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AN ALMOST-PRODUCT STRUCTURE ON THE FOLIATED MANIFOLD

R. S. HERINANTENAINA1 AND H. S. G. RAVELONIRINA

ABSTRACT. Let M be a differentiable, connected, paracompact (resp. Compact)
manifold of dimension n+m, of class C∞; L a vector valued 1−form with rank m

and of zero Nijenhuis torsion. Such a manifold M endowed with this vector valued
1−form defines a foliated manifold. In this paper, we propose to define an almost-
product structure denoted Γ and to give some properties of this almost-product
structure by studying the Lie algebras which attach to it on the foliated manifold.
We study in particular the ideals, the centralizers and normalizers associated with
the almost-product structure Γ such that we can adopt some results found in [9].

1. INTRODUCTION

The theory of connections to Finslerian geometry is not satisfactorily established
as in Riemannian geometry. Several attempts were made to build an adequate the-
ory. The only most important in this direction is Grifone’s theory (in [4] and [5]).
This theory is essentially based on the almost-tangent structure on the tangent
fiber of a differentiable manifold. M. Anona in [1] generalized the almost-tangent
structure by considering a vector valued 1−form L on a manifold (without being
fiber) satisfying certain conditions. He investigated the dL−cohomology induced
by L on M and generalized some Grifone’s results. N. L. Youssef adopted from M.
Anona’s point of view in [1] a generalization of Grifone’s approach on nonlinear

1corresponding author
2020 Mathematics Subject Classification. 53B15, 53C12, 53C15.
Key words and phrases. Manifold, vector valued 1−form, almost-product structure, Lie algebra,

Nijenhuis tensor.
11019



11020 R. S. HERINANTENAINA AND H. S. G. RAVELONIRINA

connections by considering a vector valued 1−form L on the manifold M of con-
stant rank such that [L,L] = 0 and Im (Lz) = ker (Lz) ; z ∈ M . He found that L
has properties similar to J which allows him to systematically generalize important
results of Grifone’s theory. Grifone’s theory is a very special case in these results
on the tangent bundle of a differentiable manifold, and L is the almost-tangent
structure J (J2 = 0). In [9], M. Anona, P. Randriambololondrantomalala and H.
S. G. Ravelonirina studied some properties for a vector valued 1−form Γ having
an almost-product structure (Γ2 = I), in the sense of Grifone on a differentiable
manifold N of dimension n by studying certain Lie algebras attached to it. In this
paper, we propose to establish a similar property for an almost-product structure
on a foliated manifold which is not necessarily a fiber. We propose to study the
theory of this almost-product structure on the foliated manifold by a vector valued
1−form by considering the Lie algebras associated with it.

Let M be a differentiable, connected, paracompact (resp. compact) manifold of
dimension n+m and of class C∞. All objects are assumed to be of class C∞ on M .
The Frolicher-Nijenhuis formalism is a fundamental tool in this work. We endow
the manifold M by a vector valued 1−form L of rank m and of zero Nijenuis
torsion ([L,L] = 0). The nullity of the Nijenhuis torsion of L defines a foliation on
M such that the image space of L corresponds to the space tangent to the leaves.
First, M. Anona, P. Randriambololondrantomalala and H.S.G. Ravelonirina are
interested in the Lie algebra AΓ of vector fields on the tangent fiber TN − {0} of
a differentiable manifold N of dimension n whose corresponding Lie derivative
with the almost-product structure Γ (within the meaning of Grifone) is zero (see
[9]). M. Anona in [1] found that if L is a connection in the sense of Grifone
L2 = I where I is an identity matrix of order n, the Lie algebra AL is isomorphic
to χ(N) × Rn. In our study, we propose to define an almost-product structure
Γ (Γ2 = I) on a manifold M foliated by L, by studying the Lie algebra AΓ of
vector fields of χ (L,F (M)) whose Lie derivative corresponding to Γ with respect
to a vector field of χ (L,F (M)) is zero (with χ (L,F (M)) = χ (M)). We have
found a system of partial differential equations similar to that in [9] in order to
find all the vector fields of Lie algebra AΓ on the considered manifold. Then, F.
Taken in [13] proved that any derivation of the Lie algebra χ(M) on the manifold
M is inner. A. Lichnerowicz [7] considered the Lie LF algebra of infinitesimal
automorphisms of a foliation F on a manifold M and proved that, whatever the
considered foliation is, any derivation of LF is inner. If L is a vector valued 1−form
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of the transversal fiber to a foliation, Lehmann-Lejeune in [8] proved that the
derivations of AL are adjunct linear applications of the normalizer of AL. In our
work, we can ask ourselves the behaviors of the derivations of the Lie algebra AΓ

(Γ2 = I) on the considered foliated manifold. In the following section, M. Anona,
P. Randriambololondrantomalala and H.S.G. Ravelonirina have studied the Lie
algebra Ah

Γ of the fields of AΓ in horizontal space, the Lie algebra Av
Γ of the fields

of AΓ in vertical space and the Lie algebra Nh
R of the horizontal nullity space of

the curvature R. In this part, our work consists of studying the structures of Lie
subalgebras, ideals of Lie algebra AΓ, its associated normalizers and the parts of
the nullity space of the curvature R associated with Γ. In each part, we give some
examples to illustrate the results found.

2. PRELIMINARY

In the following section, we assume that all the objects are of class C∞. LetM be
a differentiable, connected, paracompact (resp. compact) manifold of dimension
n + m; L a vector valued 1-form of rank m ≥ 1 on M whose Nijenhuis torsion is
zero ([L;L] = 0). The nullity of Nijenhuis torsion of L defines on M a distribution
D : z ∈ M → Lz(TzM) which is completely integrable. The manifold M endowed
with this vector valued 1−form of constant rank p ≥ 1 is called a foliated manifold
by L such that the image space of L corresponds to the space tangent to the leaves
(we will suppose that the leafs are regular or fibers on M) . The manifold M is
then decomposed into connected sub-manifolds of m dimension such that each of
them is called "leaf". According to Fröbenuis theorem, the manifold M can thus be
defined by an open covering U ofM and by the data of each U ∈ U , of a coordinate
system (x1, . . . , xn, y1, . . . , ym) such that in U , yβ = Cte, 1 ≤ β ≤ m; along of leafs
and, the ∂

∂y1 , . . . ,
∂

∂ym
form a local basis tangent to the leaves.

Definition 2.1. A foliation F of n−codimensional is the data an open covering U =

{Ui}i∈I and for all i of a diffeomorphism φi : Rn+m → Ui such that for all non-empty
intersection Ui ∩ Uj the diffeomorphism of coordinate change

φ−1
j ⊗ φi : (z, t) ∈ φ−1

i (Ui ∩ Uj)→
(
z
′
, t
′
)
∈ φ−1

j (Ui ∩ Uj)

is the form z
′
= φij (z, t) and t′ = γij (t).

Let us denote by F the previous obtained foliation of n−codimensional defined
by the atlas
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A = {U, (xa, yi)}1≤a≤n,1≤i≤m whose transition functions verify ∂xa

∂yi
= 0. We always

use the local coordinates in the adapted charts to the foliation when to the local
expression of an element. For U,U ′ ∈ U of the respective coordinates systems
(x1, . . . , xn, y1, . . . , ym) and

(
x
′1, . . . , x

′n, y
′1, . . . , y

′m
)

with U ∩ U ′ 6= ∅ the Jacobi
matrix of the coordinate change on U ∩ U ′ is defined by(

A C

B D

)
where

(i) A = (∂x
b′

∂xa
) with 1 ≤ a, b ≤ n is a square matrix of order n,

(ii) B = (∂y
i′

∂xa
)1≤i≤m,1≤a≤n is a matrix of type m× n,

(iii) C = (∂x
b′

∂yj
)1≤b≤n,1≤j≤m = 0 a null matrix of type n×m,

(iv) D = (∂y
i′

∂yj
)1≤i,j≤m is a square matrix of order m.

