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OSCILLATIONS IN SECOND-ORDER DAMPED DIFFERENCE EQUATIONS
WITH A SUPERLINEAR NEUTRAL TERM

G. E. CHATZARAKIS1, R. KANAGASABAPATHI, S. SELVARANGAM, AND E. THANDAPANI

ABSTRACT. This paper concerns the oscillatory behavior of the solutions to second-
order damped nonlinear difference equations with a superlinear neutral term. We
obtain oscillatory criteria by a Riccati type transformation as well as summation
averaging conditions. We provide examples, illustrating the results and discuss
extensions of this work, for future research.

1. INTRODUCTION

This paper deals with the oscillation of the solutions to second-order neutral
difference equations with a superlinear neutral term and a damping term, having
the general form

∆(b(n)∆u(n)) + d(n)∆u(n) + q(n)xβ(n− σ) = 0, n ≥ n0, (E)

where n0 is a positive integer, and u(n) = x(n) + p(n)xα(n− τ).

Through the rest of the paper, we assume that the following conditions are
satisfied:

(H1) α and β are ratios of odd positive integers with α ≥ 1;

(H2) {b(n)}, {p(n)}, {d(n)} and {q(n)} are positive real sequences with p(n) ≥
1, p(n) 6= 1 for large n;

(H3) τ and σ are positive integers with τ < σ.
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Let θ = max{τ, σ}. By a solution of (E), we mean a real sequence {x(n)} defined
for all n ≥ n0 − θ, and satisfying (E) for all n ≥ n0. A nontrivial solution of (E)

is called oscillatory if it is neither eventually positive nor eventually negative, and
nonoscillatory otherwise. Equation (E) is said to be oscillatory if all its solutions
are oscillatory.

The study of the oscillatory behavior of the solutions of various classes of second-
order neutral difference equations without damping terms has been a very ac-
tive area of research over the years; for recent contributions see for example
[1–5, 8–10, 12, 15–17, 19, 20] and the references cited therein. However, while
reviewing the literature it becomes clear that results on the oscillation of the so-
lutions of second-order neutral difference equations with damping terms are rel-
atively scarce, see [11, 13, 18] for typical results in this area. Even though the
work in [11, 13, 18] deals with second-order neutral difference equations with a
damping term, the results obtained in these papers cannot be applied to the case
where p(n) > 1 and/or p(n)→∞ as n→∞ and α > 1.

To the best of our knowledge, there are no results for second-order difference
equations with a superlinear neutral term and a damping term in the case where
p(n) → ∞ as n → ∞. Thus the aim in the present paper is to investigate the
oscillatory behavior of (E) and establish new results that extend and generalize
the existing criteria. In this sense, this paper constitutes a valid contribution to
the theory of the oscillatory behavior of the solutions of second-order damped
difference equations with a superlinear neutral term.

2. OSCILLATION RESULTS

In this section, we present sufficient conditions for the oscillation of all solutions
of (E) when

(2.1)
∞∑

n=n0

1

b(n)E(n)
=∞, E(n) =

n−1∏
s=n0

(
b(s)

b(s)− d(s)

)
and

(2.2) b(n)− d(n) > 0,

for all n ≥ n0.
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Define

B(n) =
n−1∑
s=n1

1

b(s)
,

for all n1 ≥ n0. We start with the following lemma.

Lemma 2.1. Let (2.1) and (2.2) hold and {x(n)} be an eventually positive solution
of (E). Then, the following inequalities simultaneously hold, for all sufficiently large
n:

(2.3) u(n) > 0, ∆u(n) > 0, ∆(b(n)∆u(n)) < 0.

Proof. Assume that x(n) > 0, x(n − τ) > 0 and x(n − σ) > 0 for all n ≥ n1 ≥ n0.

Then u(n) > 0 and either {∆u(n)} is oscillatory or {∆u(n)} is nonoscillatory for
all n ≥ n1. Let {∆u(n)} be oscillatory. Then, there exists n1 > n0 such that either
∆u(n1) < 0 or ∆u(n1) = 0. First assume ∆u(n1) < 0. From equation (E), we have

∆u(n1 + 1)− (b(n1)− d(n1))∆u(n1)

b(n1 + 1)
= − q(n1)

b(n1 + 1)
xβ1 (n1 − σ) < 0,

or

(2.4) ∆u(n1 + 1) <
(b(n1)− d(n1))∆u(n1)

b(n1 + 1)
,

which by (2.2) implies that ∆u(n1 + 1) < 0. By induction we have

∆u(n) < 0 for all n ≥ n1.

