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STRUCTURE OF T−SEMIRING

G. RAJESWARI1, T. VASANTHI, AND M. AMALA

ABSTRACT. In this paper, we study the conditions under which the class of T-
semirings are additively and/or multiplicative idempotent. We also study the
structures of T-semiring. In a totally ordered T-semiring, we prove that the additive
and multiplicative structures are maximum addition and maximum multiplication
respectively.

1. INTRODUCTION

The word idempotent signifies the study of semirings in which the addition
operation is idempotent u + u = u. The best-known example for idempotent
semiring is the max-plus semiring. Interest has been shown in such structures
arose in late 1950s through the observation that certain problems of discrete op-
timization could be linearized over suitable idempotent semirings. Recently the
subject has established connections with discrete event systems automata theory,
non-expansive mappings, optimization theory. Idempotent semiring is a funda-
mental structure that has many applications in Computer Science. Idempotent
semiring is a ring with additive idempotent. Recently modal operators of idempo-
tent semirings are introduced in order to model the properties of programs and
transition systems more suitably and to link algebraic and relational formalisms
with dynamic and temporal logics. Some other applications of semiring areas are
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cryptography, optimization theory, graph theory, dynamical systems and automata
theory.

The paper is organized as follows: Section 1 contains introduction. In section 2
some definitions are given, Section 3 presents structure of T - semiring. In section
4 we study the structure of totally ordered T - semiring and the last section is
conclusion. Additional information can be found in [1-21].

2. PRELIMINARIES

We used the following definitions in this paper.
An algebraic structure (S,+, ·) is termed as semiring if the additive reduct is

a semigroup; multiplicative reduct is a semigroup and u(x + y) = ux + uy and
(x + y)u = xu + yu for every u, x, y in S. An additive s.g is additively idempotent
if u + u = u for all u in S. A multiplicative s.g is multiplicatively idempotent if
u2 = u∀u in S. A semiring is said to be a mono semiring if u + x = ux∀u, x in S A
multiplicative s.g is assumed to be left (right) singular if ux = u(xu = x) for all u, x
in S. An additive s.g is said to be left (right) singular if u+ x = u(u+ x = x) for all
u, x in S. An element u is periodic if um = un, where m and n are positive integers.
A multiplicative s.g is said to be periodic if every one of its elements is periodic.
An additive s.g is rectangular band if u = u + x + u∀u, x in S. A multiplicative s.g

is rectangular band if u = uxu ∀u, x in S. In a semiring S, the s.g (S, ·) is zeroid
if for all u in S such that ux = x or xu = x for some x in S. In a semiring S, the
additive s.g is zeroid if for all u in S such that u+ x = x or x+ u = x for some x in
S. An additive s.g is commutative if u+ x = x+ u for all u, x in S. A multiplicative
s.g is commutative if ux = xu∀u, x in S. A component u in a multiplicative s.g is
known as left and right cancellable, if ux = uy(xu = yu) for any x, y in S implies x
equals to y. An element u in an additive s.g is known as left and right cancellable,
if u+x = u+y and x+u = y+u for any x, y in S implies x equals to y. A semiring
S is almost idempotent if u + u2 = u2∀u, x in S. A semiring S is said to satisfy the
Integral Multiple Property (IMP) if u2 = nu∀u in S, where the positive integer n

depends on the element u.

Note.

(1) In this paper S is said to be a T - semiring satisfying the identity u2+uxu =

u for all u, x is S.
(2) For undefined concepts refer (iv).
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3. STRUCTURE OF T - SEMIRING

Lemma 3.1. Let S be a T - semiring. Then S is an idempotent semiring in the
following cases.

(a) S contains the multiplicative identity.
(b) (S,+) is right cancellative.
(c) S is multiplicatively subidempotent semiring.
(d) (S, +) is left singular.

Proof.

(a) Given that S is a T - semiring then u2+u3 = u for all u in S since S contains
multiplicative identity implies 1 + 1 = 1, and

(3.1) =⇒ u+ u = u −→ (1).

Therefore (S,+) is idempotent since S is a T semiring u2 + uxu = u for all
u, x is S

=⇒ u2 + u · 1 · u = u =⇒ u2 + u2 = u =⇒ u(u+ u) = u.

Using equation (3.1) in above we get

(3.2) u2 = u.

