

Advances in Mathematics: Scientific Journal **9** (2020), no.12, 11003–11010 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.83

### THE GENERALIZED WAVELET TRANSFORM ON SOBOLEV TYPE SPACES

# M. M. DIXIT, CHANDRA PRAKASH PANDEY<sup>1</sup>, ABHISHEK KUMAR PANDEY, AND DEEPANJAN DAS

ABSTRACT. The Generalized Wavelet transform is studied on the Sobolev type space  $B_k^{\omega}(\mathbb{R}^n)$  Boundedness results in this Sobolev space is obtained. Compactly supported wavelets on distribution space are also studied. Approximation properties of the generalized wavelet transform will also be discussed.

## 1. INTRODUCTION

Let  $\psi \in L^2(\mathbf{R}^n)$  be the analyzing wavelet and  $f \in L^2(\mathbf{R}^n)$  be any function. We define the translation operator  $\tau_b$  by

$$au_{b}\psi\left(x\right)=\psi\left(x-b
ight),\ b\in\mathbf{R}^{n},$$

and the dilation operator  $D_a$  by

$$D_a\psi(x) = |a|^{-1/2}\psi\left(\frac{x}{a}\right), \ a \in \mathbf{R}^n.$$

A unitary transformation  $W(b,a): L^2(\mathbf{R}^n, dt) \to L^2(\mathbf{R}^n, dt)$  is defined by

$$W(b,a)\psi(x) = (\tau_b D_a \psi)(x) = |a|^{-1/2}\psi\left(\frac{x-b}{a}\right); \ (b,a) \in \mathbf{R}^n \times \mathbf{R}^n,$$

and the Fourier transform of  $f \in L^1(\mathbf{R}^n)$  by

$$\hat{f}(\xi) = \int_{\mathbf{R}^n} f(x) e^{-i\langle \xi, x \rangle} dx; \ \xi, x \in \mathbf{R}^n.$$

<sup>1</sup>corresponding author

<sup>2010</sup> Mathematics Subject Classification. 42C40, 65R10, 44A35.

Key words and phrases. Sobolev Space, Fourier Transform, Wavelet Transforms.

**Definition 1.1.** A function  $\psi \in L^2(\mathbf{R}^n, dt)$  is admissible only if  $\psi$  is not identical to zero and

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} \left| \left\langle W\left(b,a\right)\psi,\psi\right\rangle_0 \right|^2 \frac{dadb}{a^2} < \infty.$$

**Lemma 1.1.**  $\psi \in L^2(\mathbf{R}^n, dt) \setminus \{0\}$  is admissible if and only if the integral  $\int_{\mathbf{R}^n} \frac{\left|\hat{\psi}(\xi)\right|^2}{|\xi|} d\xi$  exists.

Proof. See [5, p.877].

**Lemma 1.2.** Let  $\psi$  be admissible and  $f \in L^2(\mathbf{R}^n, dt)$ . Let

$$C_{\psi} = \int_{\mathbf{R}^n} \frac{\left|\hat{\psi}\left(\xi\right)\right|^2}{\left|\xi\right|} d\xi.$$

The integral

(1.1)  

$$(W_{\psi}f)(b,a) = \tilde{f}(b,a) = \frac{1}{\sqrt{C_{\psi}}} \langle f, W(b,a) \psi \rangle_{0}$$

$$= \frac{1}{\sqrt{C_{\psi}}} \frac{1}{\sqrt{|a|}} \int_{\mathbf{R}^{n}} \bar{\psi}\left(\frac{t-b}{a}\right) f(t) dt$$

defines an element of  $L^2\left(R^n \times R^n, \frac{dbda}{a^2}\right)$ . Moreover,

$$W_{\psi}: L^2(\mathbf{R}^n, dt) \to L^2\left(\mathbf{R}^n \times \mathbf{R}^n, \frac{dbda}{a^2}\right)$$

is an isometry.

In this paper, we extend the continuous wavelet transform, which we defined on  $L^2(\mathbf{R}^n, dt)$ , to Sobolev type space  $\mathbf{B}_k^{\omega}(\mathbf{R}^n)$  and boundedness properties will be investigated. Approximation properties for small dilation parameter will also be studied.

