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QUANTUM PRODUCT CODES OVER THE RING Fp + uFp

G. KARTHICK, M. CRUZ, C. DURAIRAJAN, AND GIULIANO G. LA GUARDIA1

ABSTRACT. In this paper, we investigate properties of (classical) cyclic codes over
the finite ring S = Fp + uFp, where u2 = u, p is a prime and Fp is the finite
field with p elements. We define a Gray map and show that it preserves distances
(Lee - Hamming) as well as orthogonality. We then utilize these cyclic codes
to construct quantum codes over Fp by means of the well-known Calderbank-
Shor-Steane (CSS) construction. Some of the quantum codes presented here have
parameters better than the ones available in the literature.

1. INTRODUCTION

In the last two decades, many researches have focused attention in the construc-
tion of quantum codes with good or even optimal parameters; see for example the
works [3, 5, 7–9, 11, 15, 16]. One of the main techniques utilized by researchers
to construct quantum codes is the CSS construction [3, 12]. The first manner to
apply the CSS construction is utilizing Euclidean dual-containing (classical) linear
codes; the second one is to consider a pair of nested linear codes. The classical
codes used in the CSS construction are codes over finite fields.

As it is natural, techniques of construction of quantum codes derived from
(classical) codes over finite rings were presented more recently in the literature
[1, 4, 6, 13, 14]. In [1], Bag et al. constructed p-ary quantum codes derived
from cyclic codes over Fp and also FpSl, where p 6= 2 is a prime, l is a positive
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integer such that l|(p − 1), Il = {i ∈ Z : i|(p − 1), i ≤ l}, Sl =
∏

i∈IlRi and
Ri = Fp[u]/〈ui+1 − u〉. In [4], Gao presented quantum codes over Fq derived
from cyclic codes over the non-chain ring Fq + vFq + v2Fq + v3Fq, where q = pt, p
prime, 3|(p − 1) and v4 = v. Dinh et al. [6] investigated the structure of the ring
R = Fp[u]/〈ui+1 − u〉, where p 6= 2 is a prime. As an application, they generated
quantum codes over Fp derived from cyclic and negacyclic codes over R. Ozen et
al. [13] studied the structure of the ring F3 + uF3 + vF3 + uvF3, where u2 = 1,
v2 = 1 and uv = vu, which allowed the construction of ternary quantum codes
from cyclic codes over this ring. In [14], Qian et al. constructed binary quantum
codes from cyclic codes over the ring F2 + uF2, where u2 = 0.

In this paper we first investigate the structure of cyclic codes over the ring
S = Fp + uFp, where u2 = u. We show how to represent a code C over S in
terms of its component codes Ci, which are codes over Fp. We then define a Gray
that preserves distances (Lee - Hamming) as well as orthogonality. After this, we
utilize the component codes Ci to obtain p-ary quantum codes by means of the
CSS construction.

The paper is organized as follows. In Section (2) we investigate the structure
of cyclic codes over Fp + uFp. We also define a Gray which preserves distances
and orthogonality. In Section (3) we utilize the results of the previous section
to obtain quantum codes over Fp. Some of these new codes are better than the
ones available in the literature. Section (4) presents a code comparison, i.e., we
compare the parameters of our codes with the ones exhibited in the literature.
Finally, in Section (5), the final remarks are drawn.

2. CODES OVER PRODUCT RINGS

Let us consider the finite non-chain ring S = Fp + uFp, where u2 = u. For more
details about theory of finite rings we refer the reader to the textbooks [2,10].

We write

R = (Fp + uFp)× · · · × (Fp + uFp) = {(a1 + ub1 | a2 + ub2 | . . . | at + ubt)},

where ai, bi ∈ Fp and t is a positive integer.

