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APPLICATION OF FRACTIONAL CALCULUS ON A NEW DIFFERENTIAL
PROBLEM OF DUFFING TYPE

YAZID GOUARI, ZOUBIR DAHMANI, AND IQBAL JEBRIL!

ABSTRACT. In this paper, we study a new nonlinear sequential fractional differ-
ential problem of Duffing oscillator type. The considered problem involves two
fractional order operators: Riemann and Liouville integral, and the derivative
of Caputo, it is also with new nonlocal conditions. We prove an existence and
uniqueness result. Also, we prove a new existence result using Schaefer theorem.
We end our paper by presenting an illustrative example.

1. INTRODUCTION

In recent years, the fractional differential equations have attracted great atten-
tion. These equations can be used for modeling phenomena in mechanics, chem-
istry, biology, etc. For more information, we cite the research papers [3-5,7,8, 10,
12,15,16]. Moreover, nonlinear fractional differential equations are one of the
most important mathematical tools used to model real-world problems in many
domains of science, the reader is invited to consult [2,6,13,14,17-19]. In par-
ticular, one of these nonlinear equations, called the Duffing equation which has
become very important in engendering sciences [1,23]. In this context, many au-
thors have paid attention to the question of existence and uniqueness of solutions
for certain types of such equation. For more details, we refer the interested reader
to [9,11,21].
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We note that the standard Duffing oscillator model is:

1

y () +ay )+ f(tyt)=h(t), te][0,1],a>0,

with y (0) = ay, ¥ (0) = ay, and a, and a, are constants, f, g are continuous real
functions.

Let us also give some research works that have motivated the present "Duffing"
paper. We begin by [11], where the authors have discussed the application of
numerical methods to a forced Duffing problem which is:

DPu(t) + 6 D*u(t) + pu(t) + pu(t) = Asin(wt),
u(0) = A* € R, D*u(0) = B* € R,
O<a<l, 1<p<2, tel0,1],

where D, D? are for Caputo and 6, p, j, A > 0.
In their recent work, P. Pirmohabbati with his co authors [22] have investigated
the following initial value problem:

DPr(t) + aDr(t) + f(t,7(t)) = h(t),
(o) = o, T/(yo) = Ty,

O<ax<l, 1<pB<2,

and also, in [9], the authors have been concerned with the following Duffing
problem:

DA (Dx(t)) + kf(t, D%x(t)) + g(t,z(t), DPz(t)) = h(t),
z(0)=A*eR, D(0)=B*eR, z(1)=C*eR,
O<p<ac<l 1<p<2 tel,

where D DP DP are of Caputo, I = [0,1], k is a real constant, also f,g and h
are continuous. The existence of solutions and their stabilities of Ulam have been
discussed by the authors.
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Motivated by the papers [9,22], we shall study the following three sequential
fractional problem of Duffing type:

D(DP(D%y(t))) + f (£, y(t), DPy(t)) + g(t,y(t), 1y(t))
+h(t,y(t)) = 1),

y(0) =¢ e R,

y(l) = /o y(s)ds, 0 <n <1,

Iey(0) = D°y(1), 0 < u < 1,

O0<a,B,6,p<1, ¢>0, te,

(1.1)

\
where J := [0, 1], D*, D? D° DP are of Caputo, I? denotes the Riemann-Liouville
fractional integral of order ¢, and f, g : J x R? — R are two given functions, also
h:J xR — Ris a given function and [ is a function which is defined on .J.

The above problem is important since it includes several standard and fractional
models of Duffing type; it easy for any reader to observe that the equation of
Duffing can be derived from (1.1) but under some special data cases. Also we see
that Equat.1 includes clearly the problem in [9] under some particular data cases
of (1.1).

To the best of our knowledge, this is the first time in the literature where such
problem will be considered.

2. FRACTIONAL CALCULUS

We recall some definitions and lemmas [20].

Definition 2.1. Let @« > 0, and f : [0,1] — R be a continuous function. The
Riemann-Liouville integral of order a > 0 is defined by:

1) = e [ 6=

where T'(a) := [~ e "u*"du.

Definition 2.2. For a function f € C™([0,1],R) and n — 1 < a < n, the Caputo
dn

fractional derivative is defined by: D*f(t) = I ”_a%( f()).