2. The Sobolev type Space  $\mathbf{B}_{k}^{\omega}\left(\mathbf{R}^{n}\right)$ 

In this section, we recall definitions and properties of certain function and distribution spaces introduced by Björck [1]. Let M be the set of continuous and real valued functions  $\omega$  on  $\mathbb{R}^n$ , satisfying the following conditions:

(i) 
$$0 = \omega(0) \le \omega(\xi + n) \le \omega(\xi) + \omega(\eta); \ \xi, \eta \in \mathbf{R}^n,$$
  
(ii)  $\int_{\mathbf{R}^n} \frac{\omega(\xi)}{(1+|\xi|)^{n+1}} < \infty,$ 

11004

(iii)  $\omega(\xi) \ge a + b \log(1 + |\xi|); \xi \in \mathbf{R}^n$ ,

for some real number a and position real number b. We denote by  $\mathbf{M}_c$  the set of all  $\omega \in \mathbf{M}$  satisfying condition  $\omega(\xi) = \omega(|\xi|)$  with a concave function  $\omega$  on  $[0, \infty)$ . We suppose  $\omega \in \mathbf{M}_c$  from now on.

Let  $\omega \in \mathbf{M}_c$ . We denote by  $\mathbf{S}_{\omega}$  the set of all functions  $\phi \in L^1(\mathbf{R}^n)$  with the property that  $\phi$  and  $\hat{\phi} \in C^{\infty}$  and

$$p_{\alpha,\lambda}(\phi) = \sup_{x \in \mathbf{R}^n} e^{\lambda \omega(x)} |D^{\alpha} \phi(x)| < \infty,$$
$$\pi_{\alpha,\lambda}(\phi) = \sup_{\xi \in \mathbf{R}^n} e^{\lambda \omega(\xi)} \left| D^{\alpha} \hat{\phi}(\xi) \right| < \infty.$$

The topology of  $S_{\omega}$  is defined by the semi-norms  $p_{\alpha,\lambda}$  and  $\pi_{\alpha,\lambda}$ . The dual of  $S_{\omega}$  is denoted by  $S'_{\omega}$  the elements of which are called ultra-distributions. We may refer to [1] for its various properties. We note that for  $\omega(\xi) = \log(1 + |\xi|)$ ,  $S_{\omega}$  is reduces to S, the Schwartz space.

We also recall the definition of test function space  $\mathbf{D}\phi$ . The space  $\mathbf{D}\phi$  is the set of all  $\phi$  in  $L^1(\mathbf{R}^n)$  such that  $\phi$  has compact support and  $\|\phi\|_{\lambda} < \infty$  for all  $\lambda > 0$  and

$$\left\|\phi\right\|_{\lambda} = \int_{\mathbf{R}^{n}} \left|\hat{\phi}\left(\xi\right)\right| e^{\lambda \omega(\xi)} d\xi.$$

Now, let  $\omega \in \mathbf{M}_c$ . Then  $\mathbf{K}_{\omega}$  is defined to be the set of positive function k in  $\mathbf{R}^n$  with the following property. There exists k > 0 such that

$$k\left(\xi+\eta\right) \le e^{\lambda\omega(-\xi)}k\left(\eta\right) \forall \,\xi,\eta\in\mathbf{R}^n.$$

Let  $\omega \in \mathbf{M}_c$ ,  $k \in \mathbf{K}_{\omega}$  and  $1 \leq p < \infty$ . Then Sobolev type space  $\mathbf{B}_k^{\omega}(\mathbf{R}^n)$  is defined to be the space of all ultra-distributions  $f \in \mathbf{S}_{\omega}$  such that

$$\left\|f\right\|_{k} = \left(\int_{\mathbf{R}^{n}} \left|k\left(\xi\right)\hat{f}\left(\xi\right)\right|^{2} d\xi\right)^{1/2} < \infty$$

and

$$\left\|f\right\|_{\infty,k} = ess \sup k\left(\xi\right) \left|\hat{f}\left(\xi\right)\right|.$$

An inner product in  $\mathbf{B}_{k}^{\omega}(\mathbf{R}^{n})$  is given by

$$\langle f,g\rangle_{k} = \int_{\mathbf{R}^{n}} \hat{f}\left(\xi\right) \hat{g}\left(\xi\right) \left(k\left(\xi\right)\right)^{2} d\xi$$

3. The Continuous Wavelet Transform on Sobolev type Space  $\mathbf{B}_k^{\omega}(\mathbf{R}^n)$ 

In this section, we define the space  $\zeta_k$  of all measurable functions f on  $\mathbf{R}^n \times \mathbf{R}^n$  such that

(3.1) 
$$\|f(b,a)\|_{\zeta_k} = \left(\int_{\mathbf{R}^n} \|f(b,a)\|_k^2 \frac{da}{a}\right)^{1/2} < \infty.$$

