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AN ALMOST-PRODUCT STRUCTURE ON THE FOLIATED MANIFOLD
R. S. HERINANTENAINA! AND H. S. G. RAVELONIRINA

ABSTRACT. Let M be a differentiable, connected, paracompact (resp. Compact)
manifold of dimension n +m, of class C*°; L a vector valued 1—form with rank m
and of zero Nijenhuis torsion. Such a manifold M endowed with this vector valued
1—form defines a foliated manifold. In this paper, we propose to define an almost-
product structure denoted I'" and to give some properties of this almost-product
structure by studying the Lie algebras which attach to it on the foliated manifold.
We study in particular the ideals, the centralizers and normalizers associated with
the almost-product structure I" such that we can adopt some results found in [9].

1. INTRODUCTION

The theory of connections to Finslerian geometry is not satisfactorily established
as in Riemannian geometry. Several attempts were made to build an adequate the-
ory. The only most important in this direction is Grifone’s theory (in [4] and [5]).
This theory is essentially based on the almost-tangent structure on the tangent
fiber of a differentiable manifold. M. Anona in [1] generalized the almost-tangent
structure by considering a vector valued 1—form L on a manifold (without being
fiber) satisfying certain conditions. He investigated the d; —cohomology induced
by L on M and generalized some Grifone’s results. N. L. Youssef adopted from M.
Anona’s point of view in [1] a generalization of Grifone’s approach on nonlinear
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connections by considering a vector valued 1—form L on the manifold M of con-
stant rank such that [L, L] = 0 and Im (L,) = ker (L,);z € M. He found that L
has properties similar to .J which allows him to systematically generalize important
results of Grifone’s theory. Grifone’s theory is a very special case in these results
on the tangent bundle of a differentiable manifold, and L is the almost-tangent
structure J (J2 = 0). In [9], M. Anona, P. Randriambololondrantomalala and H.
S. G. Ravelonirina studied some properties for a vector valued 1—form I'" having
an almost-product structure (I'> = I), in the sense of Grifone on a differentiable
manifold N of dimension n by studying certain Lie algebras attached to it. In this
paper, we propose to establish a similar property for an almost-product structure
on a foliated manifold which is not necessarily a fiber. We propose to study the
theory of this almost-product structure on the foliated manifold by a vector valued
1—form by considering the Lie algebras associated with it.

Let M be a differentiable, connected, paracompact (resp. compact) manifold of
dimension n+m and of class C'*°. All objects are assumed to be of class C*° on M.
The Frolicher-Nijenhuis formalism is a fundamental tool in this work. We endow
the manifold M by a vector valued 1—form L of rank m and of zero Nijenuis
torsion ([L, L] = 0). The nullity of the Nijenhuis torsion of L defines a foliation on
M such that the image space of L corresponds to the space tangent to the leaves.
First, M. Anona, P. Randriambololondrantomalala and H.S.G. Ravelonirina are
interested in the Lie algebra 2 of vector fields on the tangent fiber TN — {0} of
a differentiable manifold N of dimension n whose corresponding Lie derivative
with the almost-product structure I' (within the meaning of Grifone) is zero (see
[91). M. Anona in [1] found that if L is a connection in the sense of Grifone
L? = I where [ is an identity matrix of order n, the Lie algebra 2(;, is isomorphic
to x(N) x R". In our study, we propose to define an almost-product structure
I' (I” = I) on a manifold M foliated by L, by studying the Lie algebra 2l of
vector fields of x (L, F (M)) whose Lie derivative corresponding to I" with respect
to a vector field of x (L, F (M)) is zero (with x (L, F (M)) = x (M)). We have
found a system of partial differential equations similar to that in [9] in order to
find all the vector fields of Lie algebra (- on the considered manifold. Then, F.
Taken in [13] proved that any derivation of the Lie algebra x () on the manifold
M is inner. A. Lichnerowicz [7] considered the Lie L3 algebra of infinitesimal
automorphisms of a foliation § on a manifold M and proved that, whatever the
considered foliation is, any derivation of Lz is inner. If L is a vector valued 1—form
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of the transversal fiber to a foliation, Lehmann-Lejeune in [8] proved that the
derivations of 2(; are adjunct linear applications of the normalizer of ;. In our
work, we can ask ourselves the behaviors of the derivations of the Lie algebra Ay
(I'> = I) on the considered foliated manifold. In the following section, M. Anona,
P. Randriambololondrantomalala and H.S.G. Ravelonirina have studied the Lie
algebra 2! of the fields of 2y in horizontal space, the Lie algebra A% of the fields
of Ar in vertical space and the Lie algebra 9% of the horizontal nullity space of
the curvature R. In this part, our work consists of studying the structures of Lie
subalgebras, ideals of Lie algebra 2, its associated normalizers and the parts of
the nullity space of the curvature R associated with I'. In each part, we give some
examples to illustrate the results found.

2. PRELIMINARY

In the following section, we assume that all the objects are of class C*°. Let M be
a differentiable, connected, paracompact (resp. compact) manifold of dimension
n + m; L a vector valued 1-form of rank m > 1 on M whose Nijenhuis torsion is
zero ([L; L] = 0). The nullity of Nijenhuis torsion of L defines on M a distribution
©D:z€e M — L,(T,M) which is completely integrable. The manifold A/ endowed
with this vector valued 1—form of constant rank p > 1 is called a foliated manifold
by L such that the image space of L corresponds to the space tangent to the leaves
(we will suppose that the leafs are regular or fibers on M) . The manifold M is
then decomposed into connected sub-manifolds of m dimension such that each of
them is called "leaf". According to Frobenuis theorem, the manifold M can thus be
defined by an open covering U/ of M and by the data of each U € U, of a coordinate
system (z',..., 2" y',...,y™) such that in U, y® = C*,1 < 8 < m; along of leafs

and, the -2, ..., 52- form a local basis tangent to the leaves.
Y Y

Definition 2.1. A foliation § of n—codimensional is the data an open covering U =

{U;}icr and for all i of a diffeomorphism ¢; : R"*™ — Uj; such that for all non-empty

intersection U; N U; the diffeomorphism of coordinate change
67 @ ¢ : (2,8) € 67 (Ui N U;) — (z/,t/) € 67 (UiN ;)
is the form 2 = ¢;; (2,t) and t' = ~;; (t).