Therefore (S, ·) is idempotent Hence from equations (3.1) and (3.2), S is
an idempotent semiring.

(b) By hypothesis

(3.3) u2 + uxu = u for all u, xis S

and

(3.4) u2 + u3 = u for all u in S.

From (3.3)

(3.5) u2 + u(u+ u)u = u =⇒ u2 + u3 + u3 = u =⇒ u+ u3 = u.

From (3.4) and (3.5): u2 + u3 = u + u3. Since (S,+) is right cancellative
implies

(3.6) u2 = u.

Therefore (S, ·) is idempotent.
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Now substituting equation (3.6) in equation (3.4) we obtain u+ u = u.
Therefore (S,+) is idempotent. Hence S is an idempotent semiring.

(c) Consider

(3.7) u2 + u3 = u for all u in S,

since S is multiplicative subidempotent

(3.8) u+ u2 = u for all u in S

(3.9) u2 + u3 = u2

From (3.7) and (3.9),

(3.10) u = u2.

Therefore (S, ·) is idempotent substituting equation (3.10) in equation
(3.8) we get u + u = u. Therefore (S,+) is idempotent Hence S is an
idempotent semiring.

(d) By hypothesis

(3.11) u2 + u3 = u for all u in S

since (S,+) is left singular then equation (3.11) becomes u2 = u. Again
consider u2 + u3 = u =⇒ u + u · u = u =⇒ u + u = u. Therefore (S,+) is
idempotent. Hence S is an idempotent semiring.

�

Example 3.2. We have framed an example for the above lemma in multiplicative
idempotent semiring, idempotent and T - semiring with S = {u, x, y}.

+ u x y

u u x y

x u x y

y u x y

· u x y

u u x y

x u x y

y u x y

Theorem 3.3. If S is a T - semiring and (S, ·) is left singular or right singular semi-
group, then (S,+) is idempotent.

Proof. Given u2 + uxu = u for all u, x is S since (S, ·) is left singular then above
equation becomes u+ u · u = u and u+ u = u. Therefore (S,+) is idempotent. �
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Remark 3.4. In a T - semiring if (S, ·) is idempotent, then (S,+) is idempotent.

Theorem 3.5. Let S be a T - semiring. Then (S, ·) is periodic under the following
cases.

(a) S is an almost idempotent semiring.
(b) S is a mono semiring.

Proof. (a) We have

(3.12) u2 + u3 = u for all u in S

since S is almost idempotent semiring

(3.13) u+ u2 = u2 for all u in S.

From (3.12) u (u+ u2) = u using equation (3.13) we obtain u (u2) =⇒ u3 = u

Therefore (S, ·) is periodic.
(b) Again consider equation u2 + u3 = u for all u in S since S is mono semiring

then above equation implies u2 · u3 = u =⇒ u5 = u Therefore (S, ·) is periodic. �

Proposition 3.6. Let S be a T - semiring. If (S,+) is idempotent, then un + u = u

for all u in S.

Proof. Given

(3.14) u2 + uxu = u for all u, x is S

Further:
=⇒ u2 + u2 + uxu = u2 + u

=⇒ u2 + uxu = u2 + u, since (S,+) is idempotent
=⇒ u = u2 + u

=⇒ u3 + u2 = u2

=⇒ u3 + u2 + uxu = u2 + uxu

=⇒ u3 + u = u by (3.14).
Continuing like this we get un + u = u for all u in S. �

Proposition 3.7. Let S be a T -semiring and S satisfies IMP. Then (S,+) is periodic.

Proof. By hypothesis u2+u3 = u for all u is S. Then u2+u2 ·u = u since S satisfies
IMP then above equation becomes nu+ (nu)u = u, and further
=⇒ nu+ nu2 = u =⇒ nu+ n(nu) = u =⇒ nu+ n2u = u =⇒ n(1 + n)u = u.
Therefore (S,+) is periodic. �
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Theorem 3.8. Let S be a T - semiring. If (S, ·) is zeroid, then (u + x)u = u or
u(u+ x) = u for all u, x is S

Proof. Consider

(3.15) u2 + uxu = u for all u, x is S.

By hypothesis (S, ·) is zeroid, ux = x or xu = x. From (3.15), u2 + uxu = u and
furrther, u2 + xu = u. Since ux = x, we have (u+ x)u = u.