**Theorem 3.1.** Assume that analyzing wavelet  $\psi \in L^2$  satisfies the following admissibility condition:

$$C_{\psi} = \int_{\mathbf{R}^n} \frac{\left|\hat{\psi}\left(\xi\right)\right|^2}{\left|\xi\right|} d\xi < \infty$$

Let  $(W_{\psi}f)(b,a)$  be the wavelet transform of the function  $f \in \mathbf{B}_{k}^{\omega}$  with respect to the analyzing wavelet  $\psi \in L^{2}$ . Then

$$\|(W_{\psi}f)(b,a)\|_{\zeta_k}^2 = \|f\|_k$$

Proof. From (3.1), we have

11006

$$\begin{split} \|(W_{\psi}f)(b,a)\|_{\zeta_{k}}^{2} &= \int_{\mathbf{R}^{n}} \|(W_{\psi}f)(b,a)\|_{k}^{2} \frac{da}{a} \\ &= \int_{\mathbf{R}^{n}} \left( \int_{\mathbf{R}^{n}} |k(\xi)|^{2} \left| (L_{\psi}f)(b,a)^{\wedge}(\xi) \right|^{2} d\xi \right) \frac{da}{a} \\ &= \int_{\mathbf{R}^{n}} \left( \int_{\mathbf{R}^{n}} |k(\xi)|^{2} \left( \frac{1}{C_{\psi}} \right) a \left| \hat{\psi}(-a\xi) \right|^{2} \left| \hat{f}(\xi) \right|^{2} d\xi \right) \frac{da}{a} \\ &= \left( \frac{1}{C_{\psi}} \right) \int_{\mathbf{R}^{n}} \frac{\left| \hat{\psi}(-u) \right|^{2}}{|u|} du \int_{\mathbf{R}^{n}} \left| k(\xi) \hat{f}(\xi) \right|^{2} d\xi \\ &= \left( \frac{1}{C_{\psi}} \right) \int_{\mathbf{R}^{n}} \frac{\left| \hat{\psi}(u) \right|^{2}}{|u|} du \| f \|_{k} \\ &= \left( \frac{1}{C_{\psi}} \right) C_{\phi} \| f \|_{k} \\ &= \| f \|_{k} \,. \end{split}$$

**Theorem 3.2.** For admissible and integrable  $\psi_1, \psi_2$  and  $f, g \in \mathbf{B}_k^{\omega}(\mathbf{R}^n)$ 

$$\left\| W_{\psi_1} f(b,a) - W_{\psi_2} g(b,a) \right\|_k \le \left( \left\| \frac{\psi_1}{\sqrt{C_{\psi_1}}} - \frac{\psi_2}{\sqrt{C_{\psi_2}}} \right\|_{L_1} \|f\|_k + \left\| \frac{\psi_2}{\sqrt{C_{\psi_2}}} \right\|_{L_2} \|f - g\|_k \right).$$

Proof. We have

(3.2) 
$$\|W_{\psi_1}f(b,a) - W_{\psi_2}g(b,a)\|_k \le \|W_{\psi_1}f(b,a) - W_{\psi_2}f(b,a)\|_k + \|W_{\psi_2}f(b,a) - W_{\psi_2}g(b,a)\|_k.$$

Now,

$$\|W_{\psi_{1}}f(b,a) - W_{\psi_{2}}g(b,a)\|_{k}$$

$$= \left(\int_{\mathbf{R}^{n}} \left| (W_{\psi_{1}}f(b,a) - W_{\psi_{2}}f(b,a))^{\wedge}(\xi) \right|^{2} |k(\xi)|^{2} d\xi \right)^{1/2}$$

$$= \left(\int_{\mathbf{R}^{n}} \left| \sqrt{\frac{1}{C_{\psi_{1}}}} |a|^{1/2} \hat{\psi}_{1}(-a\xi) \hat{f}(\xi) - \sqrt{\frac{1}{C_{\psi_{2}}}} |a|^{1/2} \hat{\psi}_{2}(-a\xi) f(\xi) \right|^{2} |k(\xi)|^{2} d\xi \right)^{1/2}$$

$$= \left(\int_{\mathbf{R}^{n}} |a| |k(\xi)|^{2} \left| \hat{f}(\xi) \right|^{2} d\xi \left| \left(\frac{\hat{\psi}_{1}}{\sqrt{C_{\psi_{1}}}} - \frac{\hat{\psi}_{2}}{\sqrt{C_{\psi_{2}}}}\right) (-a\xi) \right|^{2} \right)^{1/2}.$$