To study (1.1) we need the following two lemmas [20]:



10992 Y. GOUARI, Z. DAHMANI, AND I. JEBRIL

Lemma 2.1. Let n € N*, and n — 1 < « < n. Then, the solutions of the equation

n—1
Dey(t) = 0;t € [0,1) are: y(t) = > cit’, where c; €R, i =0,1,2,..,n— 1

=0

Lemma 2.2. Ifn € N*, and n—1 < o < n, then, we have I*Dy( +Z cit',
such thatc; e R,i=0,1,2,..,n — 1.
Now, we prove what follows:

Lemma 2.3. Let G € C([0, 1]). Then, the problem
(
UD—G@%

(D%y
S
/ s)ds, 0 <np <1,

) =D%(1), 0 <u<l,
O<a?/67 7p§177q>077t€[071]7

D(D?
y(0) =
y(1) =
Iey(6

has

— [O+Bta P21 — P12 15
y(t) = G(t) N <¢1§03 - ¢3901)F(5 +4+ 1) ’
B [@ L PP — ¢1902)} 1
o1 p1(Prpz — d3p1) I T(6 +1)
¢1tﬁ+5
[(¢1<P3 — ¢3p1)I(B+0+1)
©3P11° &
p1(d103 — d3p) (6 +1)  oil(6+ 1)]%
B [ 901tﬂ+5 . 303t6 ]¢2
(P13 — P3p)L(B+0+1)  (drpz — d3p) (6 + 1)1

as integral solution; where,

+¢

2.1) = I"PPreq(t) +

9(5+e
I'(d+e+1)

1 gB+o+e 77<5+1 1
PTG TB4oter) T TG+2) TG+
b= [ 1Gds — G + gl - 1),

0

£0°
Ile+1)

P = —1, @y = ITHFteG(g) — IPHG(1) +
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1 776+6+1
=B o+l T(B1o+2)

and

P LT +e+1), TN EI+L, dips # dapr

Proof. We shall use Lemma 2.2 to see that

Diylt) = IPUGO) = gyt —on
ep 0T OO e e
Therefore, we have
y(0)=¢ = —c=¢,
954—6
Iey(0) = Dy(1) = [m - 1] o
- [rua e - e + 5]
1 gB+i+e
+[r(5+1) - r(5+5+e+1)]°’°

n 775+1 1
y(1) :/0 y(s)ds = [r(ﬂnz) CE 1)}01
_ [/0 PIP(1°G(s)))ds — I(IP(I°G(1)))+
1 pBrotL
el = 1)} [F(ﬁ +6+1) T(B+6+ 2)]60

P2p1 — P1P2 o = 02 | p3(Pap1 — Prp2)
(P13 — P31 )T(B+ 0+ 1) o1 p1(d1ps — d3¢1)
By considering the values of ¢, ¢; and ¢, in (2.2), we get (2.1).

Co =

In what follows, we use fixed point theory to study the problem
X ={zx e C(J,R),D’z € C(J,R)},
and the norm: ||z||x = Maz{||z||~ , || D?z||~ }, Where,

[2]lec = sup [z(t)] , [ D" [|oc = sup |D"x(t)].
teJ teJ
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Then, we take the nonlinear operator H : X — X that is defined by:

Hy(t) :m/() (t — )"t (U(s) — h(s,y(s)) — f(s, DPy(s), I%y(s))
, . ¢1tﬁ+6
~ 905, Dy(s), Iy(s)))ds + [(¢1<P3 — ¢3p))l(B+0+1)

padrt’ ot ]
o1(d1p3 — d3p)T(6+1)  ¢il'(6+1)

v ; B+a) / (6 =)t 74 (i) = h(s, y(s)) = f(s, D"y(s),

() = o5, D). ) ds + gy [ (1= 9" 1)

£6°
(e + 1)}

— h(s,y(s)) — f(s, Dy(s), 1%y(s)) — g(s, DPy(s), 1%(s)))ds +

_ [ prt? e i pst’ ]
(P13 — P3p1)T(B+0+1)  (P1p3 — d301)[(0 + 1)

! 1 ’ +B+a-1
[/o T(6+ 8+ a) X/O (s =) (U(r) = h(7,y(7))
— f(m, DPy(7), I%(7)) — g(7, DPy(7), I%y(7))) drds

1 ' +B8+a—1 D q
- M/o (1= )P (U(s) = h(s,y(s)) = f(s, DPy(s), I%y(s))

— g(s, D"y(s), Iy(s)))ds + E(n — 1)

3. MAIN RESULTS

We consider the following hypotheses:

(Q1) : The functions f and g defined on [0, 1] x R? are continuous, and / defined
on [0, 1] x R is also continuous, and [/ are continuous over .J.

(Q2) : There exist nonnegative constants vy, V2, Vg1, Vg2, such that for any t € J,
x;,x; € R,

2
|f(t, x1,20) — f(t, 21%, 22")] < ZVfi‘wi — ;"
i—1

2
|g(t7$1,l‘2)—g(tal’l*,@*)’ < ZVgilxi—%'*’a
i=1
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and forany t € J, u,v € R, |h(t,u) — h(t,v)| < r|u — v|. It is to note that we take:
Ay = Mazx(ve,ve), Ay .= Maz(vy, vg).