So the distribution D is defined by the equations dxα = 0 for 1 ≤ α ≤ n. By
introducing a riemann metrix on M we can define a supplementary distribution
Ds orthogonal to D by the equations

θβ = dyβ + Γβαdx
α = 0, 1 ≤ α ≤ n, 1 ≤ β ≤ m,(2.1)

where the Γβα are functions of class C∞. Consequently, we obtain the decomposi-
tion of TM by TzM = Dz ⊕ Ds

z for all z ∈ M. It’s abvious that the (dxα, θβ), 1 ≤
α ≤ n, 1 ≤ β ≤ m define a basis of F(M)−module of scalar valued p−forms on
M . The dual basis is

Xα =
∂

∂xα
− Γβα

∂

∂yβ
, Y β =

∂

∂yβ
(2.2)

In U ∩ U ′ the system dxa must be equivalent to dxa
′; and the systems θi and θi

′

must be equivalent. We get

Γi
′

c′ =
∂yi

′

∂yj
∂xb

∂xc′
Γjb −

∂yi
′

∂xb
∂xb

∂xc′
.(2.3)

By othogonality we can then provide the foliated manifold M an almost-product
structure Γ = (h, v) such that h = 1

2
(I + Γ) and v = 1

2
(I − Γ) where h : Ds

z → TzM

and v : Dz → TzM are horizontal and vertical projectors of respective ranks n and
m associated to Γ. So we have

(i) for z ∈M , h(TzM) ⊂ TzM and v(TzM) ⊂ TzM ;
(ii) TzM = h(TzM)⊕ v(TzM);
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(iii) h and v belong to the class C∞.

Remark 2.1. The almost-product structure thus defined has a property of foliated
manifold but non specially of foliated manifold by a vector valued 1−form.

Definition 2.2. For an almost-product structure Γ, we define the Lie algebra AΓ of the
vector fields of χ (M) whose Lie derivative corresponding to Gamma is null. A vector
field X is therefore an element of AΓ if only if [X,ΓY ] = Γ [X, Y ] , for Y ∈ χ (M) .

Definition 2.3. [3] We define the curvature of the almost-product structure Γ the
vector valued 2−form noticed R by R = 1

2
[Γ,Γ] such that for all X, Y ∈ χ(M) we

have R(X, Y ) = [ΓX,ΓY ] + [X, Y ]− Γ [ΓX, Y ]− Γ [X,ΓY ] .

Theorem 2.1. The curvature R of the almost-product structure Γ is null if and only
if the distribution Ds is completely integrable.

Proof. Using the Frobenius’s theorem let us prove that the bracket of hX and hY

belongs to the distribution Ds. By definition R = −1
2

[h, h]. Since R is semi-
basic we have R (X, Y ) = −1

2
[h, h] (X, Y ) = −1

2
[h, h] (hX, hY ) for all X, Y ∈

χ (M) , that is, R (X, Y ) = − [hX, hY ] + h [hX, hY ]. If R = 0 we have [hX, hY ] =

h [hX, hY ]. So the bracket of hX and hY belongs to Ds.
The converse implication is obvious. Indeed, if Ds is completely integrable; so

by definition the bracket of hX and hY belongs to Ds for X, Y ∈ χ (M). Therefore
we have [hX, hY ] = h [hX, hY ] and − [hX, hY ] + h [hX, hY ] = 0. Thus we have
[h, h] (hX, hY ) = [h, h] (X, Y ) = 0. Hence the result. �

The nullity space of the curvature R associated to Γ is a set NR = {X ∈
χ(M) such that iXR = 0} where iX denotes the interior product in respect to a
vector field X

Proposition 2.1. [9] The Lie algebra AΓ leaves the nullity space NR of curvature R
stable.

Let A be a Lie algebra.

Definition 2.4. A p−cochain C of A is an alternated application of Ap in A

C : A× A× . . .× A→A

X1, . . . , Xp →C
(
X1, . . . , Xp

)
.

The 0−cochains are elements of A.
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Definition 2.5. The coboard operator ∂ makes corresponding to p−cochain C the
(p+ 1)−cochain ∂C defined by

∂C
(
X0, . . . , Xp

)
= δ

λ0,...,λp
0...p

1

p!

[
Xλ0 , C

(
Xλ1 , . . . , Xλp

)]
− δλ0,...,λp

0...p

1

2 (p− 1)!

C
([
Xλ0 , Xλ1

]
, Xλ2 . . . , Xλp

)
,

where δ is antisymetric indicator of Kronecker and the Xλi are elements of A.
For p = 0, ∂C = −adX where adX : Y → [X, Y ] is an adjunct application.
For p = 1, we have ∂C (X, Y ) = [X,C (Y )]+[C (X) , Y ]−C ([X, Y ]) for allX, Y ∈ A.

We denote by Cp (Ap,A) the set of p−cochains of Ap onto A. Let ∆ : Cp → Cp

be a linear transformation such that ∆ = 0. We consider Ker∆ and Im∆ the
respectives kernel and image space of differential operator ∆. The element vectors
of Ker∆ are p−coboards. The vectors which are elements of Ker∆ are called
p−cocycles and the elements of Im∆ are p−cobords. Hence, the 1−cocycles are
only the derivation of A and the exact 1−cocycles are the inner derivations. Since
∆2 = 0 and Im∆ ⊂ Ker∆ we can define the cohomology

H (Cp, ∆) :=
Ker∆

Im∆
.

Now, let M be a A−module having an application ϑ : A → End (M) such that
ϑ ([X, Y ]) = ϑ (X) .ϑ (Y ) − ϑ (Y ) .ϑ (X) for all X, Y ∈ A. We define the linear
applications space
Lp (A,M) := Hom (ΛpA,M) which is isomorphic to ΛpA∗ ⊗M called the p−forms
space of A in M. We define a differential application d : Lp (A,M)→ Lp+1 (A,M)

verifying

(i) for m ∈M, dm (X) = ϑ (X)m for all X ∈M

(ii) for α ∈ A∗, dα (X, Y ) = −α ([X, Y ]) for all X, Y ∈ A

(iii) in ΛA∗, d (α ∧ β) = dα ∧ β + (−1)|α| α ∧ dβ.
(iv) ΛA∗ ⊗M, d (α⊗m) = dα⊗m+ (−1)|α| α ∧ dm.

We verify that d2m = 0 for m ∈ M and d2α = 0 for α ∈ A∗. So we define the
following differential sequence:

. . .→ Lp−1 (A,M)
d−→ Lp (A,M)

d−→ Lp+1 (A,M)→ . . .
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called a Chevalley-Eilenberg’s cohomology complex of A with value in M. And the
space

Hp (A,M) =
Kerd : Lp (A,M)→ Hp+1 (A,M)

Imd : Lp−1 (A,M)→ Lp (M,A)

is called the Lie aLgebra of cohomology of A with value in M. This Lie algebra is
called Chevalley-Eilenberg’s cohomology space of A in M.