Now, using the inequality

$$\left|\hat{\psi}\left(\xi\right)\right| \le \left\|\psi\right\|_{L^{1}},$$

we have

(3.4) 
$$\left|\frac{\hat{\psi}_1}{\sqrt{C_{\psi_1}}} - \frac{\hat{\psi}_2}{\sqrt{C_{\psi_2}}}\right| \le \left\|\frac{\psi_1}{\sqrt{C_{\psi_1}}} - \frac{\psi_2}{\sqrt{C_{\psi_2}}}\right\|_{L^1},$$

so that

$$\left\|\frac{\hat{\psi}_1}{\sqrt{C_{\psi_1}}} - \frac{\hat{\psi}_2}{\sqrt{C_{\psi_2}}}\right\|^2 \le \left\|\frac{\psi_1}{\sqrt{C_{\psi_1}}} - \frac{\psi_2}{\sqrt{C_{\psi_2}}}\right\|_{L^1}^2.$$

Using (3.4) in (3.3), we have

(3.5) 
$$\|W_{\psi_1}f(b,a) - W_{\psi_2}f(b,a)\|_k \le |a|^{1/2} \left\|\frac{\psi_1}{\sqrt{C_{\psi_1}}} - \frac{\psi_2}{\sqrt{C_{\psi_2}}}\right\|_{L^1} \|f\|_k.$$

Similarly, we can write

$$\|W_{\psi_2}f(b,a) - W_{\psi_2}g(b,a)\|_k \le |a|^{1/2} \left\|\frac{\psi_2}{\sqrt{C_{\psi_2}}}\right\|_{L^1} \|f - g\|_k.$$

Invoking (3.5), (3.2), we have

$$\begin{split} \|W_{\psi_1}f(b,a) - W_{\psi_2}g(b,a)\|_k &\leq |a|^{1/2} \left\| \frac{\psi_1}{\sqrt{C_{\psi_1}}} - \frac{\psi_2}{\sqrt{C_{\psi_2}}} \right\|_{L^1} \|f\|_k \\ &+ \left\| \frac{\psi_2}{\sqrt{C_{\psi_2}}} \right\|_{L^1} \|f - g\|_k \,. \end{split}$$

This completes the proof of Theorem 3.2.

# 4. Approximation Properties of Continuous Wavelet Transform for Small dilation

Let us recall the equation (1.1):

(4.1) 
$$W_{\psi}f(b,a) = \frac{1}{\sqrt{C_{\psi}}} \frac{1}{\sqrt{|a|}} \int_{\mathbf{R}^n} \psi\left(\frac{t-b}{a}\right) f(t) dt.$$

In what follows we assume that  $\psi$  is real valued and a>0. Let us define

$$\psi_a\left(x\right) = \frac{1}{a}\psi\left(\frac{x}{a}\right).$$

Let us use the notation

(4.2) 
$$\theta_{\psi}f(b,a) = (\psi_a * f)(b) = \frac{1}{a} \int_{\mathbf{R}^n} \psi\left(\frac{b-t}{a}\right) f(t) dt.$$

From (4.1) and (4.2), we have

$$(\psi_a * f)(b) = (\theta_{\psi} f)(b, a) = \sqrt{\frac{C_{\psi}}{a}} W_{\psi} f(b, -a).$$

Let  $P(D) = \sum_{\alpha \ge 0} C_{\alpha} D^{\alpha}$  be a differential operator, where P is any polynomial.

$$\tilde{P}\left(\xi\right) = \sum_{\alpha \ge 0} \left| D^{\alpha} P\left(\xi\right) \right|^{2}.$$

Then, by Hörmander [2, p.10], we have

- (i)  $f \in \mathbf{B}_{k}^{\omega}\left(\mathbf{R}^{n}\right) \Rightarrow P\left(D\right) f \in \mathbf{B}_{\overline{\tilde{P}}}^{k}\omega\left(\mathbf{R}^{n}\right).$
- (ii)  $\|P(D)f\|_{\frac{k}{\tilde{P}}} \le \|f\|_k$ .