Definition 2.1. Let γ = n1 + · · ·+ nt be a positive integer. A code C ⊆ Sn1 × Sn2 ×
. . . × Snt = Rγ over S of length γ is a nonempty subset of Rγ. A linear code C over
S of length γ is an S-submodule of Rγ.
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From the Chinese Remainder Theorem, if one considers the idempotent v1 = u

and v2 = 1− u (v1 + v2 = 1, v1v2 = 0), it follows that S = v1S ⊕ v2S ∼= v1Fp + v2Fp.
Thus, every element in v ∈ S can be uniquely written as v = av1 + bv2, where
a, b ∈ Fp. We define a Gray map as follows:

ϕ1 : S → F2p
ϕ1(av1 + bv2) = (a, b),

which is utilized to define the extension map on R given by

ϕ2 : R → F2tp
ϕ2(a1v1 + b1v2 | a2v1 + b2v2 | . . . | atv1 + btv2) = (a1, b1, a2, b2, . . . , at, bt).

This map can be defined to γ-length (γ = n1 + . . .+ nt) in a natural way:

ϕ : Rγ → F2γp ,

ϕ(((a
(1)
1 , a

(1)
2 , . . . , a(1)n1

)v1 + (b
(1)
1 , b

(1)
2 , . . . , b(1)n1

)v2

|(a(2)1 , a
(2)
2 , . . . , a(2)n2

)v1 + (b
(2)
1 , b

(2)
2 , . . . , b(2)n2

)v2| . . .

|(a(t)1 , a
(t)
2 , . . . , a

(t)
nt

)v1 + (b
(t)
1 , b

(t)
2 , . . . , b

(t)
nt

)v2))

=(a
(1)
1 , a

(1)
2 , . . . , a(1)n1

, b
(1)
1 , b

(1)
2 , . . . , b(1)n1

,

a
(2)
1 , a

(2)
2 , . . . , a(2)n2

, b
(2)
1 , b

(2)
2 , . . . , b(2)n2

,

. . . , a
(t)
1 , a

(t)
2 , . . . , a

(t)
nt
, b

(t)
1 , b

(t)
2 , . . . , b

(t)
nt

).

Let A be a ring and consider an element v ∈ An. The Hamming weight wH(v)

of v is defined as the number of nonzero coordinates of v. The Hamming distance
dH(v,w) between v,w ∈ An is defined as dH(v,w) = wH(v−w).

Definition 2.2. Let v ∈ S. The Lee weight wL on S is defined by wL(v) = wH(ϕ1(v)).
The Lee weight of a vector v ∈ Rγ is the sum of the Lee weights of its coordinates.

The next result shows important properties of the Gray map.

Theorem 2.1. The Gray map ϕ is a weight preserving Fp-linear map from (Rγ, Lee
weight) to (F2γp , Hamming weight).

Proof. It is immediate to show that ϕ is bijective and Fp-linear. Since ϕ is lin-
ear we have dL(x′, x′′) = wL(x′ − x′′) = wH(ϕ(x′ − x′′)) = wH(ϕ(x′) − ϕ(x′′)) =

dH(ϕ(x′), ϕ(x′′)). Therefore, ϕ is a weight preserving Fp-linear map. �
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If Ai, i ∈ {1, 2}, are two linear codes, we define A1 ⊕ A2 = {a1 + a2 | a1 ∈
A1, a2 ∈ A2} and A1 ⊗ A2 = {(a1, a2) | a1 ∈ A1, a2 ∈ A2}. Let C be a linear code
over S of length n. Let us consider

C1 = {m1 ∈ Fnp | v1m1 + v2m2 ∈ C},

C2 = {m2 ∈ Fnp | v1m1 + v2m2 ∈ C}.
The codes C1 and C2 are Fp-linear. It is easy to see that any cyclic code C over S
can be represented as C = C1v1 ⊕ C2v2 and ϕ(C) = C1 ⊗ C2.

