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APPLICATION OF A SPECIAL POLYNOMIAL TO AN ENTROPICOGENETIC
CODING

H. S. G. RAVELONIRINA1, J. J. RAKOTO, AND H. M. RAZAKASOA

ABSTRACT. The main purpose of this paper is to propose an another type of
method of entropy coding. We will use a special polynomial and the genetic code.
This is a prefix code with a variable length to basis 4. However, in order to verify
the effectiveness of the code, the conformity to Shannon theorems, to Kraft in-
equality and to the calculation of the entropy of the source, we convert this code
in binary with a view to stocking the information on computer. This coding is
authentic: without error nor loss of symbol, including the white space. We have
created an high-performance encoding and decoding software.

1. INTRODUCTION

Since time immemorial, the coding of information has always had a great im-
portance in the life of man: of the learning of signs, of word then the writing. The
morse code have been the first coding used for the communication with a length
distance or hidden. It was Samuel F. B. Morse who developed it in 1844 [2]. This
code is composed of points and dash (binary code). After the morse code, many
codes have been invented such as:- The Baudot (or Murray) code invented by
Emile Baudot in 1874 [2]- the phone developed by Dr Graham Bell on march 10,
1876 [21] who used the Baudot code- The ASCII code (American Standard Code
for Information Interchange) which is adopted as standard was invented by Bob
Bemer in 1961 [23](character coding on 8 bits). Despite the fact that this code is
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standard for the character codings, there are also many others like the EBCDIC
code (Extended Binary Coded Decimal Interchange Code) to 8 bits developed by
IBM; the unicode code on 16 bits developed in 1991 [2]. At the end of the se-
cund world war, in 1945, Claude Elwood Shannon discovered the first concepts
of the coding theory published at the founder article. C. Shannon published in
1948 with W. Weaver an article ”Mathematical theory of communications” which
founded the basis of the code and information theory (cf. [21]). From this code
David A. Huffman developed another code ensuring the optimality. The Shannon-
Fano and Huffman codes have some common points. They are two codes with
variable length, prefix and allow us to do a data compression and need the prior
knowledge of the symbol probabilities. They belong to the same category of statis-
tic coding [21]. The difference however is that the Huffman code is an optimal
code but that of Shannon isn’t. Both of them have limits, namely the probability
of symbols can likely be unknown, and it can change over the time and the source
might not generate symbols i.i.d (independent and identically distributed), for ex-
ample the English text. Can the C. Shannon- Fano code and that of Huffman be
used if we don’t have a prior knowledge of the symbol probabilities of the source?
The negative answer to this question allows us to propose an another type of the
coding method: the coding that we call ”Entropicogenetic encoding”. We will see
in this paper how to proceed to this type of coding. The principle basis of this cod-
ing is to replace the emitted messages by a source S using an alphabet N−area
{s1, s2, . . . , sN} by writing messages in the alphabet of the genetic code of length
4. The alphabet N−area is substituted by the coefficients of the corresponding
polynomial pk (special polynomial private of its constant term) cf. [13,20] writing
in decimal basis then converted in binary to be used by the systems of information
storage on computer. Then, it is converted into genetic code after passing through
the basis 4. We have verified that all code-words are not the beginning of an-
other code and the length of code-words of symbols less frequents have the same
lengths; the results of Shannon cf. [4] and [3] on the effectiveness of the code,
that is L ≥ H(S)

log4(N)
where L is the average length of the code, H (S) the entropy

of the source S and N = card (A); the illegality of Kraft for only encodable and
instantaneous, that is

∑N
i=1

1
4li

< 1 where li the length of the code-word Ci. We
get a prefix, optimal, effective, high-performance and without error code. We find
that the coding system presents an injectivity gain. We created a encoding and
decoding software which will be put in the annex for the application. A possible
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improvement of the software will be considered for resolving certain problem, that
is reduce as much as possible the application numbers for this coding type.

2. PRELIMINARY

2.1. Special polynomial.

Theorem 2.1. [5] There is an unique polynomial fP (n) of degree dim (P ) with ra-
tional coefficients such that: fP (n) = card

(
nP ∩ Zd

)
, for all n ≥ 1, d ≥ 2 dimension

of network Z. In addition we have fP (0) = 1, fP (−n) = (−1)dim(P ) card
(
nP 0 ∩ Zd

)
,

for all n ≥ 1 (Reciprocity law).

