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FINITE VOLUME METHOD IN A GENERAL MESH FOR CHEMOTAXIS
MODEL

OUAFA SOUALHI' AND MOHAMED RHOUDAF

ABSTRACT. In this paper, we present the finite volume method DDFV applied to
a model of (Patlak) Keller-Segel, this model consists of a coupled system of ellip-
tic and parabolic equations with an additional cross-duffision term in the elliptic
equation. The existence of a discrete solution is proved. Numerical simulations
are performed to verify accuracy.

1. INTRODUCTION

Chemotaxis is the orientation of cells or organisms in response to the influence
of chemical stimulus. This phenomena has a important role in several biological
filds, like immunology, cancer growth, wound healing and embryogenesis (see
[1D).

In the literature, there are several works presenting a numerical method to solve
the classical Keller-Segel system, for example: Filbet proves the existence and
singularity of a numerical solution to the finite volume scheme in [3] and the
authors in [2] present the finite volume scheme for a Keller-Segel model with
additional cross-diffusion. Moreover, [4] propose the numerical and theoretical
study of Stochastic particle approximation for measure valued solutions of the
2D Keller-Segel system and the paper [5] concerned the numerical simulation of
chemotactic using the mixed finite elements method. The authors in [6, 7] study
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the finite-element method for a simplified Keller-Segel system and finite difference
schemes to a parabolic-elliptic system modelling chemotaxis was treated in [8].

Patlak in 1953 [9], Keller and Segel in 1970 [10], were created as a model to
describe the evolution over time of the cell density n(z,¢) and the chemical signal
concentration variable S(z,t) the following model:

9n — div(Vn —nVS) =0, onQr,
~div(VS) —pn+S =0, onQr,

(1.1)

with Qr = Q2 x (0,7), T > 0 is a fixed time, and (2 is an open bounded domain in
R? ;d = 2 or 3, with smooth boundary 0€). The parameter ;. > 0 is the secretion
rate at which the chemical substance is emitted by the cells. The nonlinear term
nV.S models the cell movement towards higher concentrations of the chemical
signal.

Now, let us introduce the additional cell diffusion §An in the equation of the
chemical concentration of the system (1.1), we obtain the following system:

36—’; — div(Vn —nVS) =0, on Qr,
—div(VS) —0An —pun+S =0, onQr.

(1.2)

The initial conditions on §) are given by
(1.3) n(z,0) = n’(x), in Q.

Therefore, the system (1.2) is supplemented by the following boundary conditions
on 09 x (0,7

(1.4) Vn.v =0, in 9Q x (0,7,

(1.5) VSv =0, in9Q x (0,7).

The vector v is the normal unity vector, and the additional cell diffusion dAn,
with 0 > 0 is the additional diffusion constant, has an important role to determine
the explosion time numerically.

The authors who has treated the system (1.2)-(1.5) by the finite volume method
in [2], assume a condition of orthogonality on the mesh in the sense of Eymard
et al. [11]. This excludes other types of meshes that do not satisfy this condition.
For example in porous media most of the geological layers are quite deformed,
and therefore the mesh used to study these problems in general does not satisfy
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the condition of orthogonality. Recently several schemes have been suggested to
overcome this problem.

In this paper we are interested with the discrete duality finite volume method
for the desritization of the Keller-Segel problem without orthogonality condition
on the mesh. More precisely we prove the existence and the uniqueness of the ap-
proximate solution by using Brower’s fixed point theorem. Then, Some numerical
tests are also carried out to verify the validity of the numerical scheme proposed.

The DDFV (Discrete Duality Finite Volume ) method was presented by Herme-
line [12], Domelevo, Omnes [13] and Andreianov, Boyer, Hubert [14], and it was
extended to convection-diffusion by Coudiere in [16]. In [15] and [14, 17] the
authors are present the DDFV scheme apply to a nonlinear diffusion equation.
Omens et al. study the DDFV approach apply to Hodge decomposition and div-
curl problems on almost arbitrary two-dimensional meshes [18], and other work
as : miscible fluid flows in porous media [19, 20], The authors in [21] present a
DDFV schemes applying to a seawater problem.