Let v ∈ Rγ. In order to facilitate the definition of a cyclic code C ⊆ Rγ over
S we view a vector v = ((a

(1)
1 , a

(1)
2 , . . . , a

(1)
n1 )v1 + (b

(1)
1 , b

(1)
2 , . . . , b

(1)
n1 )v2|(a(2)1 , a

(2)
2 , . . . ,

a
(2)
n2 )v1 + (b

(2)
1 , b

(2)
2 , . . . , b

(2)
n2 )v2 | . . . |(a(t)1 , a

(t)
2 , . . . , a

(t)
nt )v1 + (b

(t)
1 , b

(t)
2 , . . . , b

(t)
nt )v2) in the

form
v = (a

(1)
1 v1+b

(1)
1 v2, a

(1)
2 v1+b

(1)
2 v2, . . . , a

(1)
n1 v1+b

(1)
n1 v2, a

(2)
1 v1+b

(2)
1 v2, a

(2)
2 v1+b

(2)
2 v2, . . . ,

a
(2)
n2 v1 + b

(2)
n2 v2 , . . . , a

(t)
1 v1 + b

(t)
1 v2, a

(t)
2 v1 + b

(t)
2 v2, . . . , a

(t)
nt v1 + b

(t)
nt v2).

Definition 2.3. A code C ⊆ Rγ over S is cyclic if C is closed under the cyclic shift
map, i.e., for every c = (a

(1)
1 v1 + b

(1)
1 v2, a

(1)
2 v1 + b

(1)
2 v2, . . . , a

(1)
n1 v1 + b

(1)
n1 v2, a

(2)
1 v1 +

b
(2)
1 v2, a

(2)
2 v1 + b

(2)
2 v2, . . . , a

(2)
n2 v1 + b

(2)
n2 v2 , . . . , a

(t)
1 v1 + b

(t)
1 v2, a

(t)
2 v1 + b

(t)
2 v2, . . . , a

(t)
nt v1 +

b
(t)
nt v2) ∈ C one has τ(a

(1)
1 v1 + b

(1)
1 v2, a

(1)
2 v1 + b

(1)
2 v2, . . . , a

(1)
n1 v1 + b

(1)
n1 v2, a

(2)
1 v1 + b

(2)
1 v2,

a
(2)
2 v1+b

(2)
2 v2, . . . , a

(2)
n2 v1+b

(2)
n2 v2 , . . . , a

(t)
1 v1+b

(t)
1 v2, a

(t)
2 v1+b

(t)
2 v2, . . . , a

(t)
nt v1+b

(t)
nt v2) =

= (a
(t)
nt v1+b

(t)
nt v2, a

(1)
1 v1+b

(1)
1 v2, a

(1)
2 v1+b

(1)
2 v2, . . . , a

(1)
n1 v1+b

(1)
n1 v2, a

(2)
1 v1+b

(2)
1 v2, a

(2)
2 v1+

b
(2)
2 v2, . . . , a

(2)
n2 v1 + b

(2)
n2 v2 , . . . , a

(t)
1 v1 + b

(t)
1 v2, a

(t)
2 v1 + b

(t)
2 v2, . . . , a

(t)
nt−1v1 + b

(t)
nt−1v2) ∈ C.

A code C ⊆ Rγ = Sn1 × Sn2 × · · · × Snt can be represented as (C1|C2| . . . |Ct),
where Ci ⊆ Sni, and each code Ci can be viewed as Ci,ni

v1 ⊕ C ′i,ni
v2. In the case

of cyclic codes we can also represent the codewords as polynomials by means
of the linear map T : Rγ −→ Rγ[x] = S[x]

〈xn1−1〉 ×
S[x]
〈xn2−1〉 × · · · ×

S[x]
〈xnt−1〉 given by

T (((a
(1)
0 , a

(1)
1 , . . . , a

(1)
n1−1)v1 +(b

(1)
0 , b

(1)
1 , . . . , b

(1)
n1−1)v2|(a

(2)
0 , a

(2)
1 , . . . , a

(2)
n2−1)v1 +(b

(2)
0 , b

(2)
1 ,

. . . , b
(2)
n2−1)v2| . . . |(a

(t)
0 , a

(t)
1 , . . . , a

(t)
nt−1)v1 + (b

(t)
0 , b

(t)
1 , . . . , b

(t)
nt−1)v2)) = ((a

(1)
0 + a

(1)
1 x +

. . .+a
(1)
n1−1x

n1−1)v1+(b
(1)
0 +b

(1)
1 x+. . .+b

(1)
n1−1x

n1−1)v2|(a(2)0 +a
(2)
1 x+. . .+a

(2)
n2−1x

n2−1)v1+

(b
(2)
0 +b

(2)
1 x+ . . .+b

(2)
n2−1x

n2−1)v2 | . . . |(a(t)0 +a
(t)
1 x+ . . .+a

(t)
nt−1x

nt−1)v1 +(b
(t)
0 +b

(t)
1 x+

. . .+ b
(t)
nt−1x

nt−1)v2).
Multiplication is defined as follows:

x ? (f1(x)|f2(x)| . . . |ft(x)) = (xf1(x)|xf2(x)| . . . |xft(x)).

It is clear that Rγ[x] is an S[x]-module under the multiplication ?.
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Definition 2.4. Let u = ((a
(1)
1 , a

(1)
2 , . . . , a

(1)
n1 )v1 + (b

(1)
1 , b

(1)
2 , . . . , b

(1)
n1 )v2|(a(2)1 , a

(2)
2 , . . . ,

a
(2)
n2 )v1 + (b

(2)
1 , b

(2)
2 , . . . , b

(2)
n2 )v2 |, . . . , |(a(t)1 , a

(t)
2 , . . . , a

(t)
nt )v1 + (b

(t)
1 , b

(t)
2 , . . . , b

(t)
nt )v2) and

v = ((c
(1)
1 , c

(1)
2 , . . . , c

(1)
n1 )v1 + (d

(1)
1 , d

(1)
2 , . . . , d

(1)
n1 )v2|(c(2)1 , c

(2)
2 , . . . , c

(2)
n2 )v1 + (d

(2)
1 , d

(2)
2 ,

. . . , d
(2)
n2 )v2|, . . . , |(c(t)1 , c

(t)
2 , . . . , c

(t)
nt )v1 + (d

(t)
1 , d

(t)
2 , . . . , d

(t)
nt )v2) be two vectors inRγ. An

inner product on Rγ is defined as

〈u, v〉 =

[
n1∑
i=1

(a
(1)
i c

(1)
i ) +

n2∑
i=1

(a
(2)
i c

(2)
i ) + . . .+

nt∑
i=1

(a
(t)
i c

(t)
i )

]
v1 +

+

[
n1∑
i=1

(b
(1)
i d

(1)
i ) +

n2∑
i=1

(b
(2)
i d

(2)
i ) + . . .+

nt∑
i=1

(b
(t)
i d

(t)
i )

]
v2.

In the following results we show that the structures of C1 and C2 are maintained
for C and vice-versa.

Theorem 2.2. The code C = v1C1 ⊕ v2C2 is a cyclic code over S of length n if and
only if C1 and C2 are cyclic codes over Fp of length n.

Proof. The proof follows directly from the fact that the shift operator applied to
C produces that same effect than the corresponding shift operators applied in C1

and C2. �

Theorem 2.3. The code C ⊆ Rγ is a cyclic code over S if and only if Ci,ni
⊆ Fni

p are
cyclic codes over Fp for all i.

Proof. The idea of the proof is the same as the proof of Theorem 2.2. �

Theorem 2.4. If C is a cyclic code over S then C = 〈v1f1(x), v2f2(x)〉, where fi(x)

is the generator polynomial for Ci, i = 1, 2.

Proof. Since C = v1C1 ⊕ v2C2 and the code C is cyclic, it follows from The-
orem 2.2 that Ci is also cyclic. Hence C = v1〈f1(x)〉 + v2〈f2(x)〉, which im-
plies C ⊆ 〈v1f1(x), v2f2(x)〉. On the other hand, if g(x) ∈ 〈v1f1(x), v2f2(x)〉, i.e.,
g(x) = g1(x)v1 f1(x) + g2(x)v2f2(x), then g(x) ∈ v1C1 ⊕ v2C2 = C, which implies
C = 〈v1f1(x), v2f2(x)〉. �

Theorem 2.5. Let C = v1C1 ⊕ v2C2 be a cyclic code over S of length n. If fi(x) is a
generator polynomial of Ci for i = 1, 2, then the polynomial f(x) = v1f1(x)+v2f2(x)

generates C and divides xn − 1.
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Proof. Let f(x) = v1f1(x)+v2f2(x). Since v1v2 = 0 and both v1, v2 are idempotents,
it follows that vifi(x) = vif(x) for i = 1, 2, which implies vifi(x) ∈ 〈f(x)〉. Thus
C = 〈f(x)〉, where fi(x)|(xn − 1) for i = 1, 2. This implies that there exist gi(x) ∈
Fp[x]/〈xn − 1〉 such that fi(x)gi(x) = xn − 1 for i = 1, 2. Since v1 + v2 = 1

and vifi(x)gi(x) = vi(x
n − 1), it follows that f1(x)g1(x)v1 + f2(x)g2(x)v2 = xn − 1.

Because vifi(x) = vif(x) for i = 1, 2, we have [g1(x)v1 + g2(x)v2]f(x) = xn− 1, i.e.,
f(x)|(xn − 1), as required. �

Theorem 2.6. If C is a cyclic code over S then also is its dual code C⊥.

Proof. It is easy to see that C⊥ = v1C
⊥
1 ⊕ v2C⊥2 . From Theorem 2.2, it follows that

C1 and C2 are cyclic codes over Fp; hence, C⊥1 and C⊥2 are also cyclic. Again, from
Theorem 2.2, it follows that C⊥ is cyclic. �

The following result is well-known in the literature. Since we do not find its
proof we present it here for completeness.

Theorem 2.7. A linear cyclic code C = 〈f(x)〉 contains its dual code if and only if
xn − 1 ≡ 0 (modf(x)f ∗(x)), where f ∗(x) is the reciprocal polynomial of f(x).

Proof. Assume that C⊥ ⊆ C, i.e., f(x)|h∗(x), where h∗(x) is the reciprocal polyno-
mial of h(x) = (xn − 1)/f(x). Then there exists a polynomial t(x) ∈ Fq[x] such
that h∗(x) = f(x)t(x) which implies f ∗(x)[h∗(x) − f(x)t(x)] = 0. This means that
xn − 1 = f(x)h(x) = f ∗(x)f(x)t∗(x), i.e., xn − 1 ≡ 0 (modf(x)f ∗(x)).

Conversely, suppose that xn − 1 ≡ 0 (modf(x)f ∗(x)), i.e., there exists q(x) ∈
Fq[x] such that xn−1 = q(x)f(x)f ∗(x). Hence f ∗(x)h∗(x) = q∗(x)f ∗(x)f(x), where
h∗(x) is the reciprocal polynomial of h(x) = (xn − 1)/f(x). This implies that
f(x)|h∗(x), i.e., C⊥ ⊆ C. �

Theorem 2.8. Let C = 〈v1f1(x), v2f2(x)〉 be a cyclic code over S of length n. Then
C⊥ ⊆ C if and only if xn − 1 ≡ 0 (modfi(x)f ∗i (x)) for i = 1, 2.

Proof. This is immediate from the equality C⊥ = v1C
⊥
1 ⊕ v2C⊥2 . �

Corollary 2.1. Let C = v1C1 ⊕ v2C2 be a cyclic code over S of length n. Let fi(x) be
the generator polynomial of Ci, i = 1, 2, and f⊥i (x) be the generator for C⊥i , i = 1, 2,
where C⊥i are the components of C⊥. Then fi(x)|f⊥i (x) if and only if f(x)|f⊥(x),
where f(x) = v1f1(x) + v2f2(x) and f⊥(x) = v1f

⊥
1 (x) + v2f

⊥
2 (x).
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Theorem 2.9. Let C ⊆ Rγ be a cyclic code over S. Then C contains its dual code if
and only if Ci ⊆ Sni also contains its dual code for all i.