Let us denote by § the previous obtained foliation of n—codimensional defined
by the atlas
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A = {U, (2*,9y") } 1<a<n1<i<m Whose transition functions veri = 0. We always
use the local coordinates in the adapted charts to the fohatlon when to the local
expression of an element. For U, U € U of the respective coordinates systems
(x',...,2™ v, ... y™) and (:L"l, oyt ,y/m) with U N U’ # 0 the Jacobi
matrix of the coordinate change on U N U is defined by

(5 5)

where
() A= (%ﬁi) with 1 < a,b < n is a square matrix of order n,
(ii) B = (gf/ 1<i<m,1<a<n 1S @ Matrix of type m x n,
(i) C = (%y] )i<b<ni<j<m = 0 a null matrix of type n x m,

(iv) D = (% 57 ~)1<ij<m iS @ square matrix of order m.

So the distribution © is defined by the equations dz® = 0 for 1 < a < n. By
introducing a riemann metrix on M we can define a supplementary distribution
©° orthogonal to © by the equations

(2.1) 0° =dy’ +TPdz* =0,1<a<n,1<3<m,

where the T'? are functions of class C*°. Consequently, we obtain the decomposi-
tion of TM by T.M = D, & D¢ for all z € M. It’s abvious that the (dz®,6%),1 <
a < n,1 < < m define a basis of F(M)—module of scalar valued p—forms on
M. The dual basis is
0 0 0

2.2 X=_— TP —_ yvPi=_—

(2.2) Oz “OyP’ oy
In UNU the system dz® must be equivalent to dz®; and the systems #" and 6"
must be equivalent. We get

s Oy’ Oxb oy’ O

(2.3) L = 57 927 eyt
By othogonality we can then provide the foliated manifold M an almost-product
structure I' = (h,v) such that h = 1(I 4+ T') and v = (I —T') where h : ©5 — T.M
and v : ©, — T, M are horizontal and vertical projectors of respective ranks n and
m associated to I'. So we have

(i) forze M, h(T.M) C T,M and v(T,M) C T, M;

(i) T.M = h(T.M) & o(T.M);
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(iii) ~ and v belong to the class C'°.

Remark 2.1. The almost-product structure thus defined has a property of foliated
manifold but non specially of foliated manifold by a vector valued 1—form.

Definition 2.2. For an almost-product structure I', we define the Lie algebra 2 of the
vector fields of x (M) whose Lie derivative corresponding to Gamma is null. A vector
field X is therefore an element of r if only if [X,['Y]| =T [X,Y], for Y € x (M).

Definition 2.3. [3] We define the curvature of the almost-product structure " the
vector valued 2—form noticed R by R = 1 [I',T] such that for all X,Y € x(M) we
have R(X,Y) = [[X,TY] + [X,Y] -T[[X,Y] - T'[X,TY].

Theorem 2.1. The curvature R of the almost-product structure I" is null if and only
if the distribution ©° is completely integrable.

Proof. Using the Frobenius’s theorem let us prove that the bracket of h.X and hY
belongs to the distribution ©¢. By definition R = —3[h,h]. Since R is semi-
basic we have R(X,Y) = —1[h,h](X,Y) = —1[h,h](hX,hY) for all XY €
X (M), thatis, R(X,Y) = — [hX,hY] + h[hX,hY]. If R = 0 we have [hX,hY] =
h [hX,hY]. So the bracket of X and hY belongs to ©°.

The converse implication is obvious. Indeed, if ©° is completely integrable; so
by definition the bracket of ~X and hY belongs to ©° for X, Y € x (M). Therefore
we have [hX,hY]| = h[hX,hY] and — [RX,hY]| + h[hX,RY] = 0. Thus we have
[h, h] (RX,hY") = [h,h] (X,Y) = 0. Hence the result. O

The nullity space of the curvature R associated to T' is a set Mz = {X €
X(M) such that ix R = 0} where iy denotes the interior product in respect to a
vector field X

Proposition 2.1. [9] The Lie algebra 2i leaves the nullity space Ny of curvature R
stable.

Let 2 be a Lie algebra.

Definition 2.4. A p—cochain C of 2l is an alternated application of AP in A
C:AXxAx ... xA-A
X' L XP O (XYL XP).

The 0—cochains are elements of 2.
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Definition 2.5. The coboard operator 0 makes corresponding to p—cochain C' the
(p + 1) —cochain OC' defined by

IS VIS W A\ A A0seeeAp 1
oC (X°,...,XP) =53 H[X O (XML X)) =60 5 1)l

C([X,XM], X2 .. X)),

where § is antisymetric indicator of Kronecker and the X*i are elements of .
For p=0,0C = —adx where adx : Y — [X,Y] is an adjunct application.
Forp=1,wehave 0C (X,Y) = [X,C (V)]+[C (X),Y]-C([X,Y]) forall X,Y € 2L

We denote by €7 (AP ) the set of p—cochains of 2” onto 2. Let A : €7 — €7
be a linear transformation such that A = 0. We consider KerA and ImA the
respectives kernel and image space of differential operator A. The element vectors
of KerA are p—coboards. The vectors which are elements of KerA are called
p—cocycles and the elements of /mA are p—cobords. Hence, the 1—cocycles are
only the derivation of 2 and the exact 1—cocycles are the inner derivations. Since
A% =0 and ImA C KerA we can define the cohomology

KerA
ImA -~

H(EP A) =

Now, let 9t be a A—module having an application ¥ : A — End (91) such that
J(X,Y]) = 9(X)I(Y) -9 (Y).Id(X) for all X,Y € 2. We define the linear
applications space
LP (A, M) := Hom (AP, M) which is isomorphic to AP2A* @ M called the p—forms
space of 21 in 9. We define a differential application d : £ (2, 0) — £PT! (2, 9M)
verifying
(i) form e M, dm (X) =9 (X)m forall X € M

(ii) for a € A*,da (X,Y) = —a([X,Y]) forall X,V € A

(i) in AA*, d (A B) = da A B+ (—1)* o A dp.