If ∆u(n1) = 0, then from (2.4) we obtain ∆u(n1+1) < 0. Using a similar argument
as above, we get ∆u(n) < 0 for all n ≥ n1. Hence in both cases we obtain ∆u(n) <

0 eventually which is a contradiction. Thus ∆u(n) > 0 or ∆u(n) < 0 eventually.
Assume ∆u(n) < 0 for all n ≥ n1 ≥ n0. Letting z(n) = −b(n)∆u(n) > 0, we get

from (E) that

∆z(n) +
d(n)

b(n)
z(n) ≥ 0, n ≥ n1,

or

z(n+ 1)−
(

1− d(n)

b(n)

)
z(n) ≥ 0,

which implies that

z(n) ≥ z(n1)

E(n)
.
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Then

∆u(n) ≤ b(n1)∆u(n1)

b(n)E(n)
, n ≥ n1.

Summing up the last inequality from n1 to n and taking (2.1) into account, we
obtain

u(n+ 1) ≤ u(n1) + b(n1)∆u(n1)
n∑

s=n1

1

b(s)E(s)
→ −∞ as n→∞

which contradicts that u(n) is positive. Hence ∆u(n) > 0 for n ≥ n1. From (E), we
see that (2.3) holds. The proof of the lemma is complete. �

Lemma 2.2. Let (2.1) and (2.2) hold and {x(n)} be an eventually positive solution
of (E) such that (2.3) holds. Then

(2.5) u(n) ≥ B(n)b(n)∆u(n), n ≥ n1 ≥ n0

and { u(n)
B(n)
} is eventually decreasing.

Proof. The proof is contained in Lemma 2.2 in [10], and thus, the details are
omitted.

For convenient, we use the following notation:

Π(n) =


1 if β = α

a1 if β > α

a2B
β
α
−1(n) if β < α,

where a1, a2 are positive real constants, and for any positive real sequence ξ(n),

we define

η(n) =
b(n)∆ξ(n)− ξ(n)d(n)

b(n)ξ(n+ 1)
.

To prove our main results, we use the additional condition:

(H4) For every positive constant δ, we have

φ(n) =
1

p(n+ τ)

[
1−

(
B(n+ 2τ)

B(n+ τ)

) 1
α δ

1
α
−1

p
1
α (n+ 2τ)

]
> 0

for all sufficiently large n.

Note that if α > 1, the above condition requires limn→∞ p(n) =∞. �
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Theorem 2.1. Let conditions (H1)− (H4) and (2.1), (2.2) hold. If

(2.6)
∞∑

n=n1

q(n)φ
β
α (s− σ) =∞

for all n1 ≥ n0, then (E) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (E). Without loss of generality,
we may assume x(n) > 0, x(n− τ) > 0 and x(n−σ) > 0 for all n ≥ n1 ≥ n0, where
n1 is chosen so that (2.3) holds for all n ≥ n1.

From the definition of u(n), we have

xα(n− τ) =
1

p(n)
(u(n)− x(n)) ≤ u(n)

p(n)
,

or

x(n) ≤ u1/α(n+ 2τ)

p1/α(n+ 2τ)
.

Using this in the definition of u(n), we obtain

(2.7) xα(n) ≥ 1

p(n+ τ)

[
u(n+ τ)− u

1
α (n+ 2τ)

p
1
α (n+ 2τ)

]
.

Since u(n)
B(n)

is decreasing, we get

(2.8)
B(n+ 2τ)u(n+ τ)

B(n+ τ)
≥ u(n+ 2τ).

Using (2.8) in (2.7), we obtain

(2.9) xα(n) ≥ u(n+ τ)

p(n+ τ)

[
1−

(
B(n+ 2τ)

B(n+ τ)

) 1
α u

1
α
−1(n+ 2τ)

p
1
α (n+ 2τ)

]
.

Since {u(n)} is positive and increasing for n ≥ n1, there exists an integer n2 ≥ n1

and a constant δ > 0 such that

(2.10) u(n) ≥ δ for n ≥ n2.