(Q3) : There exist non negative constants M, My, M, such that, for any ¢ € J,
z,y € R, we have |f(t,z)| < Ay, |g(t, z)| < Ay, |h(t, y)| < Ap.

(Q4) : The function [ satisfies: ||/||.c = A;.

Also, we consider the quantities:

1

g

g+ || T(6+B8+a+1)

( |¢1] |31

1603 — P31 |[T(B+0+1) * [pi(Prips — dap1)|[0(6 + 1)
1 96+5+,3+a 1 )

o+ ) \Tets1ftasr) " TBE+ratD)
N 1] N 3]
|p103 — 31T (B+6+1) |13 — ¢sp1|['(6 + 1)

T, = |[r+20p+A,+

+

776+5+a+1 1
<F®+ﬂ+a+m+rw+6+a+n>’

1

T:
2 T+ B+a—p+1)

A
+2Af+ A, + <
PR T R TR+ D)

o 6
|13 — P31 |T(B+0 —p+1)

©Y3P1 n 1 )
lp1(Prp3 — P301)[T(6 —p+1)  |oi|T(6 —p+1)
06+5+/5+a 1

\Tetd+8tatl) THrarl

+( Y1 + | )
|p103 — p3p1[T(B+0 —p+1)  [prps — d301|I'(0 —p+ 1)

0+p+a+1 1
9 ( " n ) |
Fo+p+a+2) T'0+pf+a+1)
We pass to establish the following result:

Theorem 3.1. Assume that (Q)2), (Qs3), (Q4) are satisfied. Then, the problem (1.1)
has a unique solution, provided that T < 1, where T := max {1, To}.
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Proof. We proceed to prove that H is a contraction mapping. For (z,y) € X2, we
can write

|Hy — Hr||s
A 1 |1
< r+2A,+ A, + g +<
TP TP+ ) |[|[TO+B+a+1) ' \|owps — dspa (B +0 + 1)
eyl F Y (e
|<P1(¢11S03 — ¢301)[T(O+ 1) |p1T (0 + 1) Fle+d+B+a+1)

. N 01 |3 )
I'(B+a+1) |13 — P3p1|T(B+0+1)  |prps — ds01|[(0 + 1)

0+p+a+1
i 1
x( ; )bw—ﬂu.

FO+p+a+2) T0+F+a+1)
On the other hand, we can write
|DPHy — DP Hzxl| o

A 1
2A A g
T A T D [ I TO+ B8 ta—p+ 1)
+( |¢1\ |€03¢1|

|p103 — P31 |T(B+6—p+1)  |oi(Prpz — d31)|T(6 —p + 1)
1 06+5+,3+a 1

IN

+|¢1|F(6—p+1) F(e+5+ﬁ+a+1)+r(ﬁ+a+1)
. 2l o
P13 — P31 [T(B+6—p+1) |13 — @31 |00 —p+1)

0+p+a+1 1
(i + ) 1=zl
Fo+p+a+2) To0+f+a+1)

Consequently, we observe that ||Hy — Hz||x <Y ||z — y||x- O
Now, we pass to prove the following theorem:

Theorem 3.2. Assume that hypotheses (Q1), (Q3) and (Q4) are satisfied. Then,
(1.1) admits at least one solution.

Proof. Let us prove the result by proceeding into the steps:

Step 1: It is clear that H is continuous on X.

Step 2: Can we say that H maps bounded sets into bounded sets in X? Let us
take » > 0 and B, := {z € X;||z||x <r}. Fory € B,, thanks to the hypotheses
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(@3) and (Q4), we can write
[Hylloo <

1
F0+B8+a+1l)

A+ Ay +Ap+ A,

o 64
|p103 — 301 |T'(B+6 + 1)

N esorl r ) (e
@D Tl — oG TalE+ 1) \[es a7 a+D
€ 801

+F(ﬂ +a ‘|" 1)| [e+1) - |p103 — P31 [T(B+ 6+ 1)
¥3
103 — D301 |I(6 + 1)
775+B+a+1 )
<F®+ﬂ+a+m+F®+ﬁ+a+D+Km_)0 < roo,

|1D°Hylloo <
1
F'é6+p+a—-—p+1)

A+ A+ Ap+ A,

| A
|p103 — P31 [T(B+ 0 —p+1)

P3P1 n 1 )
lp1(Prp3 — d3o1)[T(6 —p+1)  |ou|T(6 —p+1)
Qe+5+ﬁ+a 1

(3.2)

|€16°
F@+6+6+a+1f+ﬂﬁ+a+1) Ne+n)

+( \901’
|p103 — P31 [T (B+0 —p+1)

+ X
103 — P31 |T'(6 —p+ 1) [0+ 6+a+2)
+ ! + &( 10 <+
- Q.
T6+B+a+1) oV

So, we have ||Hy||x < +oo, Consequently, H is uniformly bounded on B,.