(iv) A2* @ M, d (0 @ m) = da @ m + (—1)* & A dm.
We verify that d?m = 0 for m € 9 and d?a = 0 for a € A*. So we define the
following differential sequence:

oo LPTRL M) S £ (A, 9m) L £P T (A, .
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called a Chevalley-Eilenberg’s cohomology complex of 2l with value in 91. And the
space

Kerd : LP (A, 90) — HPT (A, M)

p _
AL = e T L) £ (On, )

is called the Lie alLgebra of cohomology of 2| with value in 9. This Lie algebra is
called Chevalley-Eilenberg’s cohomology space of 2 in 1.
In the next section, we will suppose that M is a foliated manifold by L.

3. SOME PROPERTIES OF LIE ALGEBRAS ATTACHED TO AN ALMOST-PRODUCT
STRUCTURE I' ON THE FOLIATED MANIFOLD M

Definition and Proposition 3.1. Taking into account an adapted chart of local co-
ordinates (z',... z" a™ ... 2"™™) of the domain U, we define an almost-product
structure T adapted to this chart by T' = I'}dz® ® 25,1 < a, 8 < n+ m where the

'8 are functions of class C*° in the equation (2.1), verifying:
() TP =0for1<p<n,
(i) I, =0forn+1<a<n+m,
(iii) and T2 # 0 forany 1 < o, f < n + m.

Proof. The proof is immediate. We just need to adapt the almost-product structure
" by the change of the adapted charts on M from the relation (2.3). O

Proposition 3.1. Let U be a domain of adapted chart to a local coordinates system
(..., 2" y' .. y™). All element X = X2 —|—Y5%,1 <a<n1<B<m,of
Ar where I' = Ffidxa@@a%,l < a,f <n+msuchthat T, =0, for 1 <i < nand

[y = 0forn+1 < j < n+m,verifying:

ox~
3.1 =0
ors oX? ors _oy”P
(3.2) X Pyl e T =,
dx’ Oz~ oy’ Ay’
1<i<n 1<i<n 1<i<m 1<i<m

fori<a<nand1l < p<m.

Proof. We suppose that the adapted chart of domain U has a local coordinates
system (2',27),c;cp pi1<jensm With 2" =3/ for 1 < j < m. Now, let X be a
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vector field of U such that X = X* ai“ 1 <i < n+ m. By definition, X € 2 if and

only if the components of X verify
or,_0X!
. A
or’ T oxk
Case 1,if 1<j<n:
(1) if 1 < k < n'we obtain in (3.3) and according to (3.1) we have —TI';, %)f =0
forn+1<i<n4+m.So2X =0forn+1<i<n+m,

ox®
(2) if n+1 < k < n + m the equation (3.3) is immediately equal to zero.

- 0X
T

. X —_—
(3-3) kg

=0forl1<jk<n+m.

Case2,ifn+1<j<n+m:

. ; O} joxi i oxi
(1) if1 <k<nwehave X'k +T75% — 1.5+ =0
1<i<n+m 1<i<n Vn+1§i§n+m ,
(2) and if n + 1 < k < n+m we have IV 2 = 0. Thus £ =0.
1<i<n 1<i<n

O

Corollary 3.1. All vector field X of r is projectable. That is, %—ﬁ =0for1<i<mn
and 1 < j <m.

Proof. Indeed, according to the proposition 3.1 we get the corollary. O

We will denote by 2; the set of infinitesimal automorphisms vector fields which
leave the leaves invariant. According to Bruce L. Reinhart in [11] the projections
(h,v) which admit the following properties:

(i) Lh = L; hL =0

(i) Lv = 0; vL =1L

(i) Th = hl' = h; I'=vl'=—v.
We consider by A the module of all vector fields X € y (L, F (M)) such that
h(X) = X and 2} that of all vector fields X € x (L, F (M)) such that v (X) = X.
In dual basis (X, Y”) to the equations of (2.2), locally we obtain X € 2 and
it is equal to X = X% — X% and for Y € 2Ap we have Y = Y%, We
immediately obtain the following corollary from the proposition (3.1)

Corollary 3.2. We taking into account an adapted chart of local coordinates system
(x',.. . 2"yt ..., y™) of the domain U. Every element X = Y*B%, 1< B <mof
A} verifies
OB ) B
Y* 8].“0'[ -1 _8Y.
oy’ oy’

1<i<m 1<i<m

=0, forl<a<nandl <p<m.
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And all element X = X 50 — T7X* 05 € Ap satisfies

1<a<n 1<B<m
NG ors oxi . or?
Xi—e _rixtoo i T XL =,
ozt oy Oz Yy’
1<i<n 1<i<m 1<i<n 1<i<m

forl<a,t<nand1 < <m.

Proof. It’s an immediate consequence of proposition 3.1. In fact, we just need to
replace the elements of 2 by those of 2 and that of 2(%. O

It’s immediate to note that

Proposition 3.2. 2 and 2% are ideals of Lie algebra 2 whose it is a direct product
of these ideals.

Proof. We have a similary result of [9] where the almost-product structure I' is a
Grifone’s connection. 0

Proposition 3.3. [9] If the almost-product structure I is flat then the Lie algebra A
is a direct product of 2% with 2A¥.

Proposition 3.4. A vector field X of M is an element of r if and only if X leaves
invariant the generalized distributions defined by Lie subalgebras A and 21%.

Proof. 1t’s an immediate consequence of the proposition 3.1 of [6] in the case
where the vector valued 1—form L is an almost-product structure of the eigen-
values 1 and —1. ]

Lemma 3.1. If M is a compact manifold without board such that
(i) dimM = 2k + 1,k € N we obtain Ar = {0}
(ii) dimM = 2k we have 2 # {0}.

