
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.12, 11075–11087
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.12.88

A NEW RESEMBLANCE MEASURE ON INTUITIONISTIC FUZZY SETS AND
ITS APPLICATION IN SERIAL CRIME DETECTION

SOUMENDRA GOALA, BULENDRA LIMBOO1, UTPAL SAIKIA, AND NIREN DUTTA

ABSTRACT. Serial Crimes is a major problem in our society and long term psycho-
logical impacts on the people of the society. Moreover, the investigation process
for serial crimes are very troublesome sometime due to absence of evidences and
sometimes the investigator finds difficult to solve the crimes due to a large num-
ber of similar criminal cases. In this paper, crime linkage, which is the process
of studying and detecting serial crimes by an investigator is discussed to utilize a
novel Resemblance measure of Intuitionistic fuzzy set along with an approach in
Intuitionistic fuzzy multi criteria decision making. Further, a case study has been
carried out on an existing data set to validate the proposed Resemblance measure.

1. INTRODUCTION

Crime linkage analysis can be defined as the process by which a criminal inves-
tigator investigates a finite set of crimes with the help of shreds of evidence like
person’s fingerprints, DNA, objects available at the crime spot and try to make de-
cisions whether there are linked crimes among the set of crimes via same offenders
or not. If the pieces of evidence are available or reliable, then the decision making
process becomes confident and accurate, but sometimes the lack of forensic evi-
dence makes the investigation unreliable and uncertain. The mental state of any
human being varies from person to person. Any activity done by a human being
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at any instant reflects the mental state of the person at that instant. So a criminal
activity done by an offender will reflect his/her mental state, behavioral pattern,
way of thinking, conscious and subconscious mind to some extent (Grubin [6];
Woodhams et al., [16]). So, by studying the similarities and by processing and
coding the activities of offenders properly we can interpret them logically. But in
reality, sometimes an absence of precise evidence makes the mathematical inter-
pretation or coding uncertain and hence they are fuzzy in nature. In real crime
scene, every crime may not be identical, although the same offender does it. In
the practice of crime investigation, explanations and report of criminal cases are
recorded in the written form via passages or registers by different investigators
for different crimes. However, this information is found from various sources are
uncertain in nature and found to be fluctuating between occurrence and non-
occurrence of those events. This is the main reason why Intuitionistic fuzzy set
has been used for expressing crimes in terms of evidences. In this paper, a novel
resemblance measure is proposed to express similarity between two IFSs and the
proposed Resemblance measure is utilized in a fuzzy MCDM approach for crime
linkage analysis. The MCDM case study has been carried out on an existing data
set (Goala and Dutta [4]) to validate the proposed Resemblance measure.

Fuzzy set and logic are widely applied in criminal investigation methodologies
to deal with the uncertainty. Queck et al., [12] developed a fuzzy neural network
to detect the match finger prints. Grubestic [5] used fuzzy clustering technique for
detection of crime hotspot area in a city. Sheng et al., [13] developed a methodol-
ogy to find the crime pattern and suggested police duty positioning utilizing fuzzy
time series analysis. Nurul et al., [11] developed a method for detection of most
potential area under crime execution using with the geographical information sys-
tem (GIS) via using AHP. Stofel et al., [15] developed a fuzzy clustering method
for detection of pattern of crime via forensic data. Shrivastav et al., [14] predicted
crimes via used fuzzy time series analysis. Albertetti et al., [1] utilized a fuzzy
Multi-attributive decision making (MADM) to analyze the serial crimes from large
number of crimes. Adeyiga et al., [8] proposed a technique of fuzzy clustering to
identify the attribute of criminals for criminal profiling. Gupta et al., [7] consid-
ered different types of geo-physical and demographic characteristics to map down
to help in crime detection. Goala and Dutta [3] used distance measure on the
hesitant fuzzy set to find the distinction between two crimes and gave the pair
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wise comparisons in fuzzy MCDM for crime linkage. Goala and Dutta [4] intro-
duced a novel resemblance function for IFSs and used the resemblance function
for detecting serial crimes.