This paper is organized as follows : In Section 2 we detail the DDFV formula-
tion. The demonstrate of the existence and uniqueness of the DDFV solutions and
number of numerical results obtained on different two-dimensional meshes are
realized in section 3.

2. DISCRETE DUALITY FINITE VOLUME SCHEMES FOR MODIFIED KELLER-SEGEL
MODEL

2.1. Meshes and notations. Let (2 be a polygonal open bounded connected sub-
set of R? with d = 2 or 3, and 99 = O\ its boundary .

Following Hermeline [12], Domelevo, Omnes [13] and Andreianov, Boyer, Hu-
bert [14], we consider a DDFV mesh which is a triple 7 = (901, 9t*, ©) described
below.

The primal mesh 9t is defined as the triplet (91, £, P) where:

e M is a finite family of nonempty open disjoint subset K of 2 (K is the
control volume primal) such that Q = UxecqK, with 9K = K\K be the
boundary of K, let my = || > 0 is the measure of K and dx the diameter
of K.

o E.&m, Earr and Ei are respectively the set of edges o, the subset of the
interior edges, the subset of exterior edges of the mesh and the subset of



11046 O. SOUALHI AND M. RHOUDAF

the edges of K, m, is the measure of ¢ and vk, is the unite vector normal
to o outward to K.

o P = {(zx)kem; zx € K} is the subset of the points of the mesh with z is
the barycentre of K and Dy, the cone with vertex zx and basis K.

Next, The dual mesh 9t* is defined as the triplet (90t*, £*, P*) where:

e M* is a finite family of nonempty open disjoint subset £* of Q2 (K* is the
control volume dual) such that Q = Uyc-con-K*, with OK* = K*\K* be the
boundary of K*, let my- = |K*| > 0 is the measure of K* and dx- the
diameter of K*.

o £5.85 ., €., and &, are respectively the set of edges o*, the subset of the
interior edges, the subset of exterior edges of the mesh and the subset of
the edges of K*, m,- is the measure of ¢* and vk ,- is the unite vector
normal to ¢* outward to K*.

o P = {(zx+)xrem; = € K*} is the subset of the points of the mesh and

Dyc+ »~ the cone with vertex zx« and basis £*.
Finally, We denote by © the sets of all diamonds D, let:

e D = {D € D such that o € &}.

e D = {D € ® such that o* € &. }.

e D, ={D € D suchthato € &,,}.

e 9. ={D € ®suchthato € &,,}.

o Mp = {K € M such that o € Ec}.

o M; = {K* € MM* such that o* € £ }.

e mp measure of the diamond.

For a diamond cell D recall that (zx, xx+, 2z, z2+) are the vertices of D, ,+.
T the unite vector parallel to o, oriented from K* to L£*.

7* the unite vector parallel to ¢*, oriented from K to L.

ap the angle between 7 and 7*.
® Uk, = —COSADVg+ jcx + SINADTK o+
dp the diameter of D, ;.

We consider the following property:

@2.1) MM _ mes(DK#,).

2m7_) - 3

Finally, the size of the mesh: size(T) = max dp.
€
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2.2. Discrete operators and duality formula. we define the spaces:

e R7 is a linear space of scalar fields constant on the cells of 9t and 97*.
R7 = {ur = ((ux)ceqm (uxcs)grcm); With ux € R, for all K € M
and uc- € R, for all £* € 90},
e (R?)P is a linear space of vector fields constant on the cells of D.
(R*)P = {5 = (£p)pes; with &p € R?) for all D € D},

Now, we recall the definition of the discrete gradient and the discrete divergence
have been introduced respectively in [22] and [13]. We also introduce some trace
operators and scalar products

Definition 2.1. The discrete gradient is defined by:
V2 RT = (R%)?,
ur = Vour = (VDUT>D€D-