Theorem 3.2. If M is a compact manifold without board dimension 2k and for all
adapted chart of local coordinates system (x',..., 2" y' ..., y™) of domain U we

have A% = {f (z!,...,2") y"a%, 1 <14 < m} where f is a function of class C*°.

Proof. We suppose that M is compact without board manifold of dimension 2k with
k € N. According to the lemma 3.1 we have 2 # {0}. Since the Lie algebra 2
is a direct product of 2% and 2% then those Lie subalgebras are supplementary as
F (M) —modules. So % and 2% are the basis which do not vanish naturally. Thus
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the elements of A% and 2A¥ are the generator systems. Naturally all element of 2(%
can also be written Yia%, 1 < i < m where the Y are functions in 2 and y* for
l<a<nand1l <i<m. Let X be X € A% If X € A} then X is not generated
by 52,1 < a < n. We prove that X € (Y*:%) where Y' = f(z',...,2")y’ for

oyt
1 < i < m. According to the corollary 3.2, X € 2} verifies the equation
%) N L QY#
(3.4) Y’a‘?‘:Fga —forl <a<nand1l<pg<m.
oy’ oy’
1<i<m 1<i<m

IfY!= f(zt,...,2") where Y* = f(y',...,y") then it’s impossible to obtain the
equality (3.4), because the Y are functions of 2 and 3’ with 1 < a < n and
1 <i<mLetY'= f(z ..., 2" y',...,y™). If M is of dimension 2k, passing
by local coordinates system (z%,¢'),1 < a < n,1 < i < m of the domain U of
adapted chart to the foliation, the Y is equal to the functions f (z!,... , 2") ¢y’ 1 <
i < m according to the definition of almost-product structure I' in 3.1. Thus
X e (f(z',...,a") y'5r). Hence the result. O

Proposition 3.5. If the curvature R admits a nullity space then we have A # {0}.

Proof. In fact, we suppose that the nullity space 91z of R isn’t null. Let X be
X € 2t such that on an adapted local coordinates system (2%,9), o<, 1<i<p W€
have X = X532 — T X*5- If X = O then foralla € {1,...,n}, we have X = 0
with a € {1,...,n}. But the space Ny is generated by projectable fields X a%.
Then 91y is reduced to zero. This contradicts to the hypothesis. So necessarily, we

have X # 0. Thus 2 = {0}. O

Consequently we have

Corollary 3.3. If the almost-product structure IT" is flat then immediately we have

Ap # {0}
Proof. 1f the product strucutre I" is flat we have Mt = x (L, F (M)). Hence The
result. O

Remark 3.1. If the associated curvature to T isn’t null the Lie algebra A% isn’t neces-
sarily reduced to zero.

Definition 3.1. [2] A derivation D of Lie R—algebra 2 is a R—linear application in
2 to A such that for alls X, Y € A, D[X,Y] = [DX,Y] + [X, DY]. A derivation D
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of Ais inner if for all X € A, D(X) = [X,.]. In particular in [7], a derivation of Lie
algebra is given by a first degree differential operator.

Proposition 3.6. [10] Let D be a derivation of 2 and U a domain of the adapted
chart of the considered manifold. If there is a field X € 2 such that X |y = 0 then
we have D(X)|y = 0. That is, D is local.

Proof. Let U be a domain of the adapted chart and suppose such that there is
X € 2 such that X|y = 0 and D(X)(z) # 0 for € U. We consider a vector field
Y of M such that Supp(Y) C U and [DX,Y](z) # 0. By definition, D [X,Y] =
[DX,Y]+[X,DY]. Forz € Uwehave D [X,Y](z) = 0= [DX,Y] (z)+[X, DY] ()
and [X, DY] = 0. Then 0 = [DX, Y] and this contradicts the hypothesis.So neces-
sarily DX (z) = 0,2 € U and thus DX |y = 0. O

Definition 3.2. [10] We call Chevalley-Eilenberg Cohomology’s first space of 2 the
quotient vectorial space:

H' () = Der(2)/ad
where Der(2l) (resp. ad?l) is the Lie algebra of derivations (resp. of inner derivations)
of A.

Definition 3.3. [2] We call derivative ideal of Lie algebra %A the submodule of 2,
noted [, 2] generated by [X, Y] such that for all X, Y € 2. We define by recurrence:

D'(2A) = [2A,2],
D*(A) = DY(D*1(A)) for k > 2.
It’s obvious to obtain the following theorem

Theorem 3.3. The derived ideal of Lie algebra A} is contained in 2A}. That is,
[2Ap, Ap] C Ap.

Proof. It’s obvious. Indeed, the derived ideal of 2l}. is a Lie subalgebra of 2(}. which
is stable of the Lie bracket. Hence the result. O

Remark 3.2. On a foliated manifold, the derived ideal of Lie algebra 2}. is not nec-
essarily coincided with ..

/

Theorem 3.4. All derivation D of Lie algebra A} is equal to D(.) = D (.) +
(Z,.],Z € A¥. where D' is a derivation of r which is not necessarily inner.
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Proof. Let (z!, 2", x™*, ... 2"t™) with 2"*# = 9% 1 < 3 < m be an adapted chart
of the domain U, D a derivation of 2} and X a vector field of x(A/). By definition
LOXP 9

0
- 40P —
DX(z) =2 5o P 5 +2°T o(x, X)Gmﬁ for z € U,

DI[X,Y]=[DX,Y]+[X,DY], forall Y € x(M).