Step 3: Can one confirm that H# maps bounded sets into equicontinuous sets of
X7 Letty, ty €[0,1],¢; <ty and let B, be any bounded set of X. So by considering
r € B,, we can state that for each ¢ € [0, 1], we have
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|Ha(t) — Ha(ts)| <
|t15+,8+04 o t25+ﬁ+04| + 2|t1 - t2|5+/5+a
A+ AL+ A —I—A
PrERT R INCENCE)

( |1 []t1°17 — 1,77 n s |[t1° — £5°] 11 — 1] )
|¢1S03 - ¢3901|F(5 +04+1)  Joi(dres — o) D0+ 1) [por|T(0+ 1)
( . 1 . (S
Pe+5+6+a+1) T(B+a+1)  T(e+1)
( o1 |[#:1°17 — £,°7] n |ios|[t:® — 15|

X

+

|13 — Pz [L(B+6+1)  |prps — 3 |I(0 + 1)
6+5+a+1 1
x

F5+B+a+m+rw+ﬁ+a+m+ﬁm_U0’

\DPHa(ty) — DPHa(ts)] <
‘t16+5+a—p _ t26+ﬁ+a—p| + 2‘t1 _ t2’5+5+o¢—17
Fo0+p+a—p+1)

n ( | 1] [t 0P P — t,0+BP| n |31 [[t107P — t2°7P|
P13 — 31 [T(B+6—p+1)  |oi1(drps — @31)|T(0 —p+ 1)

A+ AL+ Ap+ A,

N |t ) p_t26 pl )( Qe+6+,ﬁ+a N 1 N |§|9e )
1T —p+1) )\ T(e+6+B+a+1) T(B+a+1) T(e+1)

+( [pallta®*5 7 — 15790 [pallta® 7 — 1°7) >
|13 — P31 |[T(B+ 0 —p+1) bz — d3pa|[L(6 —p+ 1)

n6+[3+a+1 1
X(F®+B+a+2f+N5+B+a+1fﬂﬂn_n)'

By Steps 1,2,3 and also with the Arzela-Ascoli theorem, we conclude that H is
completely continuous.

Step 4: Is A== {z € X : v = ¢ Hx,¢ €]0,1[} bounded? Let y € A, Then, we
have y = ¢Hy for some 0 < ¢ < 1. Hence, we can write
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1
(0+B8+a+1)

WWQS§QQ+AVHM+AJL

o A
|p103 — D31 [I'(B+ 6+ 1)

P3P1 i )
[p1(Prp3 — d30)[T(6 +1)  |p1|T'(6 + 1)
98+5+5+a 1

C\Texo+8+a+l) TB+a+D)

W) ( o 03] )
Te+1)) " \[or0s = oserDB10+1) | [orgs — bpa T + 1)

(ot k- 1>|)D

(5+,6’+a+2)+1“(5+5+a+1)

We have also

1
DPyl|l < A+ A A A
| M‘__g( LE ARt At 4{N5+5+a—p+1)
N 6 2361
|p103 — P31 [T(B+0—p+1)  |pi(drp3 — @31)|T(0 —p+ 1)
1 9e+5+ﬂ+a

om0 ) \Ter0 150+
1

i £|6° ) ( |1
F(3+04+’1) | I'le+1) G103 — d3p|T(B+0—p+1)
¥3
G103 — D31 |1'(6 — p + 1)
n5+ﬁ+a+1
F®+B+a+®+rw+ﬁ+a+m
Hetn- )]

Using (3.1) and (3.2), we state that ||y||x < oo. The set is thus bounded.
We deduce by Schaeffer theorem that H has a fixed point which is a solution of
the problem (1.1). O
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Example 1. We consider the following problem:

(1,2, 4 ly(t)] 1
Dz(D5(Dsy(1))) +1206t2+4 <7T(1 ey +008D1°y(t))
(&) + [12y()]

(t +300)(e* + |y(t)] + |T2y(t)]) .
+W (siny(t) ;l— In(t+2)) = T
v0) =3, y(1) = [ y(s)ds, Thyl3) = Diy(), tefo.1)
\ 0

where, we take:
1 |u B ul + ]
Jltwv) = Socem (m +[ul) “0”) 9 00) = o e Tl o))

T; =0.1178, Yo =0.1219, T = maz {Y1, To} = 0.1219.

The conditions of Theorem 3.1 hold. Therefore, our example has a unique solution on
[0, 1].
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