In the next section, we will suppose that M is a foliated manifold by L.

3. SOME PROPERTIES OF LIE ALGEBRAS ATTACHED TO AN ALMOST-PRODUCT

STRUCTURE Γ ON THE FOLIATED MANIFOLD M

Definition and Proposition 3.1. Taking into account an adapted chart of local co-
ordinates (x1, . . . , xn, xn+1, . . . , xn+m) of the domain U , we define an almost-product
structure Γ adapted to this chart by Γ = Γβαdx

α ⊗ ∂
∂xβ

, 1 ≤ α, β ≤ n + m where the
Γβα are functions of class C∞ in the equation (2.1), verifying:

(i) Γβ. = 0 for 1 ≤ β ≤ n,

(ii) Γ.α = 0 for n+ 1 ≤ α ≤ n+m,

(iii) and Γβα 6= 0 for any 1 ≤ α, β ≤ n+m.

Proof. The proof is immediate. We just need to adapt the almost-product structure
Γ by the change of the adapted charts on M from the relation (2.3). �

Proposition 3.1. Let U be a domain of adapted chart to a local coordinates system
(x1, . . . , xn, y1, . . . , ym). All element X = Xα ∂

∂xα
+ Y β ∂

∂yβ
, 1 ≤ α ≤ n, 1 ≤ β ≤ m, of

AΓ where Γ = Γβαdx
α ⊗ ∂

∂xβ
, 1 ≤ α, β ≤ n + m such that Γiα = 0, for 1 ≤ i ≤ n and

Γβj = 0 for n+ 1 ≤ j ≤ n+m, verifying:

∂Xα

∂yβ
= 0,(3.1)

X i∂Γβα
∂xi

1≤i≤n

+ Γβi
∂X i

∂xα
1≤i≤n

+ Y i∂Γβα
∂yi

1≤i≤m

− Γiα
∂Y β

∂yi
1≤i≤m

= 0,(3.2)

for 1 ≤ α ≤ n and 1 ≤ β ≤ m.

Proof. We suppose that the adapted chart of domain U has a local coordinates
system (xi, xj)1≤i≤n,n+1≤j≤n+m with xn+j = yj for 1 ≤ j ≤ m. Now, let X be a
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vector field of U such that X = X i ∂
∂xi
, 1 ≤ i ≤ n+m. By definition, X ∈ AΓ if and

only if the components of X verify

X i∂Γjk
∂xi

+ Γji
∂X i

∂xk
− Γik

∂Xj

∂xi
= 0 for 1 ≤ j, k ≤ n+m.(3.3)

Case 1, if 1 ≤ j ≤ n :

(1) if 1 ≤ k ≤ nwe obtain in (3.3) and according to (3.1) we have−Γik
∂Xj

∂xi
= 0

for n+ 1 ≤ i ≤ n+m. So ∂Xj

∂xi
= 0 for n+ 1 ≤ i ≤ n+m,

(2) if n+ 1 ≤ k ≤ n+m the equation (3.3) is immediately equal to zero.

Case 2, if n+ 1 ≤ j ≤ n+m :

(1) if 1 ≤ k ≤ n we have X i ∂Γjk
∂xi

1≤i≤n+m

+ Γji
∂Xi

∂xk
1≤i≤n

− Γik
∂Xj

∂xi
n+1≤i≤n+m

= 0

(2) and if n+ 1 ≤ k ≤ n+m we have Γji
∂Xi

∂xk
1≤i≤n

= 0. Thus ∂Xi

∂xk
1≤i≤n

= 0.

�

Corollary 3.1. All vector field X of AΓ is projectable. That is, ∂Xi

∂yj
= 0 for 1 ≤ i ≤ n

and 1 ≤ j ≤ m.

Proof. Indeed, according to the proposition 3.1 we get the corollary. �

We will denote by AF the set of infinitesimal automorphisms vector fields which
leave the leaves invariant. According to Bruce L. Reinhart in [11] the projections
(h, v) which admit the following properties:

(i) Lh = L; hL = 0

(ii) Lv = 0; vL = L

(iii) Γh = hΓ = h; Γ = vΓ = −v.
We consider by Ah

Γ the module of all vector fields X ∈ χ (L,F (M)) such that
h(X) = X and Av

Γ that of all vector fields X ∈ χ (L,F (M)) such that v (X) = X.
In dual basis (Xα, Y β) to the equations of (2.2), locally we obtain X ∈ Ah

Γ and
it is equal to X = Xα ∂

∂xα
− ΓβαX

α ∂
∂yβ

and for Y ∈ Av
Γ we have Y = Y β ∂

∂yβ
. We

immediately obtain the following corollary from the proposition (3.1)

Corollary 3.2. We taking into account an adapted chart of local coordinates system
(x1, . . . , xn, y1, . . . , ym) of the domain U . Every element X = Y β ∂

∂yβ
, 1 ≤ β ≤ m of

Av
Γ verifies

Y i∂Γβα
∂yi

1≤i≤m

− Γiα
∂Y β

∂yi
1≤i≤m

= 0, for 1 ≤ α ≤ n and 1 ≤ β ≤ m.
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And all element X = Xα ∂
∂xα

1≤α≤n
− ΓβαX

α ∂
∂yβ

1≤β≤m
∈ Ah

Γ satisfies

X i∂Γβα
∂xi

1≤i≤n

− ΓltX
t∂Γβα
∂yl

1≤l≤m

+ Γβi
∂X i

∂xα
1≤i≤n

+ ΓiαX
t∂Γβt
∂yi

1≤i≤m

= 0,

for 1 ≤ α, t ≤ n and 1 ≤ β ≤ m.

Proof. It’s an immediate consequence of proposition 3.1. In fact, we just need to
replace the elements of AΓ by those of Ah

Γ and that of Av
Γ. �

It’s immediate to note that

Proposition 3.2. Ah
Γ and Av

Γ are ideals of Lie algebra AΓ whose it is a direct product
of these ideals.

Proof. We have a similary result of [9] where the almost-product structure Γ is a
Grifone’s connection. �

Proposition 3.3. [9] If the almost-product structure Γ is flat then the Lie algebra AΓ

is a direct product of Ah
Γ with Av

Γ.

Proposition 3.4. A vector field X of M is an element of AΓ if and only if X leaves
invariant the generalized distributions defined by Lie subalgebras Ah

Γ and Av
Γ.

Proof. It’s an immediate consequence of the proposition 3.1 of [6] in the case
where the vector valued 1−form L is an almost-product structure of the eigen-
values 1 and −1. �

Lemma 3.1. If M is a compact manifold without board such that

(i) dimM = 2k + 1, k ∈ N we obtain AΓ = {0}
(ii) dimM = 2k we have AΓ 6= {0}.

Theorem 3.2. If M is a compact manifold without board dimension 2k and for all
adapted chart of local coordinates system (x1, . . . , xn, y1, . . . , ym) of domain U we
have Av

Γ = {f (x1, . . . , xn) yi ∂
∂yi
, 1 ≤ i ≤ m} where f is a function of class C∞.