Such that for all D € ©

D _ Up*x—Ui*

V UTT]C*’E* = LT TKE o K 5
D __uc—u

Vour T = =55,

equivalent to
1 U£ - U]C UL* - U]C*
VPur = — Vo + ———— Vo k* | ;
sin(ap) | Mg+ Mo

using the propriety mp = $mq,me-sin(ap), we have

1
VDuT — % [(UE — u/C)mO'VO',K: + (uﬂ* — UIC*)mO-*UO.*JC*] .
D

Definition 2.2. The discrete divergence operator div” is a mapping from (R?)® to R7
defined for all &5 € (R?)® by
div" &0 = (div™éo, 0, div™ &o, div™ &) |
such that
div™(&o) = (dive(§9)) e,
div™ (£p) = (divi(€0)) crcome

div?™ (£5) = (divics (€9) ) xcrcome »
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with
1
divicép = m—K Z mogp.l/m]c fOT' all K € m,
DeD
1
divi-Ep = . > Mpvgege  foral K* € M,
DE@K*
, 1 Mgy N .
divi-p = S Melp o+ Y. Lbpex | forall K* e oM.
mIC* ’ 2 ’
DE@K* 'DED;C*ﬂgezt

Let us now define the scalar products < .,. > on R” and < .,. >p on (R?)? by

1
< U7, Uy >7 = 5 (Z MUV + Z m;c*u;c*v,@> , for all U, vy € R”.

Kem K*eme

D

< &o,p0 >p = Y mpép.op, forall &o, o0 € (R?) .
Ded

The corresponding norms are denoted by ||.||, 7 and ||.|[, o forall 1 < p < +o0.

1/p
1 1
[urlp7 = (5 > mcluxl” + > > me fux p) ,
Kem Kcrem

for all ur € R7 and forall 1 < p < +o0.

1/p
1o llpo = (Z mp|§p|p> , forall & € (RQ)jD and forall 1 < p < +o0.

DeD

|ur]| o7 = max (max lu|, max |uis > , for all ur € R
Kem -

Kxem

€0 lloo,p = %@g\&ﬂ, for all &5 € (R*)”.

Definition 2.3 (Convection term). Let divc” : (R?)® x R7 — R7 the convection
operator defined for all &5 € (R?)® and vy € R7 by

dive” (€n,v7) = (divcm(ég,vfr), 0, dive™ (&p,v7), dive?™ (59,1)7)) ,

such that
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divcm(ﬁg, vr) = (divex (o, v7)) cem,

dive™ (5337 U'T)

(diveg-(Eo,v7) ) kcrem=,

dive®™ (€, v7) = (divexes (€o, V7)) K- com»
with

1
dive (€, v7) = p— Z My [(&@.VU7K)+U]C — (5@.1/07](:)7’0[] , for all K € 9,

Dedx
o=K/L
. 1 " _
divegs (§o,v7) = > e [(Eo v ) o — (E0Vor i) vzt
MR pepys
o*=ICH /L%
for all K* € 9™,
. 1 B
d“)CIC* (5@7”7’) = m ( Z Mg [(5@.1/0*7;(*)_‘—1}](* — (5@.]/0*7;&) ’Uﬁ*j|
K /DED;C*
o*=IC* /L*
My N _
+ Z > [(€n-vouc) ok — (Ep-voxc) "v2]),
DeEDjc+x NDext
o=K/L

for all K* € O9M*, where ™ = max(x,0) and = = max(0, —z).

2.3. The numerical scheme. A DDFV scheme for the the discretization of the
problem (1.2) is given by the following set of equations: for all £ € 9t and
K e Mm*,
0 1 0 0 1 0
ng = — [ n'(z)de and ng. = — [ n'(z)d.
mic K m,C 1C*

At each time step k, the numerical solution will be given by (n%, S%). Then, the
scheme for (1.2) writes forall 0 < k < Np — 1:

El;ji_;nk[ _ div7—<anl7€_+l) + dZ'UCT<TLl7€-vDS§-+1) _ O,
@2 (TS + S5 — T (V) +

VPnk v =VPSky =0, forall D € D,,.