Substituting (2.10) in (2.9), we get

xα(n) ≥ φ(n)u(n+ τ), n ≥ n2,

or

(2.11) xα(n− σ) ≥ φ(n− σ)u(n+ τ − σ), n ≥ n3 ≥ n2.
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Using (2.11) in (E), we obtain

(2.12) ∆(b(n)∆u(n)) + d(n)∆u(n) + q(n)φ
β
α (n− σ)u

β
α (n+ τ − σ) ≤ 0, n ≥ n3.

Since d(n) > 0 and ∆u(n) > 0, it follows from (2.12) that

(2.13) ∆(b(n)(∆u(n)) + q(n)φ
β
α (n− σ)u

β
α (n+ τ − σ) ≤ 0.

Summing up (2.13) from n3 to n− 1 and using (2.10), we obtain

b(n)∆u(n) ≤ b(n3)∆u(n3)− δ
β
α

n−1∑
s=n0

q(s)φ
β
α (s− σ)→ −∞ as n→∞

which contradicts the fact that ∆u(n) is positive. The proof of the theorem is
complete. �

Theorem 2.2. Let conditions (H1) − (H4) and (2.1), (2.2) hold. If there exists a
positive real sequence {ξ(n)} such that

lim
n→∞

sup
n∑

s=n1

[
ξ(s)q(s)φ

β
α (s− σ)Π(s+ τ − σ)

B(s+ τ − σ)

B(s)

−b(s)η
2(s)ξ2(s+ 1)

4ξ(s)

]
=∞(2.14)

for all n1 ≥ n0, then (E) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (E). Without loss of generality
there is an integer n1 ≥ n0 such that x(n) > 0, x(n − τ) > 0 and x(n − σ) > 0 for
all n ≥ n1, where n1 is chosen so that u(n) satisfies condition (2.3) for all n ≥ n1.

Proceeding as in the proof of Theorem 2.1, we arrive at (2.12) for n ≥ n3, which
can be written as

(2.15) ∆(b(n)∆u(n)))+d(n)∆u(n)+q(n)φ
β
α (n−σ)u

β
α
−1(n+τ−σ)u(n+τ−σ) ≤ 0,

for n ≥ n3. Since u(n)
B(n)

is decreasing, there exists a constant c > 0 such that

(2.16) u(n) ≤ cB(n), n ≥ n3.

In view of (2.10) and (2.16), inequality (2.15) can be written as

(2.17) ∆(b(n)∆u(n))) +d(n)∆u(n) + q(n)φ
β
α (n−σ)Π(n+ τ −σ)u(n+ τ −σ) ≤ 0,

for n ≥ n3. Using the Riccati substitution, we define the sequence {w(n)},

(2.18) w(n) = ξ(n)
b(n)∆u(n)

u(n)
, for n ≥ n3.
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Clearly w(n) > 0, and from (2.17) and (2.18), we see that

∆w(n) =
∆ξ(n)

ξ(n)
w(n+ 1) +

ξ(n)

u(n)
∆(b(n)∆u(n))

− ξ(n)

u(n)u(n+ 1)
b(n+ 1)∆u(n+ 1)∆u(n)

≤ ∆ξ(n)

ξ(n)
w(n+ 1) +

ξ(n)

u(n)
[−d(n)∆u(n)

−q(n)φ
β
α (n− σ)Π(n+ τ − σ)u(n+ τ − σ)

]
− ξ(n)

b(n)ξ2(n+ 1)
w2(n+ 1)

≤ η(n)w(n+ 1)− ξ(n)q(n)φ
β
α (n− σ)Π(n+ τ − σ)

u(n+ τ − σ)

u(n)

− ξ(n)

b(n)ξ2(n+ 1)
w2(n+ 1).(2.19)

Since u(n)
B(n)

is decreasing, we have

u(n+ τ − σ)

u(n)
≥ B(n+ τ − σ)

B(n)
.