Proof. We suppose thatM is compact without board manifold of dimension 2k with
k ∈ N. According to the lemma 3.1 we have AΓ 6= {0}. Since the Lie algebra AΓ

is a direct product of Ah
Γ and Av

Γ then those Lie subalgebras are supplementary as
F (M)−modules. So Ah

Γ and Av
Γ are the basis which do not vanish naturally. Thus
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the elements of Ah
Γ and Av

Γ are the generator systems. Naturally all element of Av
Γ

can also be written Y i ∂
∂yi
, 1 ≤ i ≤ m where the Y i are functions in xα and yi for

1 ≤ α ≤ n and 1 ≤ i ≤ m. Let X be X ∈ Av
Γ. If X ∈ Av

Γ then X is not generated
by ∂

∂xα
, 1 ≤ α ≤ n. We prove that X ∈ 〈Y i ∂

∂yi
〉 where Y i = f (x1, . . . , xn) yi for

1 ≤ i ≤ m. According to the corollary 3.2, X ∈ Av
Γ verifies the equation

Y i∂Γβα
∂yi

1≤i≤m

= Γiα
∂Y β

∂yi
1≤i≤m

for 1 ≤ α ≤ n and 1 ≤ β ≤ m.(3.4)

If Y i = f (x1, . . . , xn) where Y i = f (y1, . . . , yn) then it’s impossible to obtain the
equality (3.4), because the Y i are functions of xα and yi with 1 ≤ α ≤ n and
1 ≤ i ≤ m. Let Y i = f (x1, . . . , xn, y1, . . . , ym). If M is of dimension 2k, passing
by local coordinates system (xα, yi) , 1 ≤ α ≤ n, 1 ≤ i ≤ m of the domain U of
adapted chart to the foliation, the Y i is equal to the functions f (x1, . . . , xn) yi, 1 ≤
i ≤ m according to the definition of almost-product structure Γ in 3.1. Thus
X ∈ 〈f (x1, . . . , xn) yi ∂

∂yi
〉. Hence the result. �

Proposition 3.5. If the curvature R admits a nullity space then we have Ah
Γ 6= {0}.

Proof. In fact, we suppose that the nullity space NR of R isn’t null. Let X be
X ∈ Ah

Γ such that on an adapted local coordinates system (xα, yi)1≤α≤n,1≤i≤m we
have X = Xα ∂

∂xα
− ΓiαX

α ∂
∂yi
. If X = 0 then for all α ∈ {1, . . . , n}, we have Xα = 0

with α ∈ {1, . . . , n}. But the space NR is generated by projectable fields Xα ∂
∂xα

.
Then NR is reduced to zero. This contradicts to the hypothesis. So necessarily, we
have X 6= 0. Thus Ah

Γ 6= {0}. �

Consequently we have

Corollary 3.3. If the almost-product structure Γ is flat then immediately we have
Ah

Γ 6= {0}.

Proof. If the product strucutre Γ is flat we have NR = χ (L,F (M)). Hence The
result. �

Remark 3.1. If the associated curvature to Γ isn’t null the Lie algebra Ah
Γ isn’t neces-

sarily reduced to zero.

Definition 3.1. [2] A derivation D of Lie R−algebra A is a R−linear application in
A to A such that for alls X, Y ∈ A, D [X, Y ] = [DX, Y ] + [X,DY ] . A derivation D
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of A is inner if for all X ∈ A, D(X) = [X, .] . In particular in [7], a derivation of Lie
algebra is given by a first degree differential operator.

Proposition 3.6. [10] Let D be a derivation of AΓ and U a domain of the adapted
chart of the considered manifold. If there is a field X ∈ AΓ such that X|U ≡ 0 then
we have D(X)|U ≡ 0. That is, D is local.

Proof. Let U be a domain of the adapted chart and suppose such that there is
X ∈ AΓ such that X|U ≡ 0 and D(X)(x) 6= 0 for x ∈ U. We consider a vector field
Y of M such that Supp(Y ) ⊂ U and [DX, Y ] (x) 6= 0. By definition, D [X, Y ] =

[DX, Y ]+[X,DY ]. For x ∈ U we have D [X, Y ] (x) = 0 = [DX, Y ] (x)+[X,DY ] (x)

and [X,DY ] = 0. Then 0 = [DX, Y ] and this contradicts the hypothesis.So neces-
sarily DX(x) = 0, x ∈ U and thus DX|U = 0. �

Definition 3.2. [10] We call Chevalley-Eilenberg Cohomology’s first space of A the
quotient vectorial space:

H1(A) = Der(A)/adA

whereDer(A) (resp. adA) is the Lie algebra of derivations (resp. of inner derivations)
of A.

Definition 3.3. [2] We call derivative ideal of Lie algebra A the submodule of A,
noted [A,A] generated by [X, Y ] such that for all X, Y ∈ A. We define by recurrence:

D1(A) = [A,A] ,

Dk(A) = D1(Dk−1(A)) for k ≥ 2.

It’s obvious to obtain the following theorem

Theorem 3.3. The derived ideal of Lie algebra Av
Γ is contained in Av

Γ. That is,
[Av

Γ,A
v
Γ] ⊂ Av

Γ.

Proof. It’s obvious. Indeed, the derived ideal of Av
Γ is a Lie subalgebra of Av

Γ which
is stable of the Lie bracket. Hence the result. �

Remark 3.2. On a foliated manifold, the derived ideal of Lie algebra Av
Γ is not nec-

essarily coincided with Av.

Theorem 3.4. All derivation D of Lie algebra Av
Γ is equal to D (.) = D

′
(.) +

[Z, .] , Z ∈ Av
Γ where D′ is a derivation of AΓ which is not necessarily inner.
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Proof. Let (x1, xn, xn+1, . . . , xn+m) with xn+β = yβ, 1 ≤ β ≤ m be an adapted chart
of the domain U , D a derivation of Av

Γ and X a vector field of χ(M). By definition

DX(z) = zα
∂Xβ

∂xα
∂

∂xβ
+ zαΓβα(x,X)

∂

∂xβ
for z ∈ U,

D [X, Y ] = [DX, Y ] + [X,DY ] , for all Y ∈ χ(M).

If X ∈ Av
Γ, Y ∈ AΓ and for z ∈ U , by using thoses definitions we get

zi
[
∂

∂xi

(
Xa∂Y

b

∂xa
− Y b∂X

a

∂xb

)]
∂

∂xa
+ ziΓai

∂

∂xa

−
[
zi
(
∂Xa

∂xi
+ Γai

)
∂

∂xa
Y b ∂

∂xb
− Y b ∂

∂xb

(
zi
(
∂Xa

∂xi
+ Γai

)
∂

∂xa

)]
−
[
Xa ∂

∂xa

(
zi
(
∂Y b

∂xi
+ Γbi

)
∂

∂xb

)
− zi

(
∂Y b

∂xi
+ Γbi

)
∂

∂xb
Xa ∂

∂xa

]
= 0,

then we have

zi
∂

∂xi

(
Xb∂Y

b

∂xb

)
− zi ∂

∂xi

(
Y b∂X

b

∂xb

)
+ ziΓbi − zi

∂Xa

∂xi
∂Y b

∂xa
− ziΓai

∂Y b

∂xa

+Y c ∂

∂xc

(
zi
Xb

∂xi

)
+ Y c ∂

∂xc
(
ziΓbi

)
−Xa ∂

∂xa

(
zi
∂Y b

∂xi

)
−Xa ∂

∂xa
(
ziΓbi

)
+zi

∂Y b

∂xi
∂Xb

∂xb
+ ziΓbi

∂Xb

∂xb
= 0,

and

zi
∂Xa

∂xi
∂Y b

∂xa
∂

∂xa
+ ziXa ∂2Y b

∂xi∂xa
∂

∂xa
− zi∂Y

b

∂xi
∂Xa

∂xb
∂

∂xa
− ziY b ∂

2Xa

∂xi∂xb
∂

∂xa

+ziΓai
∂

∂xa
− zi∂X

a

∂xi
∂Y b

∂xa
∂

∂xb
− ziΓai

∂Y b

∂xa
∂

∂xb
+ ziY b ∂

2Xa

∂xb∂xi
∂

∂xa

+ziY b∂Γai
∂xb

∂

∂xa
− ziXa ∂2Y b

∂xa∂xi
∂

∂xb
− ziXa∂Γbi

∂xa
∂

∂xb
+ zi

∂Y b

∂xi
∂Xa

∂xb
∂

∂xa

+ziΓbi
∂Xa

∂xb
∂

∂xa
= 0.