Proof. Assume that C⊥i ⊆ Ci for all i. Define C̄1 = (C1|0| . . . |0), C̄2 = (0|C2| . . . |0),

. . . , C̄t = (0|0| . . . |Ct). Since C̄⊥i ⊆ C̄i for all i, it then follows that (C⊥1 |C⊥2 | . . . |
C⊥t ) ⊆ (C1|C2| . . . |Ct), i.e., C⊥ ⊆ C. Conversely, if C⊥ ⊆ C then (C⊥1 |C⊥2 | . . . |C⊥t )

⊆ (C1|C2| . . . |Ct), which implies C⊥i ⊆ Ci. �

Corollary 2.2. Let C ⊆ Rγ be a linear code. Then C contains its dual code if and
only if Ci,ni

and C ′i,ni
contain its dual code over Fni

p for all i ∈ 1, 2, . . . , t.

Proof. The proof follows directly from Theorems 2.8 and 2.9. �

Corollary 2.3. Let C⊥ = v1C
⊥
1 ⊕ v2C

⊥
2 be a cyclic code. If hi(x) is a generator

polynomial for C⊥i , i = 1, 2, then the polynomial h(x) = v1h1(x) + v2h2(x) is a
generator of C⊥ and divides xn − 1.

Theorem 2.10. If C ⊆ Rγ is a linear code over S then ϕ(C) is a linear code over Fp
and |C| = |ϕ(C)|. Moreover, ϕ(C⊥) = [ϕ(C)]⊥.

Proof. It is easy to see that the linearity of C implies the linearity of ϕ(C). The
equality |C| = |ϕ(C)| follows since ϕ is bijective.

Let c⊥ = ((c
(1)
1 , c

(1)
2 , . . . , c

(1)
n1 )v1 + (d

(1)
1 , d

(1)
2 , . . . , d

(1)
n1 )v2|(c(2)1 , c

(2)
2 , . . . , c

(2)
n2 )v1 +

(d
(2)
1 , d

(2)
2 , . . . , d

(2)
n2 )v2|, . . . , |(c(t)1 , c

(t)
2 , . . . , c

(t)
nt )v1 + (d

(t)
1 , d

(t)
2 , . . . , d

(t)
nt )v2) ∈ C⊥. Then,

for all c = ((a
(1)
1 , a

(1)
2 , . . . , a

(1)
n1 )v1 + (b

(1)
1 , b

(1)
2 , . . . , b

(1)
n1 )v2|(a(2)1 , a

(2)
2 , . . . , a

(2)
n2 )v1 +

(b
(2)
1 , b

(2)
2 , . . . , b

(2)
n2 )v2 |, . . . , |(a(t)1 , a

(t)
2 , . . . , a

(t)
nt )v1 + (b

(t)
1 , b

(t)
2 , . . . , b

(t)
nt )v2) ∈ C we have

〈c, c⊥〉 =

[
n1∑
i=1

(a
(1)
i c

(1)
i ) +

n2∑
i=1

(a
(2)
i c

(2)
i ) + . . .+

nt∑
i=1

(a
(t)
i c

(t)
i )

]
v1+[

n1∑
i=1

(b
(1)
i d

(1)
i ) +

n2∑
i=1

(b
(2)
i d

(2)
i ) + . . .+

nt∑
i=1

(b
(t)
i d

(t)
i )

]
v2 = 0.

This means that

n1∑
i=1

(a
(1)
i c

(1)
i ) +

n2∑
i=1

(a
(2)
i c

(2)
i ) + . . .+

nt∑
i=1

(a
(t)
i c

(t)
i ) = 0

and

n1∑
i=1

(b
(1)
i d

(1)
i ) +

n2∑
i=1

(b
(2)
i d

(2)
i ) + . . .+

nt∑
i=1

(b
(t)
i d

(t)
i ) = 0.
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This implies that ϕ(c)ϕ(c⊥) = 0, i.e., ϕ(C⊥) ⊆ [ϕ(C)]⊥. To show that the equality
holds we count the number os elements of these codes, showing that |ϕ(C⊥)| =