If X € A7,Y € 2r and for z € U, by using thoses definitions we get

0 (udY" XN D, D
Z{axi(X%_Yaxbﬂ&xa i g

oX° 0,0 0 oxX* N\ 0
_{ (axz+r>aayﬁ_yaxb< (axi—i_ri)axa)]
9 oYt .\ 9 oyt N\ 9 .9
_[X 8:6“( (8xz+ri)%)_ (8x2+r>@x 8:6“]_0’
then we have

b a b b
0 (XzﬁL) 0 (ybaX>+zirg_ DXoYt Lo

N ozt Ox? 8x’ ox? * oxrt Ox@ i ¢t O
c a Xb c a iTb a a ayb a 8 iTb
o 3xc< 8IZ)+Y%(ZFi)_X 8ma( 8%) X 8x“( 2T3)
LY oXx® iy OX°
“on o T g =
and
8X“8Yb 0 ioa OPYP 0 B 8Yb8X“ 0 L b82X“i
8x1 Oz Oz ¥ 0zt 0z Oxo 6x1 ozt Oza : 0xi0xb Oxo
0 8X“8Yb 0 oYt o 02X 9
iTe re— iyt .
ER R O R P R N R
_'_Ziyb@i_zi , 0?YP i_zi a@Ffi+ Yt oxe 9
oxb Ox@ 0zx®0xt Oxb Ox® Oxb ozt Oxb Ox°
+zinaXa J
b Oxb Oxo

By eliminating the terms of second derivatives, we get

9 oyt 9 . ere 9 .ot 9 . 9Xe d
zra _ 1—\ zyb_z_ — sixoe i iTa
igpe  Cliggaond TP Grboze SN Gradmd i ggb dge
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0 9Y? 0 . ,ore 0 ) NG, - 0X* 0
Zqu_ _ zFa zyb 7 4 zXa 7 zl—\a

COre 2l ox® Oxb : ozl Oz - Oxe Oxb “hi Oxb Oz’

B 0 iva 0w 0 ,0X°
=T dzo (2) + 21X 8xari8:pb 21 Oxb’
0 0 0X* 0

re_— — .t

_ iXa
¥ oxe " Oxb b Oxb Oxo’

taking into account Y € .

L (OXF 0XF LOIF\ 0
DX (2) == (3xi - L ox? X 8x“) Dk
. [ox* ,OXF ,Ork 0
—c [&Ci a (Fi Oxb - 8:6‘1)} ozk
0 oxX* 0

Tk Ty 7
(1-18) o+ (1= 1) 250

0
oz
_ b i a 0
a2l

I S N SR S A

= (1 Fz’)aﬂL(l Fi)axk’X e (2)

_ Zi |:_Xa

T
[0 0 0 D
= @VX axa} (2) + [(1_Fi>8xk’X 8:(:“} (2)

for1 <l <n,n+1<a<n+mandl < ib < n+ m. Considering Z =
(1 —T%) 5% € AL, so we obtain

(3.5) DX (2) = [ 0 xe O ] (2) + [Z,Xﬂ 8xa] (2).

ozl oz

The relation (3.5) results that DX (2) = [;%, X| + [Z,X](z),z € M. Hence the

theorem. ]

Lemma 3.2. Let U a domain the adapted chart of the local coordinates system
(', . 2™ 2t T ™) and X € x (U) a vector field. If [X,Y] =0 for Y € AL,
necessarily we have X = 0.

Proof. Let U be a domain of an adapted chart and X € x (U) a vector field. For
Y € A we suppose that [X, Y] = 0. Locally on the adapted chart of the domain U
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wehave Y = Y22 n+1<p<n+m.If 2 € Uwe have

OxB"
: oY» 0X°
z’<X“——Yﬁ ):o,

Ox® oxB
oY P oXxX
X —-Y* =
Ox® oxP 0,
oy”? oxe
X =Y
oxe oxP

For z € U we can choose Y € 2(}. such that Y (z) = 0 but gﬁf is arbitrary. So, it

follows that the X® isnull for1 < o < n + m. O

Theorem 3.5. All derivation D of Lie algebra 2 with value in x (M) is of the form
D (.) = [Z,.] where Z € . That is, all derivation ofRly is inner. Thus its Chevalley-
Eilenberg’s cohomology first space is null.

Proof. Let D be a derivation of r in value to x (M). Let D' be the restruction of
D to A¥. For Y € AL we can find Z € Ar such that D'Y = [Z,Y]. Let X € Ar, we
have

[DX,Y]+ [X,DY] - DI[X,Y] =0,
[DX,Y]+[X,[Z,Y]] - [Z,[X,Y]] =0 for Y € 2

According to Jacobi’s identity [DX — [Z,X],Y] = 0. According to the lemma
(3.2), we obtain DX — [Z, X] = 0 and thus DX = [Z, X]. Hence the theorem.
This theorem 3.5 is other than the similary result to that of Kanie in [13]. O

Definition 3.4. [2] Let 2 be a Lie algebra on M. We define the center (resp. the
centralizer) € of 2 the set all vector fields X € A such that [X,Y] =0forall Y € 2
(resp. Y € x (M)).

Proposition 3.7. If the almost-product structure I" is flat on M then the centralizer
of AL (resp. of AL) in Ar is reduced to zero (resp is generated by the %, 1<i<n).

Proof. We suppose that the curvature of I" is null on domain U of the adapted chart
of the local coordinates (x!,... 2" 2" ...  z""™™) with 2" = /|1 < j < m.
According to the proposition 3.3 the Lie algebra 2Af: # {0}. In U let X = X%, +
1<i<n
X722 such that %TX]-i =0and [X,Y] =0 for Y € AL We have X*27 — y*oXl —

AyJ Oxk
1<j<m 1<k<n+m
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for1 <j<n+mand

oYy 0X7
k h

1<k<n+m 1<h<n+m

Since Y < QI’F‘ one of the Y"1 < h < n + m is at least non zero. Two cases
are possible: if Y% = c*¢ non zero for some 1 < k, < k, the equality (3.6) gives
9X0 — 0, for 1 < jo < j so X7 = ¢! non zero. And if Y* = f (27,1 < i <n+m),

dxh

(3.6) implies that X’“%i“ # (0 forany 1 < j, < jand X* #£ 0 forany 1 < ko < k.