Such that div”, VP and divc” are defined respectively by definition 2.2, defini-
tion 2.1 and definition 2.3.
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3. THE MAIN RESULTS

3.1. Existence of DDFV solutions.

Theorem 3.1. Let ) be an open, bounded, connected, polygonal domain of R* and
T be a discretization of Q x (0,T). Let n® € L*(Q2),n® > 0 in Q. Then, there exists a
solution {(nk, Sk), 0 < k < Ny — 1} to (2.2) satisfying:

nk. > 0and nk. > 0forall K € M and K* € M*, forall 0 < k < Np — 1,

1 po L k 1 o 1 0
5 E Mming + 5 g MycxNyer = 5 g ming + 5 E M Mg
Kem Kxem* Kem K em*

= ||n% L1, forall 0 < k < Ny — 1.

Proof Let k € {0,1,2,3,..., Ny — 1} and let (n%, S%) be a solution to (2.2), we
introduce the set:
Xr={veR;0>0inQ, |[v]p @ < Iy}

Let using the fixed point theorem by solving a linearized problem. First we fixed
nk € X7 and we construct S € X7 using the following schemes

- Z MoV pST Ve + micSic =
o€l
0 " meVpnk vk + pmyny., for all K € 9,

(3.1) i _ _

— Z Mo+ VST Von jox + My Siex =
o*EE
) Z M= Vpn];—.VU*JC* + um;c*n% for all * € 9™,

\ o* €€ cx

Next, we compute 7 € X7 using the schemes
(3.2)
( = .k
mm% — Z mUVDﬁT.z/aJC
€€k

+ 3 mo (e (VPS7vex) T — e(VPS7vex)”) =0, forall K € 9,

o€l

. _nk
My n/c*At”}c* o Z mU*vDﬁT'VU*’]C*
O'*E(g}(:*
+ Z Mg (ﬁ’C* (V’DET.VG*,K*>+ _ﬁﬁ* (VDET.VU*JC*)_) = 07
o*e€cx

for all £* € M*.
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Step 1: The system (3.1) can be written as AS = b, where for all K, £ € 9t such
that o = K|£ and for all £*, £* € 9* such that o* = K*|£*, A is defined by:

2 *2

m m
AIC,IC = E B <+ mg, and AIC*,IC* = E 9 z + M.
m m
ge D o*e* D
2 m2,
Ake = =535 Ajeror = =505
Mo M 5* _ Mo M 5*
A g = ~ Tomp VKoV ks and Ak = ~ mp Vok-Vor K*s
A = Toter A — MaMgr
KK..x — 2mp Vo KK-Vox K, KC*,L 2mp Vo K-V K*)

and bx = 0 E mUVDnEf.VUJC —I—um,gn,kc, b= =0 g Mg VDHI;—.VO_*JC* +,um,c*n%*.
0'65)(: O'*GS;C*

Since for all £ € M and K£* € M*:

MsM g
/4 - /4 f4 * /4 * —_= —-2 __E__E_
Al = Y [ Acel + [Acee | + Ak ] = me =2 ST cos(ap)l,
o€ ASIHS
MMy
|AIC*,IC* — ; HA/C*J:* +|AK*’£ +‘AIC*,ICH :mK*—Q *%S: W‘COS(O@)H.
o JC* o C*

Using the hypothesis (2.1) we have

| Ak | — Z [[Ak.cl + [Ak,co| + | Ak x+]] > 0,
ASIHS
‘A}C*,]C* - Z HA]C*,ﬁ* + |A[(:*7[:| + |AK*,’CH 2 O
O’*ES}C*

Then the matrix A is strictly diagonally dominant with respect to the columns and
hence, A is invertible. This shows the unique solvability of (3.1).
Now, the system (3.2) equivalent to the system Bn = C, with:

Be o — mi mg DQ +
o Z + — 4+ Z mey(V S-Va,lc)

2m At
o€l D g€
and
2
m_« My —
— E ' (2 § : D +
B]C*JC* = + + mo—*(v S.VO—*JC*) .
Qmp At
o*EE o*€Exx
m2 DO — m2* DO _
BIC,L = _QWUD — mU(V S.I/U,]C) , BIC*,ﬁ* = —anb"D — Myy* (V S-VU*,}C*) ,
Mg M 5* _ MgMy*
By x+ = S VoK -Vor K+ and § By = "5 Vo - Vor i,
MMM % _ MeMg*
ngJy = — 2"”; VQKEVUﬂK*y ng*l:——'— 2"”; VQK)VUﬂK*y

k mycxnk,
and CIC = mZ;LK, CIC* = %
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Since for all L € 9t and £* € M*:

)
Bl — Y [|Brcl + |Bie.co| + [ Bl =
o€l
=+ Z Mo | (VP S v ) | — Z M| (VP S o) ™| — 2 Z W;UTZZ cos(ap)|.
g€€ €&k €€k
_ Mk~ DG +
|Bi-ics| = Y [1Brece| + | B el + [ Biee ] = T > g (VS v o) |
o*EE o*EE
— Me+My
— Z Mo | (VP S Vg jox )| — 2 Z |cos(ap)|.
QmD
\ o*EE K o*EE K

For all 0 € £ and o* € £+ we have

VDS VJJC == —VDS I/O—7£ s

V/DE.VO—*?]C* == _vag.Vo-*?E* .
Which yields

(VPSpx)™ = (VPSwer)?,

That’s give

my MeTMg*
Br x| — B Bicre| + |Bigee|] = 2K 9
|Bre | Z [1Br.cl + [Br,c=| + [ Bic -] At Z 2mp

o€EK (SIS

mycx MoxMy
— > Bl + Bl + Bl = o =2 > lcos(ap)|.

o*€€cx o*EE

| Bicx jcx

Using the hypothesis (2.1), we have

| Brexc| — Z [|Bic.c| + | Bi,c=| + | Biexe=|] >0,
o€l
| Bies e+ | — Z [|Bic+,c+| + | Bic= | + | B+ k] > 0.
O'*GSK*

Then the matrix B is strictly diagonally dominant with respect to the columns
and hence, B is invertible. This shows the unique solvability of (3.2). Then 7 is
nonnegative, implies that 7 satisfies (3.1).
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In (3.2), summing the first equation over K € 9t and the second equation over
K* € 9t*, we obtain

— k
E micn/czg mrny,

Kem Kem
E MycTuycx = E m;c*n%.
K*em* K em*
That’s give
1 1 _ 1 L1 N o
5 E mxnhi + 5 E MmN = 5 E mgny + 5 E mgc«Nycx = ||TL ||L1(Q).
Kem K*em* Kem K*em*

Step 2: Let §) : X7+ — X7 the operator define by the solution to (3.1) and (3.2)
such that $(n) = 7, it must be shown that the operator §) is continuous to apply
Brouwer fixed point theorem (i.e) we have to prove that 7’ — 7 as 5 — oo such
that:

(n®)sen C X7 be a sequence verified n® — n as 8 — oo in X,
H(n”) = 7",
H(n) =n.

It easy to show that S° — S — 01in X; as 3 — oo, since the map n — S is
linear on the finite dimensional space X7 and continuous. Later, using (3.2) and
an adaptation of the proof of theorem 2.1 in [3] leads to:

. 1/2 1/2
S el — mel < 24¢ (z rw) (z > mg\v%ﬁ—?).ugw) ,

Kem Kem KeMoeé
1/2
§ : =B = } : = |2
My | Myex — e < 2At ( |nIC* )
Cx em= JCx em

1/2
2

VD (gﬁ - g).]/o-*JC*

> Y

\ Cxem* U*EE;C*
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Let ¢; > 0 such that 2A¢ Z Tik)? < e||n%|| 2o and 2A¢ Z T2