By eliminating the terms of second derivatives, we get

ziΓai
∂

∂xa
− ziΓai

∂Y b

∂xa
∂

∂xb
+ ziY b∂Γai

∂xb
∂

∂xa
− ziXa∂Γbi

∂xa
∂

∂xb
+ ziΓai

∂Xa

∂xb
∂

∂xa
= 0.
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ziΓai
∂

∂xa
= ziΓai

∂Y b

∂xa
∂

∂xb
− ziY b∂Γai

∂xb
∂

∂xa
+ ziXa∂Γbi

∂xa
∂

∂xb
− ziΓai

∂Xa

∂xb
∂

∂xa
,

= [Y,Γ]
∂

∂xa
(z) + ziXa ∂

∂xa
Γbi

∂

∂xb
− ziΓbi

∂Xa

∂xb
,

= ziXa ∂

∂xa
Γbi

∂

∂xb
− ziΓbi

∂Xa

∂xb
∂

∂xa
,

taking into account Y ∈ AΓ.

DX (z) = zi
(
∂Xk

∂xi
− Γbi

∂Xk

∂xb
+Xa∂Γki

∂xa

)
∂

∂xk

= zi
[
∂Xk

∂xi
−
(

Γbi
∂Xk

∂xb
−Xa∂Γki

∂xa

)]
∂

∂xk

= zi
[
−Xa ∂

∂xa
(
1− Γki

) ∂

∂xk
+
(
1− Γbi

) ∂Xk

∂xb
∂

∂xk

]
=

[(
1− Γbi

) ∂

∂xb
, Xa ∂

∂xa

]
(z)

=

[(
1− Γli

) ∂

∂xl
+
(
1− Γki

) ∂

∂xk
, Xa ∂

∂xa

]
(z)

=

[
∂

∂xl
, Xa ∂

∂xa

]
(z) +

[(
1− Γki

) ∂

∂xk
, Xa ∂

∂xa

]
(z) ,

for 1 ≤ l ≤ n, n + 1 ≤ a ≤ n + m and 1 ≤ i, b ≤ n + m. Considering Z =(
1− Γki

)
∂
∂xk
∈ Av

Γ, so we obtain

DX (z) =

[
∂

∂xl
, Xa ∂

∂xa

]
(z) +

[
Z,Xa ∂

∂xa

]
(z) .(3.5)

The relation (3.5) results that DX (z) =
[
∂
∂xl
, X
]

+ [Z,X] (z) , z ∈ M. Hence the
theorem. �

Lemma 3.2. Let U a domain the adapted chart of the local coordinates system
(x1, . . . , xn, xn+1, . . . , xn+m) and X ∈ χ (U) a vector field. If [X, Y ] = 0 for Y ∈ Av

Γ,

necessarily we have X ≡ 0.

Proof. Let U be a domain of an adapted chart and X ∈ χ (U) a vector field. For
Y ∈ Av

Γ we suppose that [X, Y ] = 0. Locally on the adapted chart of the domain U



11032 R. S. HERINANTENAINA AND H. S. G. RAVELONIRINA

we have Y = Y β ∂
∂xβ

, n+ 1 ≤ β ≤ n+m. If z ∈ U we have

zi
(
Xα∂Y

β

∂xα
− Y β ∂X

α

∂xβ

)
= 0,

Xα∂Y
β

∂xα
− Y β ∂X

α

∂xβ
= 0,

Xα∂Y
β

∂xα
= Y β ∂X

α

∂xβ
.

For z ∈ U we can choose Y ∈ Av
Γ such that Y (z) = 0 but ∂Y β

∂xα
is arbitrary. So, it

follows that the Xα is null for 1 ≤ α ≤ n+m. �

Theorem 3.5. All derivation D of Lie algebra AΓ with value in χ (M) is of the form
D (.) = [Z, .] where Z ∈ AΓ. That is, all derivation ofAΓ is inner. Thus its Chevalley-
Eilenberg’s cohomology first space is null.

Proof. Let D be a derivation of AΓ in value to χ (M). Let D′ be the restruction of
D to Av

Γ. For Y ∈ Av
Γ we can find Z ∈ AΓ such that D′Y = [Z, Y ]. Let X ∈ AΓ, we

have

[DX, Y ] + [X,DY ]−D [X, Y ] = 0,

[DX, Y ] + [X, [Z, Y ]]− [Z, [X, Y ]] = 0 for Y ∈ Av
Γ

According to Jacobi’s identity [DX − [Z,X] , Y ] = 0. According to the lemma
(3.2), we obtain DX − [Z,X] = 0 and thus DX = [Z,X]. Hence the theorem.
This theorem 3.5 is other than the similary result to that of Kanie in [13]. �

Definition 3.4. [2] Let A be a Lie algebra on M . We define the center (resp. the
centralizer) C of A the set all vector fields X ∈ A such that [X, Y ] = 0 for all Y ∈ A

(resp. Y ∈ χ (M)).

Proposition 3.7. If the almost-product structure Γ is flat on M then the centralizer
of Ah

Γ (resp. of Av
Γ) in AΓ is reduced to zero (resp is generated by the ∂

∂xi
, 1 ≤ i ≤ n).

Proof. We suppose that the curvature of Γ is null on domain U of the adapted chart
of the local coordinates (x1, . . . , xn, xn+1, . . . , xn+m) with xn+j = yj, 1 ≤ j ≤ m.
According to the proposition 3.3 the Lie algebra Ah

Γ 6= {0}. In U let X = X i ∂
∂xi

1≤i≤n
+

Xj ∂
∂yj

1≤j≤m
such that ∂Xi

∂yj
= 0 and [X, Y ] = 0 for Y ∈ Ah

Γ. We have Xk ∂Y j

∂xk
− Y k ∂Xj

∂xk
1≤k≤n+m

= 0
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for 1 ≤ j ≤ n+m and

Xk ∂Y
j

∂xk
1≤k≤n+m

= Y h∂X
j

∂xh
1≤h≤n+m

.(3.6)

Since Y ∈ Ah
Γ one of the Y h, 1 ≤ h ≤ n + m is at least non zero. Two cases

are possible: if Y k0 = cte non zero for some 1 ≤ k0 ≤ k, the equality (3.6) gives
∂Xj0

∂xh
= 0, for 1 ≤ j0 ≤ j so Xj0 = cte non zero. And if Y k0 = f (xi, 1 ≤ i ≤ n+m) ,

(3.6) implies that Xk ∂Y j0
∂xk
6= 0 for any 1 ≤ j0 ≤ j and Xk0 6= 0 for any 1 ≤ k0 ≤ k.