2. PRELIMINARIES

In this section, necessary terms of fuzzy set, Intuitionistic fuzzy sets and Intu-
itionistic fuzzy similarity measures are discussed.

Definition 2.1. [17] LetX is a universal set of discourse, then a fuzzy set A is defined
as

Ã = {(x, µA(x)) : x ∈ X,µA(x) ∈ [0, 1]},
where µA is a membership between 0 and 1 which represents the belongingness objects
within its universe of discourse.

Definition 2.2. [9] An Intuitionistic fuzzy set (IFS in short) on a universe of dis-
course X is defined as

A = {〈x, (µA (x) , νA (x))〉 : x ∈ X,µA (x) , νA (x) ∈ [0, 1]},
where µA (x), νA (x) is called the degree of membership and non-membership of x in
A satisfying the condition 0 ≤ µA (x) + µA (x) ≤ 1.

In addition, the hesitancy degree of IFS is defined as πA (x) = 1−µA (x)−νA (x)

which can considered as the degree of lack of uncertainty associated with the
degree of membership or non-membership in A.

Definition 2.3. [5] Let A,B ∈ IFS (X), then we have
a) A ⊆ B iff ∀x ∈ X, µA (x) ≤ µB (x) and νA (x) ≥ νB (x);
b) A = B iff ∀x ∈ X, µA (x) = µB (x) and νA (x) = νB (x);
c) AC = {(x, νA (x) , µA (x)) : x ∈ X};
d)
⋂
Ai = {(x,∧µAi

(x) ,∨νAi
(x)) : x ∈ X}, where Ai is class of IFSs;

e)
⋃
Ai = {(x,∨µAi

(x) ,∧νAi
(x)) : x ∈ X}, where Ai is class of IFSs.

2.1. Resemblance Measure. Goala and Dutta [4] had noticed that similarity
measures are unable to find the similarity degree among more than two IFSs. It is
a common practice in real life situation to make comparisons among the things for
checking their equivalency or similarity. For this drawback of similarity measures,
Goala and Dutta [4] introduced the concept of resemblance measure for IFSs.
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Definition 2.4. [4] Consider

A = {〈x, (µA1 (x) , νA1 (x))〉 , 〈x, (µA2 (x) , νA2 (x))〉 , · · · , 〈x, (µAn (x) , νAn (x))〉}

be a collection of IFSs. Resemblance measure is a function from A to [0, 1] defined as:

R(A) =
1

n

n∑
i=1

(1− |µ̄Ai
− µAi

| − |ν̄Ai
− νAi

|),

where µ̄Ai
= 1

n

n∑
1=1

µAi
and ν̄Ai

= 1
n

n∑
i=1

νAi
.

Example 1. Let A1 = {〈x, (0.1, 0.8)〉}, A2 = {〈x, (0.9, 0.1)〉} and A3

= {〈x, (0.5, 0.5)〉} be three IFNs. Then, Resemblance measure of these IFSs are given
by

R ({A1, A2, A3}) =
1

3

3∑
i=1

(1− |µ̄Ai
− µAi

| − |ν̄Ai
− νAi

|).

In general, for any IFSs Ãj =
{〈
xj,
(
µAji

(xj) , νAji
(xj)

)〉
: xj ∈ X

}
. The General-

ized Resemblance measure of
{
Ã1, Ã2, · · · , Ãn

}
can be defined as:

R
({
Ã1, Ã2, · · · , Ãn

})
=


n∑
j=1

wj
1

li

li∑
i=1

(
1−

∣∣µ̄Aji
− µAji

∣∣− ∣∣ν̄Aji
− νAji

∣∣) ;n 6= 1

1, n = 1

where li is the number of IFSs in Ãj and wj is the weight of Ãj with w1+w2+· · ·+wn =

1, R
({
Ã1, Ã2, · · · , Ãn

})
= 1 for n = 1, since an IFSs can be considered as similar

or resemblance to itself.