> < erlIn ez

,Cem K*em*
then
( 1/2
— — _B J—
Z m,dné — k| < a2 <Z Z m,| VP (S — S)'Vo,lc\2> 7
Kem KemM oeéx
1/2
— — _B J—

Z M [T — T+ | < cillnFllz2 ) Z Z M| VP (S = S) Vg s |

K KCreMm* KCxem* U*E(‘:]C*

Then

1 1
5 Zm;c|ﬁﬁ—ﬁ;c|2+§ Z myc+ ﬁﬁ* — Ny 2
Kem Cxem*

1 P
< Allnflli oG Y D mel VIS = 8).vol?
KeMoelx

—l—% Z Z Mg+ VD(gﬂ—g).yﬁx*

Kxem* o* Eg)c*

%),

using the poincare inequality, we have

1 1
.
5 Z m;dn,c — Tlic‘2 + 5 Z myc
Kem KCrem*

2 <

Tl — Tl

Eln 220 IVP(S” =32 < e)?In$H22I5” — 531
That’s give
7 — il < Al IVPE = 9)Ep < Elndl2em IS — 521

Since ||n%||2(q) is bounded and S§° -5 — 0as B — oo, then 7 — 7 in H implies
that §) is a continuous operator. Therefore using the Brouwer fixed point theorem
the operator §) has a fixed point, hence the prove of theorem. O

3.2. Numerical experiments. In this section, we illustrate the behavior of the
discrete duality finite volume scheme by applying it to the system (1.2) which
describes the evolution over time of the cell density n(z,¢) and the chemical signal
concentration variable S(z,t), Some of the tests cases come from the paper [2]
where a finite volume scheme is used, and our results compare very well to the
ones in this reference.
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In the tests 1, 2 and 3 the spatial domain is Q = (—0.5;0.5)%, the mesh of this
domain is made of 1296 triangles and 665 nodes. Therefore, we use the sequence
of general triangular meshes introduced in Section 2.

Sl o N Y Y VAV VAV VAV o vaa

0.4

0.3

0.2

[

01k

0Daf

N2

0.3

04 ¢

o
YA PAN Y AVAYAVAYAVAVAYAYAVAVAVAVAVAVAVAVAVAY:
LY ENENAN

WAV

05

FIGURE 1. The mesh supported in the numerical tests with h = 0.0471

In all the tests we first solve the classical parabolic-elliptic Keller-Segel system,
this is the case corresponds to § = 0, after we take § = 1072 and § = 1073, two
initial nonsymmetry data are taken in the first two test and initial symmetry data
in the third test.

3.2.1. Test 1. Firstly, we chose the nonsymmetric initial data on a square and we
present the numerical solution of (1.2) for different values of ¢. in this subsection,

p = 1, the time step is At = 6.1073, the number of triangles is 1296 and the non-

. . o . . . . —_ 2 —_ 2 .
symmetric initial functions is given by: ng1(z,y) = 2L exp (—%),wuh

the total mass is M = 67, § = 102 and xy = yo = 0.1.
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FIGURE 2. Cell density computed from symmetric initial data ng;
with M = 67 and § = 0 (left), and § = 10~3 (middle),and § = 1072
(right) at, t = 6.
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(A) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at ¢ = 0.06.

v - ol
400 02
300
100 1

05 05 s 03

05
05 05 05 05 05 04 03 02 01 0 01 02 03 04 05

(B) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at, ¢ = 0.3.
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05 05

(C) Cell density (left) with 1 x 10°, chemical signal concentration
(middle), chemical signal concentration gradient (right) at, ¢t = 6.

FIGURE 3. Cell density computed from nonsymmetric initial data
o1 with M =67 and § =0 .

3.2.2. Test 2. Under the same conditions of test 1, and the nonsymmetric initial
functions :

_ 4 cxp (_(a: —x0)* + (y — yo)2)+ 2 - (_(3; _ x1)22; (y — yl)Q) |

with 0 = 1072, To =1yo = 0.1 and 1 =1 = —0.2.