Now consider xu = x. From (3.15), u2 + uxu = u, and further u2 + ux = u, i.e.,
u(u+ x) = u. Therefore (u+ x)u = u or u(u+ x) = u �

Theorem 3.9. Let S be a T - semiring and zerosum semiring. Then
(a) u2 + u = u+ u2 for all u in S.
(b) u2xu = u.

Proof. (a) We have u2 + uxu = u for all u, x is S. Then, u2 + u2 + uxu = u2 + u and
since S is zerosum semiring 0 + uxu = u2 + u we have

(3.16) u2 + u = uxu.

Again, we take u2 + uxu = u and receive u+ u2 + uxu = u+ u since S is zerosum
semiring u+u2+uxu = 0, u+u2+uxu+uxu = 0+uxu and u+u2+0 = 0+uxu,.
Since S is zerosum semiring we have

(3.17) u+ u2 = uxu

From equation (3.16) and (3.17) we get u2 + u = u+ u2.
(b) Since u2+u3 = u for all u in S we have u (u+ u2) = u, and further u(uxu) =

u. Therefore u2xu = u. �

Theorem 3.10. If S is a T - semiring and (S, ·) is rectangular band, then
(a) S is an almost idempotent semiring.
(b) (u2 + u) (u+ u2) = u for all u in S.

Proof. (a) From

(3.18) u2 + uxu = u for all u, x is S

since (S, ·) is rectangular band

(3.19) u3 = u



STRUCTURE OF T−SEMIRING 10963

and

(3.20) u2 + u = u.

Also, from (3.18) u2 + u3 = u for all u in S =⇒ u2 + u = u by (3.19),

u
(
u2 + u

)
= u · u =⇒ u3 + u2 = u2 =⇒ u2 + u3 + u2 = u2 + u2.

Since (S, ·) is rectangular band then (S,+) is idempotent then above equation
implies

(3.21) u+ u2 = u2 for all u in S.

Therefore S is an almost idempotent semiring.
(b) From (3.20) and (3.21) (u2 + u) (u+ u2) = u·u2 we receive (u2 + u) (u+ u2) =

u3, i.e., (u2 + u) (u+ u2) = u. �

Theorem 3.11. Let S be a T - semiring. If (S,+) is a rectangular band and (S,+)

is commutative, then u+ u = u2 + u2 for all u in S.

Proof. Consider

(3.22) u2 + uxu = u for all u, x is S

So, u2 + u3 = u for all u in S, since (S,+) is rectangular band u + x + u = u for
all u, x is S. Thus, u(u+ x+ u) = u · u and u2 + ux+ u2 + uxu = u2 + uxu. Using
(3.15), u2 + ux + u = u we receive u3 + uxu + u2 = u2 and u3 + u2 + uxu = u2,

since (S,+) is commutative which implies u3 + u = u2, u2 + u3 + u = u2 + u2 and
u+ u = u2 + u2,

Therefore u+ u = u2 + u2 for all u in S. �

Theorem 3.12. If S is a T - semiring and (S, ·) is left cancellative, then u+u2 = x+x2

for all u, x is S

Proof. Consider u2 + u3 = u for all u in S. Then

(3.23) u2x+ u3x = ux.

Also x2 + x3 = x for all x in S implies

(3.24) ux2 + ux3 = ux.

From (3.23) and (3.24), u2x+u3x = ux2+ux3, and further ux (u+ u2) = ux (x+ x2)

since (S, ·) is left cancellative.
Therefore u+ u2 = x+ x2 for all u, x is S. �
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4. STRUCTURE OF TOTALLY ORDERED T - SEMIRING

Note.

(1) Throughout this paper positively totally ordered is denoted by p.t.o. and
negatively totally ordered is denoted by n.t.o.

(2) For undefined concepts refer (XII).

Definition 4.1. In a totally ordered semiring (S,+, ·,≤)
(a) (S,+) and (S, ·) are p.t.o, if u+ x ≥ u, x(ux ≥ u, x)∀u, x in S;
(b) (S,+) and (S, ·) are n.t.0, if u+ x ≤ u, x(ux ≤ u, x)∀u, x in S.