Example 2. Let Ã1, Ã2 and Ã3 be the three IFSs such that

Ã1 = {〈A11, (0.9, 0.1)〉 , 〈A12, (0.1, 0.8)〉 , 〈A13, (0.5, 0.5)〉 , 〈A14, (0.9, 0.1)b〉 ,

〈A15, (0.7, 0.2)〉 , 〈A16, (0.3, 0.6)〉}

Ã2 = {〈A21, (0.7, 0.2)〉 , 〈A22, (0.9, 0.1)〉 , 〈A23, (0.7, 0.2)〉 , 〈A24, (0.1, 0.8)〉 ,

〈A25, (0.3, 0.6)〉 , 〈A26, (0.7, 0.2)〉}

Ã3 = {〈A31, (0.7, 0.2)〉 , 〈A32, (0.5, 0.5)〉 , 〈A33, (0.7, 0.2)〉 , 〈A34, (0.9, 0.1)〉 ,

〈A35, (0.9, 0.1)〉 , 〈A36, (0.5, 0.5)〉}

Suppose wj = 1
6
, j = 1, 2, · · · , 6 for reflecting the equal importance of each criteria.

Therefore, resemblance value among Ã1, Ã2 and Ã3 can be given by
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R
({
Ã1, Ã2, Ã3

})
=

6∑
j=1

wj
1
3

3∑
i=1

(
1−

∣∣µ̄Aji
− µAji

∣∣− ∣∣ν̄Aji
− νAji

∣∣)
=

6∑
j=1

1
18

3∑
i=1

(1− |µ̄Bi
− µBi

| − |ν̄Bi
− νBi

|)

= 0.625926

This value of resemblance will give an overall degree of similarity among Ã1, Ã2

and Ã3.

3. A NOVEL RESEMBLANCE MEASURE

In this section, a novel Resemblance measure has been introduced for Intuition-
istic fuzzy sets. Consider

A = {〈x, (µA1 (x) , νA1 (x))〉 , 〈x, (µA2 (x) , νA2 (x))〉 , · · · , 〈x, (µAn (x) , νAn (x))〉}

be a collection of IFSs. The Resemblances measure from A to [0, 1] is defined as:

R (A) =
1

2

{
cos

(
π

3

n∑
i=1

|µ̄Ai
− µAi

|

)
+ cos

(
π

3

n∑
i=1

|ν̄Ai
− νAi

|

)}
,

where µ̄Ai
= 1

n

n∑
1=1

µAi
and ν̄Ai

= 1
n

n∑
1=1

νAi
.

Example 3. x Let A1 = {〈x, (0.9, 0.1)〉},A2 = {〈x, (0.7, 0.2)〉} and A3 = {〈x,
(0.7, 0.2)〉} be any three IFNs. Then resemblance measure is given by

R ({A1, A2, A3}) =
1

2

{
cos

(
π

3

3∑
i=1

|µ̄Ai
− µAi

|

)
+ cos

(
π

3

3∑
i=1

|ν̄Ai
− νAi

|

)}
= 0.975765.

In general, for any IFS Ãj =
{〈
xj,
(
µAji

(xj) , νAji
(xj)

)〉
: xj ∈ X

}
, where j =

1, 2, . . . , n, the Generalized Resemblance function on
{
Ã1, Ã2, · · · , Ãn

}
is defined as:

R
({
Ã1, Ã2, · · · , Ãn

})
=


n∑
j=1

wj

2

{
cos

(
π
3

li∑
i=1

∣∣µ̄Aji
− µAji

∣∣)+ cos

(
π
3

li∑
i=1

∣∣ν̄Aji
− νAji

∣∣)} ;n 6= 1

1, n = 1

,
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where li is the number of IFSs in Ãj and wj is the weight of Ãj with w1+w2+· · ·+wn =

1. In Particular, R({Ã1, Ã2, · · · , Ãn}) = 1 for n = 1, since an IFS can be considered
as resemble to itself.

Ã1 = {〈x1, (0.9, 0.1)〉 , 〈x2, (0.1, 0.8)〉 , 〈x3, (0.5, 0.5)〉 , 〈x4, (0.9, 0.1)〉 ,