**Theorem 4.1.** Let  $f \in \mathbf{B}_{k}^{\omega}(\mathbf{R}^{n})$  and  $\psi \in L^{1}(\mathbf{R}^{n})$  with  $\int_{\mathbf{R}^{n}} \psi(t) dt = 1$ . Then

- (i)  $\theta_{\psi}f(.,a) \to f(.)$  in  $\mathbf{B}_{k}^{\omega}(\mathbf{R}^{n})$  as  $a \to 0$ .
- (*ii*)  $P(D)(\theta_{\psi}f)(.,a) = \wedge_{P(a^{-1}D)\psi}f = \theta_{\psi}P(D)f.$

Proof. (i) In view of (4.2), we have

$$\begin{split} \|\psi_{a} * f - f\|_{k}^{2} &= \int_{\mathbf{R}^{n}} \left| (\psi_{a} * f - f)^{\wedge} (\xi) \right|^{2} |k(\xi)|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \left| (\psi_{a} * f)^{\wedge} (\xi) - \hat{f}(\xi) \right|^{2} |k(\xi)|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \left| \left( \frac{C_{\psi}}{a} \right)^{1/2} ((W_{\psi}f) (b, a))^{\wedge} (\xi) - \hat{f}(\xi) \right|^{2} |k(\xi)|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \left| \left( \frac{C_{\psi}}{a} \right)^{1/2} \left( \frac{1}{C_{\psi}} \right)^{1/2} |a|^{1/2} \hat{\psi} (a\xi) \hat{f}(\xi) - \hat{f}(\xi) \right|^{2} |k(\xi)|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \left| \hat{\psi} (a\xi) \hat{f}(\xi) - \hat{f}(\xi) \right|^{2} |k(\xi)|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \left| \hat{f}(\xi) \right|^{2} |k(\xi)|^{2} \left| 1 - \hat{\psi} (a\xi) \right|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} \hat{f}(\xi) |k(\xi)|^{2} \left| 1 - \hat{\psi} (a\xi) \right|^{2} d\xi \\ &= \int_{\mathbf{R}^{n}} |I(a,\xi)|^{2} d\xi, \end{split}$$

where

$$|I(a,\xi)| = \left|k(\xi)\hat{f}(\xi)\left(1-\hat{\psi}(a\xi)\right)\right|.$$

Then we have

$$\begin{split} &\lim_{a\to 0} |I\left(a,\xi\right)| = 0 \ \text{ a.e.}. \\ \text{Let us now set } M = \sup_{\xi\in\mathbf{R}} \left|1 - \hat{\psi}\left(a\xi\right)\right| \text{, which is independent of } a. \text{ Then} \\ &|I\left(a,\xi\right)| \leq M \left|k\left(\xi\right)\hat{f}\left(\xi\right)\right|. \end{split}$$

Now, applying the dominated convergence theorem, we have

$$(\psi_a * f) = \theta_{\psi} f(., a) \to f(.) \text{ in } \mathbf{B}_k^{\omega}(\mathbf{R}^n) \text{ as } a \to 0.$$

(ii) Let  $\{f_n\}_{n \in \mathbb{N}} \in \mathbf{S}_{\omega}(\mathbb{R}^n)$  converge to f in  $\mathbf{B}_k^{\omega}(\mathbb{R}^n)$ . Now, operating the differential operator  $P(D) = \sum_{\alpha \geq 0} C_{\alpha} D^{\alpha}$  on both sides of the equation (4.2), we have

following equality

$$P(D) \theta_{\psi} f_n(b, a) = \theta_{P(a^{-1}D)\psi} f_n = \theta_{\psi} P(D) f_n; \ f_n \in S_{\omega}(\mathbf{R}^n)$$

Since  $S_{\omega}(\mathbf{R}^n)$  in dense in  $\mathbf{B}_k^{\omega}(\mathbf{R}^n)$  and the operators  $\theta_{\psi}$  and P(D) are continuous, hence limits of the above three are equal in  $\mathbf{B}_k^{\omega}(\mathbf{R}^n)$ .

#### REFERENCES

- [1] G. BJÖRCK: Linear partial differential operators and generalized distributions, Ark. Mat., 6 (1905), 351–407.
- [2] L. HÖRMONDER: *The Analysis of Linear Partial Differential Operators I*, Springer-Verlag, Berlin, Heidelberg, 1983.
- [3] A. RIEDER: The wavelet transform on Sobolev spaces and its approximation properties, Numer. Math., **58** (1991), 875-894.

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, ITANAGAR, ARUNACHAL PRADESH-791109, INDIA *Email address*: mmdixit1975@yahoo.co.in

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, ITANAGAR, ARUNACHAL PRADESH-791109, INDIA *Email address*: drcppandey@gmail.com

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, ITANAGAR, ARUNACHAL PRADESH-791109, INDIA *Email address*: abhish.pandey@rediffmail.com

DEPARTMENT OF MATHEMATICS GHANI KHAN CHOUDHURY INSTITUTE OF ENGINEERING AND TECHNOLOGY NARAYANPUR, MALDA, WEST BENGAL-732141, INDIA *Email address*: gkcietdeepanjan@gmail.com