10000 6000 800

8000 5000

4000
6000 ~

3000 400
4000
2000

2000
1000

05 05

FIGURE 4. Cell density computed from nonsymmetric initial data
noo with M = 67 AND (left), (middle), (right) at, ¢ = 6.
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05 05 05 05

(A) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at ¢t = 0.3.

05
05 05 05 05 05 04 03 02 01 0 01 02 03 04 05

(B) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at, t = 1.2.

60000.0

50000.0

04

05
05 04 03 02 01 0 01 02 03 04 05

05 05
05 05

(C) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at, ¢t = 4.8.

FIGURE 5. Cell density computed from nonsymmetric initial data
N2 with M =6rand 6§ =0.

3.2.3. Test 3. Now, we present the numerical solution of (1.2) for different values
of 6. in this subsection, ;= 1, At = 6.1072 and the symmetric initial functions is
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given by:
(@9) = o eap (~ 8
with the mass M = 207 and 4 = 10~2.

s Sl G B
05 04 03 02 01 0 01 02 03 04 05

05 05 05 05

(A) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at ¢ = 0.3.

05
05 05 05 05 05 04 03 02 01 0 01 02 03 04 05

(B) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at, ¢t = 1.2.

x10%
10

05 05 05 05

(C) Cell density (left), chemical signal concentration (middle),
chemical signal concentration gradient (right) at, t = 6.

FIGURE 6. Cell density computed from symmetric initial data ng3
with M =207 and § = 0.
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10000

(A) Initial datum ng 3, t = 0 (B) Initial datum ng 3, t = 0.6 (C) Initial datum ng3, t = 6

FIGURE 7. Cell density computed from symmetric initial data with
M =207 and § = 1073 .

Remark 3.1. We dispose a class of cell capable of producing a chemical signal concen-

tration
terms,

. The competition between cell and chemical signal concentration, non-linear

degradation, multiplication and displacement cause unexpected phenomena

such as aggregation and blow-up.

Indeed, our numerical results in the non-symmetric case (with § = 0) show
that the blow-up occurs at the nearest corner of the point of inoculation (see
figure 3 and 5) which is compatible with the cellular dynamics.

We also remark that the numerical results obtained (figure 3 and 5 and 6)
show that there exists an harmonization between the displacement of the cell
density and the concentration.

In the case of the initial datum is radially symmetric, the figure 6 shows
that the blow-up in finite time of the classical Keller-Segel model without the
additional diffusion term (6 = 0) occurs in the center of the domain.

Note that, in the case of the radially non symmetric initial datum and (§ =
0,0 = 10726 = 1073), the cell density maximum decreases with increasing
values of § see figures 2 and 4.

When we taking &6 = 1072 and the radially symmetric initial datum, we
notice that the peak of cell density moves towards a corner, which is not the
case when (6 = 0), this due in the presence of the term of diffusion see figure
7.
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4. CONCLUSION

The role of the term of additional diffusion JAn, in our problem, is that the
solutions no longer blow up but have large gradients, which enables to determine

the explosion time.

But the presence of this term results in major mathematical difficulties in the
study of the convergence of the approximate solution because the resulting diffu-
sion matrix is not positive definite symmetric therefore our scheme doesn’t verify

the principle of the maximum. And to overcome this difficulty, we plan to use the

technique of logarithmic entropy in our perspectives.

[1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

REFERENCES

T. HILLEN, K. PAINTER: A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58
(2009), 183-217.

M. BESSEMOULIN-CHATARD, A.JUNGEL: A finite volume scheme for a Keller-Segel model
with additional cross-diffusion, IMA Journal of Numerical Analysis, Oxford University Press
(OUP), 34 (2014), 96-122.