〈x5, (0.7, 0.2)〉 , 〈x6, (0.3, 0.6)〉}

Ã2 = {〈x1, (0.7, 0.2)〉 , 〈x2, (0.9, 0.1)〉 , 〈x3, (0.7, 0.2)〉 , 〈x4, (0.1, 0.8)〉 ,

〈x5, (0.3, 0.6)〉 , 〈x6, (0.7, 0.2)〉}

Ã3 = {〈x1, (0.7, 0.2)〉 , 〈x2, (0.5, 0.5)〉 , 〈x3, (0.7, 0.2)〉 , 〈x4, (0.9, 0.1)〉 ,

〈x5, (0.9, 0.1)〉 , 〈x6, (0.5, 0.5)〉}

taking wi = 1
3
; i = 1, 2, 3.

R
({
Ã1, Ã2, Ãn

})
=

3∑
j=1

1

2
.
1

3

{
cos

(
π

3

6∑
i=1

∣∣µ̄Aji
− µAji

∣∣)+ cos

(
π

3

6∑
i=1

∣∣ν̄Aji
− νAji

∣∣)} = 0.79866.

The proposed Resemblance measure satisfies the following three theorems (Goala
and Dutta [4]):

Theorem 3.1. 0 ≤ R ≤ 1.

Theorem 3.2. If R ({A1, A2, · · · , An}) = 1 for any finite n, A1 = A2 = · · · = An.

Theorem 3.3. If {A1, A2, · · · , An} = {B1, B2, · · · , Bn}, then R ({A1, A2, · · · , An})
= R ({B1, B2, · · · , Bn}). But the converse may not be true.

Now, the proofs of the theorems are given one by one:

Proof of Theorem 3.1. Given R ({A1, A2, · · · , An}) = 1 we have the following chain
of implications:

⇒ 1
2

{
cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

+ cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)}

= 1

⇒ cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

+ cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)

= 2

⇒ cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

= 1, cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)

= 14

⇒
n∑
i=1

|µ̄A − µAi
| = 0,

n∑
i=1

|ν̄A − νAi
| = 0
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⇒ |µ̄A − µAi
| = 0, |ν̄A − νAi

| = 0 for all i.
⇒ µ̄A = µAi

, ν̄A = νAi

⇒ µAj
= µAi

, νAj
= νAi

⇒ Aj
(
µAj

, νAj

)
= Ai (µAi

, νAi
)

⇒ A1 = A2 = · · · = An
If ({A1, A2, · · · , An}) = 1 for any finite, then A1 = A2 = · · · = An. �

Proof of Theorem 3.2. Given R ({A1, A2, · · · , An}) = 1 we have the following chain
of implications:

⇒ 1
2

{
cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

+ cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)}

= 1

⇒ cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

+ cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)

= 2

⇒ cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

= 1, cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)

= 1

⇒
n∑
i=1

|µ̄A − µAi
| = 0,

n∑
i=1

|ν̄A − νAi
| = 0

⇒ |µ̄A − µAi
| = 0, |ν̄A − νAi

| = 0 for all i
⇒ µ̄A = µAi

, ν̄A = νAi
for all i

⇒ µAj
= µAi

, νAj
= νAi

for all i and j
⇒ Aj

(
µAj

, νAj

)
= Ai (µAi

, νAi
) for all i and j

⇒ A1 = A2 = · · · = An
i.e. if R ({A1, A2, · · · , An}) = 1 for any finite n, then A1 = A2 = · · · =

An. �

Proof of Theorem 3.3. If {A1, A2, · · · , An} = {B1, B2, · · · , Bn}, then we have

R ({A1, A2, · · · , An}) = 1
2

{
cos

(
π
3

n∑
i=1

|µ̄A − µAi
|
)

+ cos

(
π
3

n∑
i=1

|ν̄A − νAi
|
)}

= 1
2

{
cos

(
π
3

n∑
j=1

∣∣µ̄B − µBj

∣∣)+ cos

(
π
3

n∑
j=1

∣∣ν̄B − νBj

∣∣)}
because Ai = Bj for some i and j.