|[ϕ(C)]⊥|. We know that |C⊥| =
∏t

i=1 |C⊥i | =
∏t

i=1 p
2ni−ki−k′i, where ki, k′i are the

dimensions of the Fp-linear codes Ci,ni
and C ′i,ni

, respectively. Since ϕ is bijec-

tive one has |ϕ(C⊥)| =
∏t

i=1 p
2ni−ki−k

′
i . On other hand we have |ϕ(C)| = |C| =∏t

i=1 p
ki+k

′
i, hence |[ϕ(C)]⊥| = p2γ−

∑t
i=1ki−

∑t
i=1k

′
i. Therefore, |ϕ(C⊥)| = |[ϕ(C)]⊥|,

which implies ϕ(C⊥) = [ϕ(C)]⊥. �

Corollary 2.4. Let C ⊆ Rγ be a linear code over S. If C is a dual-containing code
then also is ϕ(C).

3. THE NEW QUANTUM CODES

We begin this section by recalling the concept of quantum codes. For more
details with respect to this topic, the reader can consult [3,7,12].

Let q be a prime power. Recall that an q-ary ((n,K, d))q quantum code C is an
K-dimensional vector subspace of Hilbert space (Cq)⊗n which can correct up to
b(d − 1)/2c errors. If K = qk we write [[n, k, d]]q. Let us recall the well known
Calderbank-Shor-Steane (CSS) quantum code construction.

Theorem 3.1. (CSS Construction) [3, 7, 12] Let C1 and C2 be two classical linear
codes with parameters [n, k1, d1]q and [n, k2, d2]q, respectively, with C⊥2 ⊆ C1. Then
there exists an [[n, k1 + k2 − n, d]]q stabilizer code, where d = min{wt(c) | c ∈
(C1�C⊥2 )

⋃
(C2�C⊥1 )}. In particular, if C⊥1 ⊆ C1 then there exists an [[n, 2k1−n, d′ ≥

d1]]q quantum code.

Applying the CSS construction we show the main result of this section.

Theorem 3.2. Let γ = n1 + n2 + . . . + nt and C ⊆ Rγ be a cyclic code over S. If
C⊥ ⊆ C then there exists an [[2γ, 2k−2γ, dL]]p quantum code, where dL and k denote
respectively the Lee weight and the dimension of the code ϕ(C).

Proof. Since C⊥i ⊆ Ci for all i, it follows from Theorem 2.9 that C⊥ ⊆ C. By Corol-
lary 2.4, the code ϕ(C) also contains it dual code. Applying the CSS construction
to ϕ(C) one has an [[2γ, 2k − 2γ, dL]]p code, as required. �

In the sequence we show how to apply Theorem 3.2 in order to construct new
quantum codes.
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Example 1. Let p = 5 and n1 = 15, n2 = 10 and n3 = 8; we then have

Rγ =
S[x]

〈x15 − 1〉
× S[x]

〈x10 − 1〉
× S[x]

〈x8 − 1〉
f1,n1(x) =x+ 4, f ′1,n1

(x) = x+ 4, f ′2,n2
(x) = x+ 4,

f ′2,n2
(x) =x+ 4, f3,n3(x) = x+ 2, f ′3,n3

(x) = x+ 2,

where fi,ni
and f ′i,ni

are the generators for Ci,ni
and C ′i,ni

, respectively. Therefore,
we obtain a code ϕ(C) with parameters [66, 60, 2]5. From the CSS construction,
an [[66, 54, 2]]5 quantum code is obtained, which is better than the [[66, 52, 2]]5 code
shown in Ref. [1].

Example 2. Let p = 7 and n1 and n2 = 24; define

S[x]

〈x24 − 1〉
× S[x]

〈x24 − 1〉

f1,n1(x) = x3 + 5x+ 4, f ′1,n1
(x) = x3 + 5x+ 4,

f ′2,n2
(x) = x3 + 5x+ 4, f ′2,n2

(x) = x3 + 5x+ 4,

where fi,ni
and f ′i,ni

are the generators for Ci,ni
and C ′i,ni

, respectively. We know that
C⊥ ⊆ C. The code ϕ(C) has parameters [96, 84, 3]7; from the CSS construction one
has an [[96, 72, 3]]7 code, which is better than the [[96, 60, 3]]7 code shown in Ref. [6].

