 + 2ordpa− 9

2
ordpc+ 3

2
ordpe).

Suppose α > 0 and δ is maximum of the p-adic orders for the coefficients of
the dominant terms of f(x, y). Now, by using the condition of ordpb2 > ordpac,
ordpλ = 1

2
ordp

a
c

and Corollary 3.1, we give the p-adic orders of common zeros in
terms of α and δ in the following lemma.

Lemma 3.5. Let p be an odd prime and f(x, y) = ax4+bx3y+cx2y2+dxy3+ey4+rx+

sy+t in Zp[x, y]. Suppose λi for i = 1, 2 are the roots of k(x). Let γi = (3b+2λic)
3(4a+λib)

for i =

1, 2 and (µ, η) be a common solution of U = x+γ1y and V = x+γ2y. Suppose α > 0,
δ = max {ordpa, ordpb, ordpc, ordpd, ordpe} and ordp(µ + γiη) = 1

3
ordpH0(4a+ λb)

for i = 1, 2 where H0 = fx(x0, y0) + λfy(x0, y0)and λ is either λ1 or λ2. Suppose
ordpb

2 > ordpac. If ordpfx(x0, y0), ordpfy(x0, y0) ≥ α > δ, ordpλ = 1
2
ordp

a
c
, then

ordpµ, ordpη > 1
3
(α− 2δ).

In the following assertion, we give the p-adic orders of common zeros in terms
of α and δ under the condition ordp bc > ordpλ > ordp

a
b
, ordpλ = 1

2
ordp

c
e
.

Lemma 3.6. Let p be an odd prime and f(x, y) = ax4+bx3y+cx2y2+dxy3+ey4+rx+

sy+t in Zp[x, y], λi be the roots of k(x), γi = (3b+2λic)
3(4a+λib)

for i = 1, 2 and λ be either λ1 or
λ2. Suppose ordp bc > ordpλ > ordp

a
b
. Let (µ, η) be a common solution of U = x+ γ1y

and V = x + γ2y. Suppose α > 0, δ = max {ordpa, ordpb, ordpc, ordpd, ordpe} and
α > δ. If ordpfx(x0, y0), ordpfy(x0, y0) ≥ α, ordpλ = 1

2
ordp

c
e

and ordp(µ + γiη) =
1
3
ordp

H0

(4a+?b)
for i = 1, 2 where H0 = fx(x0, y0) + λfy(x0, y0), H0 ∈ ωp, then ordpµ ≥

1
3
(α− 2δ), ordpη > 1

3
(α− 3δ) or ordpη > 1

3
(α− 4δ).

In Lemma 3.7, we show that the partial derivative polynomials associated with
f(x, y) = ax4+bx3y+cx2y2+dxy3+ey4+rx+sy+t can be rewritten into a simpler
form. Note that this lemma will be used repeatedly in the proof of theorem in this
section.
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Lemma 3.7. Let f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 + rx + sy + t be a
polynomial in Zp[x, y] with p > 3. Suppose λ is a constant such that (2c+3λd)

(4a+λb)
−

3 [frac(3b+ 2λc)3(4a+ λb)]2 = 0 and (d+4λe)
(4a+λb)

−
[
(3b+2λc)
3(4a+λb)

]3
= 0. Then (fx+λfy)(x, y) =

(4a+ λb)
[
x+ (3b+2λc)

3(4a+λb)
y
]3

+ r + λs.

Lemma below gives the condition that ensure the existence of common zeros
for m(x) and n(x).

Lemma 3.8. Letm(x) = Ax3+Bx2+Cx+D and n(x) = Ex2+Hx+I be polynomials
in Zp[x, y] with p > 3. If CEI −DEH −AI2 = 0 and DE2−BEI +AHI = 0, then
m(x) and n(x) have two common roots.

Lemma below shows the p-adic orders of common zeros of f(U, V ) = U3+aU2+

bU + c and g(U, V ) = V 3 + rV 2 + sV + t can be obtained from the combination
of indicator diagrams associated with the Newton polyhedra of f(x, y) and g(x, y).
Note that both U and V are in terms of X and Y as stated in the proof of Theorem
3.1.

Lemma 3.9. Suppose f(U, V ) = U3 +aU2 + bU +c and g(U, V ) = V 3 +rV 2 +sV + t

are polynomials in Zp[U, V ]. Let (µ, λ) be a point of intersection of the indicator
diagrams associated with the Newton polyhedra of f(U, V ) and g(U, V ). Then there
exists (α, β) in ω2

p such that f(α, β) = 0, g(α, β) = 0, ordpα = µ = 1
3
ordpc and

ordpβ = λ = 1
3
ordpt.

Proof of Theorem 3.1

Proof. Given f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 + rx + sy + t. By taking
the partial derivatives of the polynomial f(x, y) with respect to x and y, it can

be shown that (fx + λfy)(x, y) = (4a + λb)
(
x+ (3b+2λc)

3(4a+λb)
y
)3

+ r + s where λ is a
constant. Let X = x− x0 and Y = y − y0. Then

(3.1) (h+λg)(X+x0, Y +y0) = (4a+λb)

[
X + x0 +

3b+ 2λc

3(4a+ λb)
(Y + y0)

]3
+r+λs.