Hence the proposition. O

Proposition 3.8. Let U be a domain of the adapted chart of local coordinates (z*, . . .,
0 B
Dyl Bym

almost-product structure I is flat on M, the centralizer of }. in the generated part
by the basis -2;,1 < i < m of x (L, F (M)) (resp. of x (L, F (M))) is reduced to zero

oyt
(resp. isn’t reduced ever to zero).

"yl ... y™) where form a tangent local basis to the leaves. If the

This proposition 3.8 is similary of a result in [9] if the almost-product structure
I" is a connection in the sense of Grifone.

Proposition 3.9. If the manifold M is compact without board of dimension 2k with
k € N* then the centralizer of r isn’t null.

Proof. We suppose that M is a compact without board manifold of dimension 2.
According to the lemma 3.1 we have 2 # {0}. Let Y be an element of centralizer
of ™Ar such that [X,Y] = 0 for X € Apr. Let (v*,9');,<r1<;<, D€ @ coordinates
system of the adapted chart of domain U of M. LoEal_ly let X ,Y be such that
X =X% +Y'2andY = X2 + Y 25 We have

b ) a ‘g
X“aX 0 XbaX 0 Xa@Y 0

dxo dxb oxb dxe * ox® Oyl
Y 0 Y7 0 O 0
- X b - Yl . Y J - e
Oxb Oy’ + oyt Oy oyi Oy’ 0

forl1 <a,b<kand1<i,j <k Then we get
dX b S0 0X™

3. X - =0
37 ox® Oxb
and
Y 'do . QY do gy o QYo
(3.8) X“a—— 9 +w8 —Yﬂa =0

ox® Oxb oy? oy’
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for1 < a,bp < kand 1 < i,j, < k. Since X € 2 we can find 1 < ag < k such
that X% = 0. In (3.7) and (3.8), we can have X% = (. Else, X ?22 — yidy 0 4

: orb oyt
Y'i aggjo = 0. For any 1 < b, j, < k we have either X'* = 0 or Y'7° = 0. Hence The
result. O

Definition 3.5. [2] Let 2 be a Lie algebra and b C 2. We define the normalizer N
of b in 2 the set of all vector fields X € 2 such that [X, 5] C b.

Theorem 3.6. The normalizer of A}, of all vector fields of x (L, F (M)) is generated
by the elements of 23 wich are infinitesimal automorphisms fields to the leaves.

Proof. We can calculate the normalizer of 2} on the local coordinates system of
the adapted chart of the considered domain U and we obtain the result. O

Proposition 3.10. If the almost-product structure I' is of regular curvature then the
Lie algebra 25 is the only normalizer of 2 of all vector fields of x (L, F (M)).

Proof. 1t is immediate according to the definition 3.5. O

Example 1. We consider the tore T? given as the square 0 < § < 1and 0 < 8 < 1
in the plan of local coordinates system of the adapted chart by (0, 3,6, ') of the
domain U and the equations:

cos? (2w 3) df — sin (2w 3) dB = 0
sin (273) df + cos® (2 3) dB = 0,

which define an almost-product structure on T?. The associated Christoffel coefficients

are: T} = cos?(2nB); I'ly, = —sin(2xB) = I'y;; T3, = sin(2n8) = I'%,; T3, =
cos® (2m3) .
However, the components of T' are: T'l = 0'cos? (2r3) — B'sin (276); T'L =

—0'sin (273); T? = Blsin (276); T2 = 0'sin (278) + B! cos? (273) . We know that
the almost-product structure I" is of regular curvature on M. We only obtain the Lie
algebra Ar = {cZ}, ¢ € R* which is resolvable.

Example 2. We construct an almost-product structure in the sphere S* of dimension
3. This structure doesn’t have any invariant group, nor is it of null torsion. For the
construction we suppose S? given by the equation x> +y*+2%+t* = 2in E*. Let us pass
by spheric coordinates of the adapted local coordinates system (a, 6, p, ', 0%, p1) , the
associated metric is ds*> = 2 [do? + sin®(«) (df? + sin®(0)dy?)|. We get the associated
Christoffel symbols which are: T3, = —cos(a)sin(a); 'y = —1sin(2a)sin®(6);
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%, = cotan(a) = T%; T3, = —cos(f)sin(); T3, = cotan(a) = T3y; Ty =
cotan(f) = I's,. And the components of the almost-product structure T are the follow-
ings: I'1 = 0; T'Y = —atsin(#) cos(#); Tt = —p!sin(2a) sin?(6); T? = 'cotan(a); T3
—alcotan(a); T3 = plcotan(a); T3 = plcotan(h); T3 = a'cotan(a) + 6 cotan(6).
We find that T is of regular curvature but, its Lie algebra r is null. This example
also proves that if the dimension of M is odd then the Lie algebra isn’t semisimple.

Example 3. Let U be a domain of the adapted chart of local coordinates (z', x*,y",
y2, 93, y*) and T an almost-product structure defined by T} = y3e*’, T2 = —2 = I'l.
According to the calculation, we obtain that the associated curvature R to I' is null.
That is, the nullity space of R is equal to x (L, F (M)). And the Lie algebra A} =
{ae™™ 52 + b2 + (2b — ay®) 5% + 2bz2; } where a € R* and b € R.

Example 4. Let U be a domain of the adapted chart of local coordinates system
(2", 22, y' y% i3, y*) and T is the almost- product structure such that I'1 = e*'v',
2 = y* = -T2, I'2 = ¢*". We obtain that A = {0} and AL = {f («', 22,43, y*) 8%3 -

g ($17x27y3ay4) a;Z‘L}

4. COMPLETE LIFT ON THE FOLIATION

Let us consider the differentiable manifold M connected, paracompact of di-
mension n + m and of class C providing the foliation § of n—codimensional
defined by the atlas A = {U, (2%, y*) }1<a<n1<i<m. Let Q be the transversal fiber
to the foliation § and 75 the Lie algebra of vector fields tangent to leaves of §
(see [12]). A form w on M is saw transversal if iyw = 0 for all X € Ty w is
basic if ixw = ixdw = 0 for all X € T;. A vector field X on M is saw foliated
if X f is basic for f € F(M). Locally a foliated field X has a local expression:
X =Y (y',2") 50 + X (¢*) 5% that of associated transversal field noted by X, is
X=X “8%1 where the 6‘31 are the local basis of Q. If X and Y are two foliated
vector fields, their Lie bracket [X, Y] is also a foliated vector field. Let us denote
by L; the Lie algebra of the foliated vector fields of § and [y = Lg/r,. We know
in [7] that 75 is an ideal of Lz and /5 is a Lie algebra whose elements are called
the transversal fields of the leaves of §.