Example 3. Let us now consider that p = 5, n1 and n2 = 20, i.e.,

S[x]

〈x20 − 1〉
× S[x]

〈x20 − 1〉

f1,n1(x) = x4 + 4x3 + 4x2 + 4x+ 3, f ′1,n1
(x) = x4 + 4x3 + 4x2 + 4x+ 3,

f2,n2(x) = x4 + 4x3 + 4x2 + 4x+ 3, f ′2,n2
(x) = x4 + 4x3 + 4x2 + 4x+ 3,

where fi,ni
and f ′i,ni

are the generators for Ci,ni
and C ′i,ni

, respectively. Proceeding
similarly as in the previous examples we obtain an [[80, 56, 3]]5 code, which is better
that the [[80, 54, 3]]5 code, exhibited in Ref. [1].

Example 4. Let p = 5, n1 = 15, n2 = n3 = 10 and n4 = 11, i.e.,

S[x]

〈x15 − 1〉
× S[x]

〈x10 − 1〉
× S[x]

〈x10 − 1〉
× S[x]

〈x11 − 1〉
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f1,n1(x) = x4 + 4x3 + 4x+ 1, f ′1,n1
(x) = x4 + 4x3 + 4x+ 1,

f2,n2(x) = x3 + x2 + 4x+ 4, f ′2,n2
(x) = x3 + x2 + 4x+ 4,

f3,n3(x) = x3 + x2 + 4x+ 4, f ′3,n3
(x) = x3 + x2 + 4x+ 4,

f4,n4(x) = x5 + 2x4 + 4x3 + x2 + x+ 4,

f ′4,n4
(x) = x5 + 2x4 + 4x3 + x2 + x+ 4,

where fi,ni
and f ′i,ni

are the generators for Ci,ni
and C ′i,ni

, respectively. Proceeding
similarly as above we get an [[92, 32, 3]]5.

If we consider p = 5, n1 = 15 and n2 = 8 we have an [[46, 18, 3]] quantum code.

4. CODE COMPARISON

In this section we compare the parameters of some codes constructed here with
the ones available in the literature. The parameters of our codes are computed by
utilizing the software MAGMA. In Table (4), n, n1 and n2 denote the lengths of the
codes C,Ci,ni

, C ′i,ni
, respectively. The corresponding polynomial is represented by

writing its coefficients; for instance, the polynomial x2 + 1 is written as 101.
The criterion of comparison is the usual ones: if the quantum codes have same

length and minimum distance, the better is one whose dimension is higher. Ac-
cording with such usual criterion, we can be seen in Table (4) that the new
[[120, 112, 2]]3 code is better than the [[120, 110, 2]]3 code shown in Ref. [13]. Our
[[60, 52, 2]] code is much better than the [[60, 24, 2]] code available in Ref. [4]. Addi-
tionally, the new [[92, 24, 5]]3 code is comparable with the [[92, 4, 8]]3 code exhibited
in Ref. [13].

n n1 n2 fi,n1
= f ′

i,n1
fi,n2

= f ′
i,n2

[n, k, d] New Existing

84 18 24 12 11 [80, 76, 2] [[84, 72, 2]]3

120 33 27 12 12 [120, 116, 2] [[120, 112, 2]]3 [[120, 110, 2]]3 [13]
60 21 9 13 13 [60, 56, 2] [[60, 52, 2]] [[60, 24, 2]] [4]
90 22 23 11122212212 111220101002 [90, 48, 7] [[90, 6, 7]]3

92 35 11 1221210120101 112102 [92, 58, 5] [[92, 24, 5]]3 [[92, 4, 8]]3 [13]

5. FINAL REMARKS

We have shown several results concerning cyclic codes over the ring Fp + vFp.
Applying the Gray map defined here, we have utilized great part of such results
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in order to construct quantum codes derived from the product of Fp + vFp. Some
of these new codes are better than the ones displayed in the literature. As future
works, it will be interesting to investigate structures of different finite rings and,
consequently, the possibility of construction of quantum codes with good parame-
ters.
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