Hence the proposition. �

Proposition 3.8. Let U be a domain of the adapted chart of local coordinates (x1, . . . ,

xn, y1, . . . , ym) where ∂
∂y1 , . . . ,

∂
∂ym

form a tangent local basis to the leaves. If the
almost-product structure Γ is flat on M, the centralizer of Av

Γ in the generated part
by the basis ∂

∂yi
, 1 ≤ i ≤ m of χ (L,F (M)) (resp. of χ (L,F (M))) is reduced to zero

(resp. isn’t reduced ever to zero).

This proposition 3.8 is similary of a result in [9] if the almost-product structure
Γ is a connection in the sense of Grifone.

Proposition 3.9. If the manifold M is compact without board of dimension 2k with
k ∈ N∗ then the centralizer of AΓ isn’t null.

Proof. We suppose that M is a compact without board manifold of dimension 2k.
According to the lemma 3.1 we have AΓ 6= {0}. Let Y be an element of centralizer
of AΓ such that [X, Y ] = 0 for X ∈ AΓ. Let (xa, yi)1≤a≤k,1≤i≤k be a coordinates
system of the adapted chart of domain U of M . Locally let X, Y be such that
X = Xa ∂

∂xa
+ Y i ∂

∂yi
and Y = X

′b ∂
∂xb

+ Y
′j ∂
∂yj
. We have

Xa∂X
′b

∂xa
∂

∂xb
−X ′b∂X

a

∂xb
∂

∂xa
+Xa∂Y

′j

∂xa
∂

∂yj

−X ′b∂Y
i

∂xb
∂

∂yi
+ Y i∂Y

′j

∂yi
∂

∂yj
− Y ′j ∂Y

i

∂yj
∂

∂yi
= 0,

for 1 ≤ a, b ≤ k and 1 ≤ i, j ≤ k. Then we get

Xa∂X
′b0

∂xa
−X ′b∂X

b0

∂xb
= 0(3.7)

and

Xa∂Y
′j0

∂xa
−X ′b∂Y

j0

∂xb
+ Y i∂Y

′j0

∂yi
− Y ′j ∂Y

j0

∂yj
= 0(3.8)
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for 1 ≤ a, b0 ≤ k and 1 ≤ i, j0 ≤ k. Since X ∈ AΓ we can find 1 ≤ a0 ≤ k such
that Xa0 6= 0. In (3.7) and (3.8), we can have X ′b0 6= 0. Else, X ′b ∂Y

j0

∂xb
− Y i ∂Y

′j0
∂yi

+

Y
′j ∂Y j0

∂yj
= 0. For any 1 ≤ b, j0 ≤ k we have either X ′b = 0 or Y ′j0 = 0. Hence The

result. �

Definition 3.5. [2] Let A be a Lie algebra and h ⊂ A. We define the normalizer N
of h in A the set of all vector fields X ∈ A such that [X, h] ⊂ h.

Theorem 3.6. The normalizer of Av
Γ of all vector fields of χ (L,F (M)) is generated

by the elements of AF wich are infinitesimal automorphisms fields to the leaves.

Proof. We can calculate the normalizer of Av
Γ on the local coordinates system of

the adapted chart of the considered domain U and we obtain the result. �

Proposition 3.10. If the almost-product structure Γ is of regular curvature then the
Lie algebra AF is the only normalizer of AΓ of all vector fields of χ (L,F (M)) .

Proof. It is immediate according to the definition 3.5. �

Example 1. We consider the tore T2 given as the square 0 ≤ θ ≤ 1 and 0 ≤ β ≤ 1

in the plan of local coordinates system of the adapted chart by (θ, β, θ1, β1) of the
domain U and the equations:

cos2 (2πβ) dθ − sin (2πβ) dβ = 0

sin (2πβ) dθ + cos2 (2πβ) dβ = 0,

which define an almost-product structure on T2. The associated Christoffel coefficients
are: Γ1

11 = cos2 (2πβ) ; Γ1
12 = − sin (2πβ) = Γ1

21; Γ2
21 = sin (2πβ) = Γ2

12; Γ2
22 =

cos2 (2πβ) .

However, the components of Γ are: Γ1
1 = θ1 cos2 (2πβ) − β1 sin (2πβ) ; Γ1

2 =

−θ1 sin (2πβ) ; Γ2
1 = β1 sin (2πβ) ; Γ2

2 = θ1 sin (2πβ) + β1 cos2 (2πβ) . We know that
the almost-product structure Γ is of regular curvature on M . We only obtain the Lie
algebra AΓ = {c ∂

∂θ
}, c ∈ R∗ which is resolvable.

Example 2. We construct an almost-product structure in the sphere S3 of dimension
3. This structure doesn’t have any invariant group, nor is it of null torsion. For the
construction we suppose S3 given by the equation x2+y2+z2+t2 = 2 in E4. Let us pass
by spheric coordinates of the adapted local coordinates system (α, θ, ϕ, α1, θ1, ϕ1) , the
associated metric is ds2 = 2

[
dα2 + sin2(α)

(
dθ2 + sin2(θ)dϕ2

)]
. We get the associated

Christoffel symbols which are: Γ1
22 = − cos(α) sin(α); Γ1

33 = −1
2

sin (2α) sin2(θ);
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Γ2
12 = cotan(α) = Γ2

21; Γ2
33 = − cos(θ) sin(θ); Γ3

13 = cotan(α) = Γ3
31; Γ3

23 =

cotan(θ) = Γ3
32. And the components of the almost-product structure Γ are the follow-

ings: Γ1
1 = 0; Γ1

2 = −α1 sin(θ) cos(θ); Γ1
3 = −ϕ1 sin(2α) sin2(θ); Γ2

1 = θ1cotan(α); Γ2
2 =

−α1cotan(α); Γ3
1 = ϕ1cotan(α); Γ3

2 = ϕ1cotan(θ); Γ3
3 = α1cotan(α) + θ1cotan(θ).

We find that Γ is of regular curvature but, its Lie algebra AΓ is null. This example
also proves that if the dimension of M is odd then the Lie algebra isn’t semisimple.

Example 3. Let U be a domain of the adapted chart of local coordinates (x1, x2, y1,

y2, y3, y4) and Γ an almost-product structure defined by Γ1
2 = y3ex

1, Γ2
2 = −2 = Γ4

2.
According to the calculation, we obtain that the associated curvature R to Γ is null.
That is, the nullity space of R is equal to χ (L,F (M)). And the Lie algebra Ah

Γ =

{ae−x1 ∂
∂x1 + b ∂

∂x2 + (2b− ay3) ∂
∂y2 + 2b ∂

∂y4
} where a ∈ R∗ and b ∈ R.

Example 4. Let U be a domain of the adapted chart of local coordinates system
(x1, x2, y1, y2, y3, y4) and Γ is the almost- product structure such that Γ1

1 = ex
1y1,

Γ2
1 = y4 = −Γ2

1, Γ2
2 = ex

2
. We obtain that Ah

Γ = {0} and Av
Γ = {f (x1, x2, y3, y4) ∂

∂y3 +

g (x1, x2, y3, y4) ∂
∂y4}.