F. FILBET: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math.
104 (2006), 457-488.

J. HASKOVEC, C. SCHMEISER: Stochastic particle approximation for measure valued solutions
of the 2D Keller-Segel system, J. Stat. Phys., 135 (2009), 133-151.

A. MARROCCO: Numerical simulation of chemotactic bacteria aggregation via mixed finite
elements, Math. Mod. Numer. Anal., 4 (2003), 617-630.

N. SAITO: Conservative upwind finite-element method for a simplified Keller-Segel system mod-
elling chemotaxis, IMA J. Numer. Anal., 27 (2007), 332-365.

N. SAITO: Error analysis of a conservative finite-element approximation for the Keller-Segel
model of chemotaxis, Comm. Pure Appl. Anal., 11 (2012), 339-364.

N. SAITO, T. SUZUKI: Notes on finite difference schemes to a parabolic-elliptic system mod-
elling chemotaxis, Appl. Math. Comput., 171(2005), 72-90.

C. PATLAK: Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953),
311-338.

E. KELLER, L. SEGEL: Initiation of slime mold aggregation viewed as an instability, J. Theor.
Biol., 26 (1970), 399-415.

R. EYMARD, T. GALLOUET, R. HERBIN: Finite volume methods, in: P. Ciarlet, J.-L. Lions
(Eds.), Handbook of Numerical Analysis, vol. VII, North-Holland, 2000.

F. HERMELINE: A finite volume method for the approximation of diffusion operators on dis-
torted meshes, J. Comput. Phys., 160(2) (2000), 481-499.

A. DOMELEVO, P. OMNES: A finite volume method for the Laplace equation on almost arbi-
trary two-dimensional grids, M2AN Math. Model. Numer. Anal. 39(6) (2005), 1203-1249.



11062 O. SOUALHI AND M. RHOUDAF

[14] B. ANDREIANOV, F. BOYER, F. HUBERT: Discrete duality finite volume schemes for Leray-
Lions type elliptic problems on general 2D-meshes, Num. Meth. for PDEs, 23 (2007), 145-195.

[15] Y. COUDIEERE, F. HUBERT: A 3D discrete duality finite volume method for nonlinear elliptic
equations, SIAM J. Sci. Comput., 33 (2011), 1739-1764.

[16] Y. COUDIERE, G. MANZINI: The discrete duality finite volume method for convection-diffusion
problems, SIAM J. Numer. Anal., 47 (2010), 4163-4192.

[17]1 F. BOYER, F. HUBERT: Finite volume method for 2D linear and nonlinear elliptic problems
with discontinuities, SIAM J. Numer. Anal., 46 (2008), 3032-3070.

[18] S. DELCOURTE, K. DOMELEVO, P. OMNES: A discrete duality finite volume approach to
Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM
J. Numer. Anal., 45 (2007), 1142-1174.

[19] C. CHAINAIS-HILLAIRET, S. KRELL, A. MOUTON: Study of discrete duality finite volume
schemes for the peaceman model, SIAM J. Sci. Comput., 35(6), (2013), 2928-2952.

[20] C. CHAINAIS-HILLAIRET, S. KRELL, A. MOUTON: Convergence analysis of a DDFV scheme
for a system describing miscible fluid flows in porous media, Numerical Methods for Partial
Differential Equations, Wiley, 315(3) (2015), 1098-2426.

[21] M. MANDARI, M. RHOUDAF, O. SOUALHI: Numerical resolution of a degenerate elliptic-
parabolic seawater intrusion problem using discrete duality finite volume method, Journal of
Mathematical Control Science and Applications, 6(1) (2020), 25-46.

[22] Y. COUDIERE, J. P. VILA, P. VILLEDIEU: Convergence rate of a finite volume scheme for a
two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal., 33 (1999),
493-516.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES
UNIVERSITY OF MOULAY ISMAIL

MEKNES, MOROCCO

Email address: ouafasoualhi®gmail.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES
UNIVERSITY OF MOULAY ISMAIL

MEKNES, MOROCCO

Email address: mohamedrhoudaf@gmail.com