Substituting this in (2.19), we obtain

∆w(n) ≤ η(n)w(n+ 1)− ξ(n)q(n)φ
β
α (n− σ)Π(n+ τ − σ)

B(n+ τ − σ)

B(n)

− ξ(n)

b(n)ξ2(n+ 1)
w2(n+ 1).(2.20)

Completing the square with respect to w, we get

∆w(n) ≤ −ξ(n)q(n)φ
β
α (n− σ)Π(n+ τ − σ)

B(n+ τ − σ)

B(n)
+
b(n)ξ2(n+ 1)η2(n)

4ξ(n)

for n ≥ n3. Summing up the last inequality from n3 to n yields,
n∑

s=n3

[
ξ(s)q(s)φ

β
α (s− σ)Π(s+ τ − σ)

B(s+ τ − σ)

B(s)
− b(s)ξ2(s+ 1)η2(s)

4ξ(s)

]
< w(n3),

which contradicts (2.14). The proof of the theorem is complete. �

Theorem 2.2 enables us to propose various conditions, for the oscillation of
(E) by different choices of {ξ(n)}. For example, letting ξ(n) = 1, we obtain the
following corollary.
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Corollary 2.1. Let conditions (H1)− (H4) and (2.1), (2.2) hold. If

(2.21) lim
n→∞

sup
n∑

s=n1

[
q(s)φ

β
α (s− σ)Π(s+ τ − σ)

B(s+ τ − σ)

B(s)
− d2(s)

4b(s)

]
=∞

for all n1 ≥ n0, then (E) is oscillatory.

Next, we present a new oscillation result for (E), assuming that η(n) ≤ 0 for all
n ≥ n0.

Theorem 2.3. Let conditions (H1) − (H4) and (2.1), (2.2) hold. If there exists a
positive real sequence such that η(n) ≤ 0 for all n ≥ n0, and

lim
n→∞

sup
n∑

s=n1

ξ(s)q(s)φ
β
α (s− σ)Π(s+ τ − σ)

B(s+ τ − σ)

B(s)
=∞(2.22)

for all n1 ≥ n0, then (E) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (E). Without loss of generality,
we may assume x(n) > 0, x(n − τ) > 0 and x(n − σ) > 0 for all n ≥ n1 for some
integer n1 ≥ n0. Then from Lemma 2.1, {u(n)} satisfies condition (2.3) for all
n ≥ n2 ≥ n1. Proceeding as in the proof of Theorem 2.2, we arrive at (2.20) for
n ≥ n2. Since η(n) ≤ 0 and w(n) > 0, the inequality (2.20) can be written as

∆w(n) ≤ −ξ(n)q(n)φ
β
α (n− σ)Π(n+ τ − σ)

B(n+ τ − σ)

B(n)
, n ≥ n2.

Summing up the last inequality from n3 to n, we get
n∑

s=n3

ξ(s)q(s)φ
β
α (s− σ)Π(s+ τ − σ)

B(s+ τ − σ)

B(s)
< w(n2),

which contradicts (2.22).The proof of the theorem is complete. �

Theorem 2.4. Let conditions (H1)− (H4) and (2.1), (2.2) hold. If

∆V (n) + q(n)φ
β
α (n− σ)B

β
α (n+ τ − σ)V

β
α (n+ τ − σ) = 0(2.23)

is oscillatory, then (E) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of (E). Without loss of generality,
we may assume x(n) > 0, x(n − τ) > 0 and x(n − σ) > 0 for all n ≥ n1 for some
integer n1 ≥ n0. Then by Lemma 2.1, the sequence {u(n)} satisfies (2.3) for all
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n ≥ n2 ≥ n1. Proceeding as in the proof of Theorem 2.1, we arrive at (2.13), that
is

∆(b(n)(∆u(n)) + q(n)φ
β
α (n− σ)u

β
α (n+ τ − σ) ≤ 0.(2.24)

From (2.5), we obtain

(2.25) u(n+ τ − σ) ≥ B(n+ τ − σ)b(n+ τ − σ)∆u(n+ τ − σ), n ≥ n2.

Using (2.25) in (2.24) yields

∆(b(n)(∆u(n))) + q(n)φ
β
α (n− σ)B

β
α (n+ τ − σ)(b(n+ τ − σ)∆u(n+ τ − σ))

β
α ≤ 0.

Let V (n) = b(n)∆u(n) > 0 be a positive solution of the inequality

∆V (n) + q(n)φ
β
α (n− σ)B

β
α (n+ τ − σ)V

β
α (n+ τ − σ) ≤ 0.