4. COMPLETE LIFT ON THE FOLIATION

Let us consider the differentiable manifold M connected, paracompact of di-
mension n + m and of class C∞ providing the foliation F of n−codimensional
defined by the atlas A = {U, (xa, yi)}1≤a≤n,1≤i≤m. Let Q be the transversal fiber
to the foliation F and TF the Lie algebra of vector fields tangent to leaves of F

(see [12]). A form w on M is saw transversal if iXw = 0 for all X ∈ TF;w is
basic if iXw = iXdw = 0 for all X ∈ TF. A vector field X on M is saw foliated
if Xf is basic for f ∈ F (M) . Locally a foliated field X has a local expression:
X = Y i (yi, xa) ∂

∂yi
+ Xa (xa) ∂

∂xa
that of associated transversal field noted by X̃, is

X̃ = Xa ∂̃
∂xa

where the ∂̃
∂xa

are the local basis of Q. If X and Y are two foliated
vector fields, their Lie bracket [X, Y ] is also a foliated vector field. Let us denote
by LF the Lie algebra of the foliated vector fields of F and lF = LF/TF . We know
in [7] that TF is an ideal of LF and lF is a Lie algebra whose elements are called
the transversal fields of the leaves of F.

Now, let (Q∗, π,M) be the dual of the transversal fiber. The module of the
sections of Q∗ can be identified to those of the transversal 1−forms. In an adapted
chart {U, (yi, xa)}, an element w of Q∗ has a local expression w = zadxa. We’ll
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assume (yi, xa, za)1≤i≤m,1≤a≤n as local coordonates in π−1 (U) and thus, we obtain
on Q∗, an atlas whose transition functions are of the form

yi
′
= yi

′ (
yi, xa

)
; xa

′
= xa

′
(xa) ; za

′
=
∂xa

∂xa′
za.

Definition 4.1. Let X and Y two be differentiable manifolds of class C∞. An appli-
cation p : X → Y is saw a coating if the following conditions are verified:

(i) p is surjective and a morphism of class Cs, s ∈ N∗ of X to Y,
(ii) for all y ∈ Y there is an open V of Y containing y such that p−1 (V ) admits

a repartition of the form p−1 (V ) = ∪i∈IUi where the Ui are the opens of X
such that for all i ∈ I, the restriction of p to Ui is a diffeomorphism of Ui on
V .

Example 5. The application p : t 7−→ (cos(2πt), sin(2πt)) of R to S1 ⊂ R2 is a
coating. Indeed, we know that S1 and R are manifolds of dimension 1 and of class
C∞. But the application :t 7−→ (cos(2πt), sin(2πt)) is a C∞−morphism in R2, so
into S1. We suppose (x0, y0) a point of S1, t0 such that x0 = cos(2πt0), y0 = sin(2πt0)

and α ∈]0, 1
2
[. If V = p (]t0 − α, t0 + α[), this is an open containing (x0, y0) , and

p−1 (V ) = ∪k∈Z]t0 − α + k, t0 + α + k[. In addition, the restriction of p in ]t0 − α +

k, t0 + α + k[ establishes a diffeomorphism of this interval on V.

Proposition 4.1. [12] Q∗ is provided with a foliation F∗ whose leafs are the coating
of the leaves of F.

Proof. The leafs of F∗ are locally defined by xa = Ct and za = Ct. Let U be the
domain of the local chart which is simple for the foliation F. Then p−1 (U) is simple
for F∗. Let F ∗ be a leaf of F∗ and F = p (F ∗) its projection on M . Since F ∗∩p−1 (U)

is a plaque reunion then F ∩ U is a plaque reunion. So F is a leaf of F. If FU is a
plaque of F ∩ U, p−1 (FU) is a plaque reunion whose each one is diffeomorphic to
FU . So (F ∗, p, F ) is a coating. �

Let φt be a local group for one parameter of a foliated vector fieldX onM . Since
each φt is an automorphism of foliation then (φt)∗ which induces an automorphism(
φt
)−1

∗ is an automorphism of Q∗. We denote X the vector field associated to the

local group for a parameter Transp
((
φt
)−1

∗

)
. Locally X admits a local expression

(see [12])

X = Y i
(
yi, xa

) ∂

∂yi
+Xa (xa)

∂

∂xa
− zb∂X

a

∂xb
∂

∂za
.
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Thus, X is a foliated vector field for the foliation F∗. Therefore, we have

Definition 4.2. A complete lift of a vector field X where locally, X = Y i (yi, xa) ∂
∂yi

+

Xa (xa) ∂
∂xa

on M to Q∗, noted by X, has a local expression on the adapted chart
(yi, xa, za) of the domain p−1 (U) of Q∗ by:

X = Y i
(
yi, xa

) ∂

∂yi
+Xa (xa)

∂

∂xa
− zb∂X

a

∂xb
∂

∂za
.

Let LF be the Lie algebra of the complete lift of elements of LF. If a vector
field X is tangent to the leaves of F then its lift X is tangent to the leaves of F∗.
Consequently, the transversal field X̃ ∈ lF∗ definied by the lift X of X depends
only on the transversal field X̃. We denote by lF the Lie algebra obtained from lF.

Proposition 4.2. Locally, a vector field X = Y i (yi, xa) ∂
∂yi

+Xa (xa) ∂
∂xa
− zb ∂Xa

∂xb
∂
∂za

belongs to AΓ such that

∂Xa

∂yi
= 0,

Xa∂Γβα
∂xa

1≤a≤n

− zb∂X
a

∂xb
∂Γβα
∂xa

1≤a,b≤n

+ Γβa
∂Xa

∂xα
1≤a≤n

− zbΓβa
∂2Xa

∂xα∂xb
1≤a,b≤n

+ Y i∂Γβα
∂yi

1≤i≤m

− Γiα
∂Y β

∂yi
1≤i≤m

= 0,

for 1 ≤ α ≤ n and 1 ≤ β ≤ m.

Proof. This is an immediate consequence of the proposition 3.1 by replacing the
elements of AΓ by those of AΓ. �

We immediately obtain the following corollary

Corollary 4.1. All element of AΓ is projetable. That is, we have ∂Xa

∂yi
= 0, 1 ≤ a ≤ n

and 1 ≤ i ≤ m.

Proof. Indeed, according to the first equation of propositon 4.2 we obtain this
corollary. �

Remark 4.1. We remark that the Lie algebra AΓ is of dimension superior or equal to
2. AΓ can be of infinite dimension.

Proposition 4.3. If M is compact without board manifold of dimension 2k + 1 with
k ∈ N, then the Lie algebra AΓ of complete lift X of the vector fields X is generated
by the vector fields tangent to the leaves of the foliation F∗.
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Proof. We suppose that M is a compact without board manifold then the nulity
space of the curvature R associated to the almost-product structure Γ is null. And
if the dimension of M is equal to 2k + 1, according to lemma 3.1, the Lie algebra
AΓ is null. So the Lie algebra AΓ does not a projectable field. Hence the result. �

We adopt the following proposition:

Proposition 4.4. Let an finite integer p ≥ 2 be the dimension of Lie algebra AΓ, we
have

(1) if the Lie algebra AΓ of the complete lift X of the vector field X is semisimple,
we have H1

(
AΓ

)
= H2

(
AΓ

)
= {0} and Hp

(
AΓ

)
is 1 dimension,

(2) if AΓ isn’t semisimple and p is an pair integer we have Hp
(
AΓ

)
= {0}.

Proof. Since p is finite integer and p ≥ 2 then the set Hn
(
AΓ

)
with 1 ≤ n ≤ p are

finites. So, we can calculate them using a program from the Maple Software. In
every case, we will find these results. �

Remark 4.2. In general this proposition 4.4 is still true for any Lie algebras of finite
dimensional.