The converse part may not be true.
Counter example: Let A1 = {〈x, (1, 0)〉} , A2 = {〈x, (0, 0)〉} be two IFSs. Then

R ({A1, A2}) = 0.75. Again, let B1 = {〈x, (0, 1)〉} , B2 = {〈x, (0, 0)〉} two IFSs. Then
R ({B1, B2}) = 0.75. Thus, though R ({A1, A2}) = R ({B1, B2}) but {A1, A2} 6=
{B1, B2}, i.e. if {A1, A2, · · · , An} = {B1, B2, · · · , Bn}. Then

R ({A1, A2, · · · , An}) = R ({B1, B2, · · · , Bn}) .
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�

4. METHODOLOGY

Consider {C1, C2, · · · , Cn} be the set of crimes taken under investigation, i.e.
from {C1, C2, · · · , Cn} we have to determine the sub-collection of crimes which
are connected common offenders. Consider {X1, X2, · · · , Xm} be the activities
of the offenders collected from the crime scene analysis. Now, the situation is
represented by the following matrix (Klir [10]):



C1 C2 ··· Cn

X1 A11 A12 · · · A1n

X2 A21 A22 · · · A2n

...
...

... . . . ...
Xm Am1 Am2 · · · Amn

.

Here, Aij are the IFSs that denote the degree of relationship between the activity
Xi and the crime Cj. Therefore, the crime Cj are signified as IFSs in terms of
activities of offenders during crime as

Cj = {< Xi, Aij > |Xi ∈ X},

where i = 1, 2, · · ·m and j = 1, 2, · · ·n. Then, Resemblance measure is applied
to each sub-collection of the set of crime {C1, C2, · · · , Cn}, to check which sub-
collection of crimes has higher resemblance value, i.e., to find out which sub-
collection of crimes are related by same offenders (Goala and Dutta [4]).

Most obviously, the higher resemblance reflects the higher the possibility of re-
lationship among the corresponding subset of crimes.

Now, a threshold value (Goala and Dutta [3]; Goala and Dutta [4]) for the re-
semblance measure has been fixed a real number between [0, 1] above or equal to
which the decision maker may consider that the corresponding subset of crimes
are related by common offender or offenders. By checking resemblance measures
of each collection of crimes, whether they exceed the threshold value or not one
can get the set of related crimes easily.
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5. A CASE EXAMPLE

Beasley [2] carried out a case study on seven criminals by interviewing them.
Goala and Dutta [4] selected five crimes for their studies C1, C2, C3, C4 and C5 and
expressed them via IFSs. For the case study, following six activities of offenders
are taken as criteria:

i. Money or jewelry taken from the victim: X1;
ii. Proper planning: X2;

iii. Cruelty: X3;
iv. Use down weapon: X4;
v. Chance of being quickly overpowered and killed: X5;

vi. Forensically aware: X6.

The relationship between crimes and activities are represented by following ma-
trix: (Goala and Dutta [4]):



C1 C2 C3 C4 C5

X1 (0.9, 0.1) (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) (0.9, 0.1)

X2 (0.1, 0.8) (0.9, 0.1) (0.5, 0.5) (0.9, 0.1) (0.1, 0.8)

X3 (0.5, 0.5) (0.7, 0.2) (0.7, 0.2) (0.9, 0.1) (0.5, 0.5)

X4 (0.9, 0.1) (0.1, 0.8) (0.9, 0.1) (0.3, 0.6) (0.9, 0.1)

X5 (0.7, 0.2) (0.3, 0.6) (0.9, 0.1) (0.3, 0.6) (0.7, 0.2)

X6 (0.3, 0.6) (0.7, 0.2) (0.5, 0.5) (0.7, 0.2) (0.5, 0.5)


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Now, the crimes are represented via IFSs as follows:

C1 = {〈X1, (0.9, 0.1)〉 , 〈X2, (0.1, 0.8)〉 , 〈X3, (0.5, 0.5)〉 , 〈X4, (0.9, 0.1)〉 ,

〈X5, (0.7, 0.2)〉 , 〈X6, (0.3, 0.6)〉}

C2 = {〈X1, (0.7, 0.2)〉 , 〈X2, (0.9, 0.1)〉 , 〈X3, (0.7, 0.2)〉 , 〈X4, (0.1, 0.8)〉 ,

〈X5, (0.3, 0.6)〉 , 〈X6, (0.7, 0.2)〉}

C3 = {〈X1, (0.7, 0.2)〉 , 〈X2, (0.5, 0.5)〉 , 〈X3, (0.7, 0.2)〉 , 〈X4, (0.9, 0.1)〉 ,

〈X5, (0.9, 0.1)〉 , 〈X6, (0.5, 0.5)〉}

C4 = {〈X1, (0.7, 0.2)〉 , 〈X2, (0.9, 0.1)〉 , 〈X3, (0.9, 0.1)〉 , 〈X4, (0.3, 0.6)〉 ,

〈X5, (0.3, 0.6)〉 , 〈X6, (0.7, 0.2)〉}

C5 = {〈X1, (0.9, 0.1)〉 , 〈X2, (0.1, 0.8)〉 , 〈X3, (0.5, 0.5)〉 , 〈X4, (0.9, 0.1)〉 ,

〈X5, (0.7, 0.2)〉 , 〈X6, (0.5, 0.5)〉}

Now, the new resemblance measure has been applied on each collection of
crimes and the corresponding resemblance values are given below in tables (Table
1-Table 4):

TABLE 1. Pairwise Resemblance measure

R ({C1, C2}) 0.865051

R ({C1, C3}) 0.975985

R ({C1, C4}) 0.878438

R ({C1, C5}) 0.997722

R ({C2, C3}) 0.903634

R ({C2, C4}) 0.99408

R ({C2, C5}) 0.87356

R ({C3, C4}) 0.923254

R ({C3, C5}) 0.978262

R ({C4, C5}) 0.886948
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TABLE 2. Resemblance measure among three crimes

R ({C1, C2, C3}) 0.79866

R ({C1, C2, C4}) 0.780509
R ({C1, C2, C5}) 0.776171

R ({C1, C3, C4}) 0.828602

R ({C1, C3, C5}) 0.957583

R ({C1, C4, C5}) 0.797746

R ({C2, C3, C4}) 0.848828

R ({C2, C3, C5}) 0.805187

R ({C2, C4, C5}) 0.795401

R ({C3, C4, C5}) 0.835128

TABLE 3. Resemblance measure among four crimes

R ({C1, C2, C3, C4}) 0.623963

R ({C1, C2, C3, C5}) 0.707178

R ({C1, C2, C4, C5}) 0.57974

R ({C1, C3, C4, C5}) 0.737302

R ({C2, C3, C4, C5}) 0.638164

TABLE 4. Resemblance measure among five crimes

R ({C1, C2, C3, C4, C5}) 0.50157

Now, set a threshold value for the resemblance values as δ = 0.95. From the
table it is clear that

R ({C1, C3}) , R ({C1, C5}) , R ({C2, C4}) , R ({C3, C5}) ≥ δ,

R ({C1, C3, C5}) ≥ δ.

Therefore, it is quite obvious that the crimes {C1, C3},{C1, C5}, {C2, C4} and
{C3, C5} can be considered as related by common offenders. Similarly, the set of
crimes {C1, C3, C5} can be considered as related by common offenders. Thus it
can be concluded that {C1, C3, C5} and {C2, C4} can be considered as related by
common offenders. This gives same result that put forward in case study of Goala
and Dutta [4].
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6. DISCUSSION AND CONCLUSION

In this paper, a novel Resemblance measure on IFSs has been proposed. The re-
semblance measure has been used to determine the degree of relationships among
the crimes. Also, the new resemblance measure has been used in a case study to an
existing dataset and it is found that the new resemblance measure produces same
result which shows the reliability of the proposed resemblance measure. As an
extension of this study, attempt can be made to extend the existing resemblance
measures to Intuitionistic Hesitant fuzzy sets or to Interval valued Intuitionistic
fuzzy sets.
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