Then by Lemma 1 of [6], the corresponding equation (2.23) also has a positive
solution, which is a contradiction. Now, the proof is complete. �

Corollary 2.2. Let conditions (H1)− (H4) and (2.1), (2.2) hold. If

lim
n→∞

inf
n−1∑

s=n+τ−σ

q(s)φ(s− σ)B(s+ τ − σ) >

(
σ − τ

σ − τ + 1

)σ−τ+1

,when α = β

(2.26)

and
∞∑

n=n1

q(n)φ
β
α (n− σ)B

β
α (n+ τ − σ) =∞ when α > β(2.27)

for all n1 ≥ n0, respectively, then (E) is oscillatory.

Proof. Assume (2.26) holds. Then by Theorem 7.6.1 in [7], equation (2.23) is
oscillatory. So by Theorem 2.4, equation (E) is oscillatory. Now assume (2.27)
holds. Then by Theorem 1 in [14], equation (2.23) is oscillatory and thus, by
Theorem 2.4, we conclude that (E) is oscillatory. The proof of the corollary is
complete. �

Corollary 2.3. Let conditions (H1)− (H4) and (2.1), (2.2) hold. If α < β and there
exists a constant λ > 1

σ−τ ln β
α

such that

lim
n→∞

inf
[
q(n)φ

β
α (n− σ)B

β
α (n+ τ − σ) exp(−eλn)

]
> 0(2.28)

then (E) is oscillatory.
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Proof. Assume (2.28) holds. Then by Theorem 2 in [14], equation (2.23) is oscil-
latory and thus, by Theorem 2.4, equation (E) is oscillatory. �

3. EXAMPLES

In this section, we illustrate our results with two examples.

Example 1. Consider the difference equation with a superlinear neutral term and a
damping term

(3.1) ∆2u(n) +
1

n+ 1
∆u(n) +

(n+ 2)

2
x5(n− 2) = 0, n ≥ 1,

with

u(n) = x(n) + nx5(n− 1).

Here b(n) = 1, p(n) = n, d(n) = 1
n+1

, q(n) = (n+2)
2
, α = 5, β = 5, τ = 1, and

σ = 2. Then, it is easy to see that E(n) = n and B(n) = n−1. Therefore conditions
(H1)− (H4) and (2.1), (2.2) hold. Furthermore

φ(n) =
1

(n+ 2)

[
1− 1

δ
4
5 (n+ 1)

1
5

]
.

Thus, it follows from (2.6) that

∞∑
n=n0

q(n)φ
β
α (n− σ) =

∞∑
n=1

1

2

[
1− 1

δ
4
5 (n+ 1)

1
5

]
=∞,

that is, condition (2.6) holds. Hence, all conditions of Theorem 2.1 hold, and
consequently, equation (3.1) is oscillatory.

Example 2. Consider the difference equation with a linear neutral term and a damp-
ing term

(3.2) ∆2u(n) +
1

(n+ 1)
∆u(n) + n2x3(n− 2) = 0, n ≥ 1

with

u(n) = x(n) + 2x(n− 1).
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Here α = 1, β = 3, p(n) = 2, d(n) = 1
n+1

, b(n) = 1, q(n) = n2, τ = 1, and σ = 2.

Then, it is easy to see that E(n) = n and B(n) = n − 1. Therefore, conditions
(H1)− (H4) and (2.1), (2.2) hold. Furthermore φ(n) = n−1

4n
. Now, condition (2.21)

becomes

lim
n→∞

sup
n∑
s=4

(
a1s

2

43

(
s− 3

s− 2

)3(
s− 2

s− 1

)
− 1

4(s+ 1)2

)

≈ lim
n→∞

sup
n∑
s=4

(
a1s

2

64
− 1

4(s+ 1)2

)
=∞.

Thus, all conditions of Corollary 2.1 are satisfied and hence equation (3.2) is os-
cillatory.

4. CONCLUSION

The results obtained in this paper are original and extend the existing results,
in the literature. Moreover, it is easy to see that these results also apply to second
order difference equation with a superlinear neutral term and a damping term

∆(b(n)(∆u(n))γ) + d(n)(∆u(n))γ + q(n)xβn−σ = 0, n ≥ n0 > 0,

under the condition
∞∑

n=n0

1

(b(n)E(n))
1
α

=∞.

The details are left to the reader. Of interest for future work, is to study equation
(E) in the case where p(n)→ −∞ as n→∞.
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