On Q∗, we suppose that there is a 1−form w called canonic form defined by:
wθ (X) = θ

(
p∗ (X)

)
for all θ ∈ Q∗ and X ∈ TθQ∗. Locally, w = zadxa, 1 ≤ a ≤ n.

Let C be a canonic field on Q∗ then its local expression is C = za ∂
∂za
, 1 ≤ a ≤ n.

We have
iCdw = w, LCθ = θ, LCdθ = dθ,

where iC and LC indicate respectively the interior product and the Lie derivative
in comparaison to C.

Proposition 4.5. [12] A vector field Z on Q∗ is tangent to leaves of F∗ if and only if
iZθ = iZdθ = 0.

Now let Aw be the Lie algebra of vector fields of Q∗ which leaves w invariant.
A vector field X = Y i ∂

∂yi
+Xa ∂

∂xa
+ Zb ∂

∂zb
(1 ≤ a, b ≤ n, 1 ≤ i ≤ m) belongs to Aw,

if
∂Xa

∂yi
za = 0;

∂Xa

∂zb
za = 0; Zb = −∂X

b

∂xa
zb.

Locally X = Y i
(
yj, xa, zb

)
∂
∂yi

+ Xa (xc) ∂
∂xa
− zb ∂X

a

∂xb
∂
∂za

for 1 ≤ a, b, c ≤ n and
1 ≤ i, j ≤ m. Let Aw

Γ be the Lie algebra of vector fields of AΓ which leave w

invariant.
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Proposition 4.6. A vector field X = Y i
(
yj, xa, zb

)
∂
∂yi

+ Xa (xc) ∂
∂xa
− zb ∂X

a

∂xb
∂
∂za

belongs to Aw
Γ if it verifies:

Xa∂Γβα
∂xa

1≤a≤n

− zb∂X
a

∂xb
∂Γβα
∂xa

1≤a,b≤n

+ Γβa
∂Xa

∂xα
1≤a≤n

− zbΓβa
∂2Xa

∂xα∂xb
1≤a,b≤n

+ Y i
(
yj, xa, zb

) ∂Γβα
∂yi

1≤i≤m

− Γiα
∂Y β

(
yj, xa, zb

)
∂yi

1≤i≤m

= 0,

for 1 ≤ α ≤ n and 1 ≤ β ≤ m.

Proof. To demonstrate this proposition, we just need to adapt the previous theorem
4.2 to the vector fields of Aw

Γ . �

Theorem 4.1. We get

(i) AΓ ⊂ Aw
Γ ⊆ Aw,

(ii) the derived ideal of Aw
Γ coïncides to itself. That is,

[
Aw

Γ ,A
w
Γ

]
= Aw

Γ ,
(iii) in addition, Aw is the normalizer of Aw

Γ on (Q∗,F∗).

We assume P = Aw
Γ ∩ Kerw. Z ∈ P if and only if Z = Y i

(
yj, xa, zb

)
∂
∂yi

+

Xa (xc) ∂
∂xa
− zb ∂Xa

∂xb
∂
∂za

and w
(
Z
)

= 0. Then Xa = 0 and Z = Y i
(
yj, xa, zb

)
∂
∂yi

+

Xa (xc) ∂
∂xa
− zb ∂Xa

∂xb
∂
∂za

. So Z = Y i
(
yj, xa, zb

)
∂
∂yi
∈ P . That is, P is the Lie algebra

of the vector fields tangent to leaves of F∗.
We can easily verify that P is an ideal of Aw

Γ . Indeed, let X ∈ P and Y ∈ Aw
Γ . It

is obvious that [X, Y ] ∈ Aw
Γ and we immediately obtain that w ([X, Y ]) = 0. So

[X, Y ] ∈ P. And Aw
Γ/P ⊂ lF and that the application ϕ : Aw

Γ → lF is thus defined a
surjection according to [12]. We have the following exact sequence

0→ P → Aw
Γ → LF → 0.

Theorem 4.2. All application A 7−→ [B,A] , B ∈ Aw
Γ of P to itself is a derivation of

P which isn’t necessarily inner.

Proof. We adapt the theory of Ton Van Duc in [12]. Indeed, let D be a derivation
of P and B ∈ Aw

Γ . According to the theorem 4.1, we have
[
Aw

Γ ,A
w
Γ

]
= Aw

Γ . We can
write B by B = [B1, B2] where B1, B2 ∈ Aw

Γ . We get DB = [DB1, B2]+ [B1, DB2] ∈
Aw

Γ . Then D|P is a derivation of Aw
Γ . And there is B ∈ Aw

Γ such that D|P is the
application A 7−→ [B,A] for all A ∈ P . Indeed, let be A ∈ P and B

′ ∈ Aw
Γ , we

have D
[
B
′
, A
]

=
[
DB

′
, A
]

+
[
B
′
, DA

]
=
[
LBB

′
, A
]

+
[
B
′
, DA

]
= LB

[
B
′
, A
]

=
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LBB

′
, A
]
+
[
B
′
, LBA

]
. So we get

[
B
′
, (D − LB)A

]
= 0. Thus DA = LBA = [B,A]

for A ∈ P . It’s obvious that this derivation is not inner. It suffices to take into
account the elements of P and Aw

Γ . Hence the result. �

Example 6. Let AΓ be the Lie algebra generated by the vector fields X and Y of LF

such that [X, Y ] = X. We know that AΓ isn’t semisimple. By definition, H1
(
AΓ

) ∼=
AΓ/[AΓ,AΓ] where

[
AΓ,AΓ

]
= 〈X〉. So we have H1

(
AΓ

) ∼= 〈Y 〉. Next let C be a

2−cochain of AΓ. So we obtain that ∂C (X, Y ) = −C ([X, Y ]) by definition and thus
∂2C (X, Y ) = ∂ (∂C (X, Y )) = −∂C ([X, Y ]) = C ([[X, Y ] , X]) = 0, according to
Jacobi’s identity and we easily find that ∂3C (X, Y ) = ∂ (∂2C (X, Y )) = 0. Thus
H2
(
AΓ

) ∼= {0}.
Example 7. Next, we consider that the Lie algebra AΓ is generated by the vector fields
X, Y and Z of LF such that [X,Z] = X; [Y, Z] = Y and [X, Y ] = Z. AΓ is semisim-
ple and, we have

[
AΓ,AΓ

]
= AΓ, so H1

(
AΓ

) ∼= {0}. In addition, let φ ∈ Ker∂3 where
φ : AΓ×AΓ → AΓ. We have φ ([X, Y ] , Z)+φ ([Y, Z] , X)+φ ([Z,X] , Y ) = φ (Z,Z)+

φ ([Y, Z] , X) + φ (Y,X) = φ (Y,X) − φ (X, Y ) = 0. Then Ker∂3 = C2
(
AΓ,AΓ

)
where C2

(
AΓ,AΓ

)
is the set of 2−cochains on AΓ. So we obtain H2

(
AΓ,AΓ

)
=

C2
(
AΓ,AΓ

)
/Im∂2 . Finally let ψ ∈ Ker∂4 where ψ is an anti-symmetric linear appli-

cation ψ : AΓ × AΓ × AΓ → AΓ. We have ψ (X, Y, Z) = K ([X, Y ] , Z) with K is the
Killing form on AΓ. Thus we have dim

(
H3
(
AΓ

))
= 1.
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