Now, let (Q* m, M) be the dual of the transversal fiber. The module of the
sections of Q* can be identified to those of the transversal 1—forms. In an adapted

chart {U, (y*,z*)}, an element w of Q* has a local expression w = z%dz". We'll




11036 R. S. HERINANTENAINA AND H. S. G. RAVELONIRINA

assume (y', 2% 2%), c;cim 1<a<n as local coordonates in #~* (U) and thus, we obtain
on 0*, an atlas whose transition functions are of the form
.7 -/ . / ’ ! 81.(1
yz — yz (yz7$a) : % = % (xa); 20— awa, Pl
Definition 4.1. Let X and Y two be differentiable manifolds of class C*°. An appli-
cation p : X — Y is saw a coating if the following conditions are verified:

(i) p is surjective and a morphism of class C*,s € N* of X to Y,

(ii) for all y € Y there is an open V of Y containing y such that p~! (V') admits
a repartition of the form p=* (V) = U,;c;U; where the U; are the opens of X
such that for all i € I, the restriction of p to U; is a diffeomorphism of U; on
V.

Example 5. The application p : t — (cos(2t),sin(27t)) of R to S' C R? is a
coating. Indeed, we know that S* and R are manifolds of dimension 1 and of class
C™>. But the application :t — (cos(27t),sin(27t)) is a C*°—morphism in R? so
into S'. We suppose (z9,yo) a point of S, tq such that xy = cos(2mty), yo = sin(27t)
and o €]0,5[. If V = p(Jto — o, to + ), this is an open containing (xo,yo) , and
p 1 (V) = Upezlto — a + k, to + a + k[. In addition, the restriction of p in |ty — « +
k,to + a + k| establishes a diffeomorphism of this interval on V.

Proposition 4.1. [12] Q* is provided with a foliation §* whose leafs are the coating
of the leaves of §.

Proof. The leafs of §* are locally defined by 2* = C* and 2* = C". Let U be the
domain of the local chart which is simple for the foliation §. Then p~! (U) is simple
for §*. Let F* be a leaf of §* and F' = p (F*) its projection on M. Since F*Np~! (U)
is a plaque reunion then F' N U is a plaque reunion. So F'is a leaf of §. If Fyy is a
plaque of F N U,p~! (Fy) is a plaque reunion whose each one is diffeomorphic to
Fy. So (F*,p, F) is a coating. O

Let ¢; be a local group for one parameter of a foliated vector field X on M. Since
each ¢, is an automorphism of foliation then (¢;), which induces an automorphism
(E);l is an automorphism of Q*. We denote X the vector field associated to the

local group for a parameter T'ransp <(E) *_1> Locally X admits a local expression

(see [12])
Y i ) a i a a a o baXa a
X—Y(y’x)ﬁyi+x(x)8x“ C S
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Thus, X is a foliated vector field for the foliation §*. Therefore, we have

Definition 4.2. A complete lift of a vector field X where locally, X = Y"* (y', 2%) a?,i +
X (2%) 5% on M to Q, noted by X, has a local expression on the adapted chart

(v, 2%, 2%) of the domain p~! (U) of Q* by:

. i i oy O a/ an O 0xXe* 0
X g X0 e

Let Ly be the Lie algebra of the complete lift of elements of L;. If a vector
field X is tangent to the leaves of § then its lift X is tangent to the leaves of §*.
Consequently, the transversal field X € Iz definied by the lift X of X depends
only on the transversal field X. We denote by /5 the Lie algebra obtained from 5.

Proposition 4.2. Locally, a vector field X = Y (y',2") 7% + X (2”) 3% — 2"555 7%

belongs to A such that

oxX®
- =0,

oy’

ors 0xXeors 0X“ o*Xe o) W - 0Y”#
X0 gb = — 2'T? YVi—e —Ti—— =0
o~ xb dxo e Bz 9redgh + oyt Oyt ’

1<a<n 1<a,b<n 1<a<n 1<a,b<n 1<i<m 1<i<m

foril<a<nandl <p<m.

Proof. This is an immediate consequence of the proposition 3.1 by replacing the
elements of 2 by those of 2. O

We immediately obtain the following corollary

Corollary 4.1. All element of 2Ar is projetable. That is, we have %= = 0,1 <a <n
and1 <i<m.

Proof. Indeed, according to the first equation of propositon 4.2 we obtain this
corollary. m

Remark 4.1. We remark that the Lie algebra 2 is of dimension superior or equal to
2. Ar can be of infinite dimension.

Proposition 4.3. If M is compact without board manifold of dimension 2k + 1 with
k € N, then the Lie algebra 2Ar of complete lift X of the vector fields X is generated
by the vector fields tangent to the leaves of the foliation F*.
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Proof. We suppose that M is a compact without board manifold then the nulity
space of the curvature R associated to the almost-product structure I" is null. And
if the dimension of M is equal to 2k + 1, according to lemma 3.1, the Lie algebra
2p is null. So the Lie algebra A does not a projectable field. Hence the result. [

We adopt the following proposition:

Proposition 4.4. Let an finite integer p > 2 be the dimension of Lie algebra Ar, we
have

(1) if the Lie algebra Ar of the complete lift X of the vector field X is semisimple,
we have ' (Ar) = H? (Ar) = {0} and H? (Ar) is 1 dimension,
(2) if Ap isn’t semisimple and p is an pair integer we have $* (Ql_p) = {0}.