Definition 4.2. An element u in a partially ordered semigroup (S,+,≤) is non-
negative (non-positive) if u + u ≥ u(u + u ≤ u). A partially ordered semigroup
(S, ·,≤) is non-negative (non-positive) if u2 ≥ u (u2 ≤ u).

Definition 4.3. An element u in a totally ordered semiring is said to be a mini-
mal/maximal if u ≤ x(u ≥ x) for every x ∈ S.

Theorem 4.4. If S is a totally ordered T - semiring and (S,+) is p.t.o, then (S, ·) is
non-positively ordered.

Proof. We have u2+uxu = u for all u, x is S. Since (S,+) is p.t.o u = u2+uxu ≥ u2,
then u ≥ u2 for all u in S. Therefore (S, ·) is non-positively ordered. �

Proposition 4.5. Let S be a totally ordered T - semiring. If S has multiplicative
identity 1 and (S,+) is p.t.o., then

(a) (S, ·) is n.t.o.;
(b) 1 is the maximum element.

Proof. (a) We have 12 + 1 · x · 1 = 1 for all 1, x is S. Then

1 + x = 1 =⇒ u(1 + x) = u · 1 =⇒ u+ ux = u.

Since (S,+) is p.t.o.

(4.1) u = u+ ux ≥ ux.

Again by T-semiring we have 12 + 1 · u · 1 = 1 for all 1, u is S and

=⇒ 1 + u = 1 =⇒ (1 + u)x = x · 1 =⇒ x+ ux = x.

Since (S,+) is p.t.o.

(4.2) x = x+ ux ≥ ux.
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From (4.1) and (4.2), (S, ·) is n.t.o..
(b) We have 1 + 1 · x · 1 = 1 for all 1, x is S. So, 1 + x = 1. Since (S,+) is p.t.o.,

1 = 1 + x ≥ x. Therefore 1 is the maximum element. �

Theorem 4.6. If S is a totally ordered T - semiring and (S, ·) is non-negatively or-
dered, then (S,+) is non-positively ordered.

Proof. Consider u2 + u3 = u for all u in S. Since (S, ·) is non-negatively ordered
u2 ≥ u. Therefore u = u2 + u3 ≥ u+ u · u ≥ u+ u, i.e., u ≥ u+ u. Therefore (S,+)

is non-positively ordered. �

Proposition 4.7. Let S be a totally ordered T - semiring. If S contains multiplicative
identity.

(a) If (S,+) is p.t.o., then u+ x = x+ u = max(u, x) for all u, x is S.
(b) If (S, ·) is p.t.o., then ux = xu = max(u, x) for all u, x is S.

Proof. (a) Let u, x ∈ S. Suppose u < x. Then u + u ≤ u + x ≤ u + u. Since (S,+)

is idempotent,

(4.3) u ≤ u+ x ≤ u.

From (4.3),

(4.4) u+ x ≤ x.

Since (S,+) is p.t.o,

(4.5) u+ x ≥ x.

From (4.4) and (4.5), u+ x = x = max(u, x). Also u < x implies

(4.6) u+ u ≤ x+ u ≤ x+ x, x+ u ≤ x.

From (4.3)

(4.7) x+ u ≤ x.

Since (S,+) is p.t.o,

(4.8) x+ u ≥ x.

From (4.7) and (4.8) x+ u = x = max(u, x).
Similarly, we can prove that u+ x = x+ u = max(u, x) if x < u.
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(b) Again Let u, x ∈ S. Suppose u < x. Then u2 ≤ ux ≤ x2. Since (S, ·) is
idempotent,

(4.9) u ≤ ux ≤ u.

From here

(4.10) ux ≤ x.

Since (S, ·) is p.t.o,

(4.11) ux ≥ x.

From (4.10) and (4.11), ux = x = max(u, x). Also u < x implies u2 ≤ xu ≤ x2.
Since (S, ·) is idempotent,

(4.12) u ≤ xu ≤ x.

From (4.9),

(4.13) xu ≤ x.

Since (S, ·) is p.t.o,

(4.14) xu ≥ x.

From (4.13) and (4.14), xu = x = max(u, x).
Similarly, we can prove that ux = xu = max(u, x) if x < u. �

5. CONCLUSION

In this paper we have described and compared several structures of T - semiring.
We gave the equational bases of them and also the varieties generated by them.
Our future work can be continued in different directions on T - semiring.
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