If

(3.2)
2c+ 3λd

4a+ λb
− 3

(
3b+ 2λc

3(4a+ λb)

)2

= 0
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and

(3.3)
d+ 4λe

4a+ λb
−
(

3b+ 2λc

3(4a+ λb)

)3

= 0,

by expanding equations (3.2) and (3.3), we obtain m(λ) and n(λ) in the form
m(λ) = Aλ3 + Bλ2 + Cλ + D and n(λ) = Eλ2 + Hλ + I where A = 108b2e − 8c3,
B = (864abe + 27b2d − 36bc2, C = 1728a2e + 216abd − 54b2c, D = 432a2d − 27b3,
E = 9bd − 4c2, H = 6(6ad − bc) and I = 3(4ac − 3b2). By the conditions CEI −
DEH − AI2 = 0 and DE2 − BEI + AHI = 0, there exists at most two common
roots for m(x) and n(x) by Lemma 3.8. Now by substituting equation (3.2) into
(3.3), we have

d+ 4λe

4a+ λb
=

(
2c+ 3λd

3(4a+ λb

)(
3b+ 2λc

3(4a+ λb

)
.

By simplifying the equation above, we have (36be − 6cd)λ2 + (144ae − 4c2)λ +

36ad−6bc = 0. Then, dividing the equation by 2, we obtain k(λ) = 3(6be− cd)λ2 +

2(36ae− c2)λ+ 3(6ad− bc) = 0. Since ordp(36ae− c2)2 > ordp9(6be− cd)(6ad− bc),
then m(λ) and n(λ) have two distinct common roots, λ1 and λ2, we have

λ1 =
−(36ae− c2) +

√
(36ae− c2)2 − 9(6be− cd)(6ad− bc)

3(6be− cd)

and λ2 = λ1. Let

(3.4) U = X +
3b+ 2λ1c

3(4a+ λ1b)
Y , u0 = x0 +

(3b+ 2λ1c)

3(4a+ λ1b)
y0,

(3.5) V = X +
3b+ 2λ2c

3(4a+ λ2b)
Y , v0 = x0 +

3b+ 2λ2c

3(4a+ λ2b)
y0.

By substituting (3.4) and (3.5) into (3.1), we have polynomials in (U, V ) as fol-
lows:

(3.6) F (U, V ) = (4a+ λ1b)(U + u0)
3 + r + λ1s and

(3.7) G(U, V ) = (4a+ λ2b)(V + v0)
3 + r + λ2s.

From (3.6) and (3.7), we obtain F (U, V ) = (4a+λ1b)(U
3+3u0U

2+3u20U)+F0 and
G(U, V ) = (4a+λ2b)(V

3 + 3v0V
2 + 3v20V ) +G0 where F0 = fx(x0, y0) +λ1fy(x0, y0)

and G0 = fx(x0, y0) + λ2fy(x0, y0). By Lemma 3.9, there exists (Û , V̂ ) in Ω2
p such

that F (Û , V̂ ) = 0, G(Û , V̂ ) = 0 where ordpÛ = µ
′

= 1
3
ordp

F0

4a+λ1b
and ordpV̂ =

λ
′

= 1
3
ordp

G0

4a+λ2b
. By equations (3.4) and (3.5), there exists (X̂, Ŷ ) such that
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Û = X̂ + λ1Ŷ , V̂ = X̂ + λ2Ŷ where γi = 3b+2λic
3(4a+λib

for i = 1, 2. Since Û = X̂ + γ1Ŷ ,

V̂ = X̂ + γ2Ŷ , ordpb2 > ordpac and ordpλ = 1
2
ordp

a
c
, we have from Lemma 3.5,

ordpX̂ >
1

3
(α− 2δ), ordpŶ >

1

3
(α− 2δ).

Let ξ = X̂ + x0 and η = Ŷ + y0, then X̂ = ξ − x0 and Ŷ = η − y0. Thus, we have

ordp(ξ − x0) >
1

3
(α− 2δ), ordp(η − y0) >

1

3
(α− 2δ).

By back substitution in (3.4), (3.5) and (3.1), we have g(ξ, η) = fx(ξ, η) = 0 and
h(ξ, η) = fy(ξ, η) = 0. �

Let f(x, y) be in Zp[x, y] and λ be the roots of k(λ) of fx and fy. In Theorem 3.2,
we give the p-adic sizes of common zeros in the neighbourhood of (x0, y0) under
the condition ordp bc > ordpλ > ordp

a
b

with ordpλ = 1
2
ordp

c
e
.

Theorem 3.2. Let

f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 + rx+ sy + t

be a polynomial in Zp[x, y] with p > 3. Let α > 0,

δ = max {ordpa, ordpb, ordpc, ordpd, ordpe}

and ordp(36ae − c2)2 > ordp9(6be − cd)(6ad − bc). Suppose (x0, y0) ∈ ω2
p, ordp

b
c
>

ordpλ > ordp
a
b
, CEI −DEH − AI2 = 0 and DE2 −BEI + AHI = 0 where

A = 108b2e− 8c3, B = 864abe+ 27b2d− 36bc2,
C = 1728a2e+ 216abd− 54b2c, D = 432a2d− 27b3,
E = 9bd− 4c2, H = 6(6ad− bc) and I = 3(4ac− 3b2).

If ordpfx(x0, y0), ordpfy(x0, y0) ≥ α > δ and ordpλ = 1
2
ordp

c
e
, then there exists (ξ, η)

such that fx(ξ, η) = 0, fy(ξ, η) = 0 and ordp(ξ − x0) ≥ 1
3
(α − 2δ), ordp(η − y0) >

1
3
(η − 3δ) or ordp(η − y0) > 1

3
(α− 4δ).

Proof. The proof is similar to Theorem 3.1 by using Lemmas 3.6, 3.7, 3.8 and
3.9. �
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4. CONCLUSION

In this paper, the p-adic sizes of partial derivative polynomials associated with
quartic polynomial is considered. Then, by using these results, we find the estima-
tion of cardinality of the set (fx, fy; p

α) and also exponential sums of the polyno-
mial.
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