Proof. Since p is finite integer and p > 2 then the set " () with 1 < n < p are
finites. So, we can calculate them using a program from the Maple Software. In
every case, we will find these results. O

Remark 4.2. In general this proposition 4.4 is still true for any Lie algebras of finite
dimensional.

On 9Q*, we suppose that there is a 1—form w called canonic form defined by:

wy (X) =10 (p (X)) for all # € Q* and X € TpQ*. Locally, w = 2%dz?,1 < a < n.
Let C' be a canonic field on Q* then its local expression is C' = z° a‘za, 1 <a<n.
We have

icdw = w, L09 = 9, Lch = d9,
where i¢ and L. indicate respectively the interior product and the Lie derivative
in comparaison to C.
Proposition 4.5. [12] A vector field Z on Q* is tangent to leaves of §* if and only if
iz0 =izdf = 0.

Now let 2(* be the Lie algebra of vector fields of Q* which leaves w invariant.
A vector field X =Y':2: + X% + 70 % (1 < a,b < n,1 <i < m) belongs to A,

oy oz®
i 0 0 0X?®
X X X
2t =0, -2 =0; Z'=-— ’.
Oy’ : P ’ B
Locally X = Y* (yj,x“,zb) 62,- + X (x9) aia — zb%);; a(za for 1 < a,b,c < n and

1 < 4,7 < m. Let A¥ be the Lie algebra of vector fields of 2 which leave w
invariant.
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Proposition 4.6. A vector field X = Y' (/2" 2") 2 + X () i — 255 %

belongs to A if it verifies:

ors 0X®or” oX* D* X - ors
X a b o] B8 o bFB Y (. 2% b o
o Orb dxo “Ppa O gradgh + (y s ) oy
1<a<n 1<a,b<n 1<a<n 1<a,b<n 1<i<m
OV (i 20, 2
_p W)
oy’

1<i<m

fori<a<nand1l < p<m.

Proof. To demonstrate this proposition, we just need to adapt the previous theorem
4.2 to the vector fields of A. O

Theorem 4.1. We get
() Ar C AP C A,
(ii) the derived ideal of A coincides to itself. That is, [AL, AL] = AL,
(iii) in addition, Av is the normalizer of 2A¥ on (Q*, T*).

We assume P = 2A¢ N Kerw. Z € P if and only if Z = Y7 (y/,2% ") 5 +
X (2¢) 5% — 225 2 and w(Z) = 0. Then X® =0 and Z = Y (7, 2%, 2°) 2 +

e Oxb 9za - . ' oyt
X (2¢) 5% — 2P0 0 So Z =Y (v, 2%, 2°) a?ﬁ € P. That is, P is the Lie algebra

of the vector fields tangent to leaves of F*.

We can easily verify that P is an ideal of 2(%. Indeed, let X € P and Y € 2¥. It
is obvious that [X,Y] € ¥ and we immediately obtain that w ([X,Y]) = 0. So
[X,Y] € P. And 2¥/p C I3 and that the application ¢ : A — [; is thus defined a
surjection according to [12]. We have the following exact sequence

0— P—A¥ — Ly — 0.

Theorem 4.2. All application A — [B, A], B € ¥ of P to itself is a derivation of
P which isn’t necessarily inner.

Proof. We adapt the theory of Ton Van Duc in [12]. Indeed, let D be a derivation
of P and B € 2A¥. According to the theorem 4.1, we have [, 2(¥] = 2£. We can
write B by B = [By, By] where By, By, € A%. We get DB = [DBy, Bo| + By, DBy) €
2. Then D|p is a derivation of . And there is B € 2% such that D|p is the
application A — [B, A] for all A € P. Indeed, let be A € P and B' € 2¥, we
have D [B',A] = [DB',A] + [B',DA| = [LgB',A] + [B',DA] = Lg [B',A] =
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[LgB', Al + B, LgA]. Sowe get [B', (D — Lg) A] = 0. Thus DA = LA = [B, A
for A € P. It’s obvious that this derivation is not inner. It suffices to take into
account the elements of P and 2(. Hence the result. O

Example 6. Let 2r be the Lie algebra generated by the vector fields X and Y of Ly
such that [X,Y] = X. We know that 2r isn’t semisimple. By definition, ' (Ar) =
Q(_p/[%m—r] where [Ar,Ar] = (X). So we have $' (Ar) = (V). Next let C be a
2—cochain of Ar. So we obtain that 0C (X,Y) = —C (|X, Y]) by definition and thus
9?°C(X,Y) = 0(0C (X,Y)) = —0C ([X,Y]) = C([[X,Y],X]) = 0, according to
Jacobi’s identity and we easily find that 9*C (X,Y) = 0(0°C (X,Y)) = 0. Thus
97 (Ar) = {0}.

Example 7. Next, we consider that the Lie algebra 2y is generated by the vector fields
X,Y and Z of Ly such that [X,Z] = X; [Y,Z] =Y and [X,Y] = Z. Ar is semisim-
ple and, we have [, Ar] = Ar, so H' (Ar) = {0}. In addition, let ¢ € Kerd® where
¢ Ap xAr — Ap. We have ¢ (X, Y], 2)+¢([Y, 2], X)+¢([2, X],Y) = ¢(Z, Z)+
o(V.Z],X)+ ¢ (Y, X) = ¢(Y.X) — ¢(X,Y) = 0. Then Kerd® = C? (Ar,Ar)
where C? (Ar,Ar) is the set of 2—cochains on Ar. So we obtain §H? (Ar,Ar) =
C? (Ar,Ar) /rmoz. Finally let o € Kerd* where 1 is an anti-symmetric linear appli-
cation ¢ : Ap x Ap x Ap — Ap. We have o (X,Y, Z) = K ([X,Y], Z) with K is the
Killing form on 2r. Thus we have dim (* (2r)) = 1.
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