Proof. See [5]. �

Remark 2.1. The Ehrhart polynomial fP (n) of an integer convex polytope P of d
dimension can also be written under the form : fP (n) = cdn

d + · · ·+ c1n+ c0 where
c0 = 1.

Definition 2.1. [13,20] We call family of Ehrhart polynomials the polynomial that
we write: gm,d,k (n) =

∏d
j=d−k+1 (n+ j) + m

∏k−1
j=0 (n− j), with k =

[
d+1
2

]
∈ N?

(degree), m ≥ 0 (parameter) and (d ≥ 2) (dimension of P ).

Definition 2.2. [20] We call special polynomial denoted by ps the polynomial derived
from the family of Ehrhart polynomials gm,d,k (n) that we can write under the form:

ps (n) =
k−1∑
i=0

ck,in
k−i + a0

with Jd ∼= a0 mod (d+ k).

We denote pk (n) the special polynomial without constant term in which the
coefficients are the decomposition factors of the constant term Jd of gm,d,k (n) in
product of decreasing factors. We write

pk (n) =
k−1∑
i=0

ck,in
k−i = ps (n)− a0

and Jd =
∏d

j=d−k+1 (j) =
∏k−1

i=0 (ck,i).

Example 1. For d = 7 we have k = 7+1
2

= 4, J7 = (7) (6) (5) (4) = 840 and
ps (n) = pk (n) + a0 where pk (n) = 7n4 + 6n3 + 5n2 + 4n with a0 = 4.
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2.2. Genetic code [9, 16]. The support of the genetic information is the DNA

(Desoxyribonucleic acid). It is the basis of the heredity: phenomenon of trans-
mitting of the genetic information of a mother cell to the daughter cells. Every
cell contains all the genetic code but the genes are expressed differently from one
cell to another. As for the various operations concerning the copies of coding or
the one-to-one translation, completed from the nucleic acid, we get the following
steps:

• replication: decoding of a DNA to produce a complementary DNA in
accordance with the following rule:

Adenine (A) −→ Tymine (T ) ; (T ) −→ (A) ;

Guanine (G) −→ Cytosine (C) ; (C) −→ (G) .

• transcription:decoding of anDNA for product anRNA (Ribonucleic acid)
according to rule:

(A) −→ Uracil (U) ; (T ) −→ (A) ; (G) −→ (C) ; (C) −→ (G) .

• translation:decoding of a RNA messager to produce a protein, the rules
of this translation form the genetic code.

We have the following table of complementarity [16]:

RNA transferts (RNAt)−→ RNA messager(RNAm)

TABLE 1. Table of complementarity

ARNt A C G U
ARNm U G C A

Source: [16]
For the DNA: T, A, C, G we have 4 basis and the same for RNA: U, A, C, G.
Then they have all the same number of the 4 basis in the numeration. In addition,
our encoding is part of the entropic coding or reversible compression of a source
corresponding to a coding without loss of symbols.

2.3. Entropic coding [18, 21]. The notion of entropic encoding is fundamental
into the theory of codes, namely the inequality of Kraft [8], the theorem of Shan-
non [22].
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Definition 2.3. Let S be a source defined by its alphabet symbols {s1, . . . , sN} and
its emission characteristics governed by a probability law P := {p (s1) , . . . , p (sN)}.
A source is simple (or without memory) if the symbols emited by the source S are
independent and of the same law.

A sequence of N symbols emited at instants 1, 2, . . . , N follows a probability law
P (s1, s2, . . . , sN) = p (s1) p (s2) . . . p (sN).

The entropy of zero order H (S) of a simple source S, of the probability law P

is defined by H (S) = −K
∑N

i=1 p (si) log2 [p (si)] where K is positive constante cf.
[10,18]. Taking into account K as unity of measure, we have:

H (S) = −
N∑
i=1

p (si) log2 [p (si)] .

Property 1. The entropy H (S) is maximal if all symbols {s1, . . . , sN} of the source
S are equiprobables. The entropy is then equal to the information associated to each
message taken individually. Then for all i ∈ {1, . . . , N}, p (si) = 1

N
⇐⇒ H (S) =

log2 (N).

Proof. Immediate. �

Inequality of Kraft 1. It makes up a basic result in theory of codes. It provides
a necessary-sufficient condition of existence of instantaneous decipherable codes ex-
pressed in function of the length of code words. This inequality is written:

∑N
i=1

1
2li
≤

1 where li (with i ∈ [1, . . . , N ]) the length of candidate-words for code a source
N−area in a binary alphabet [8].

Theorem of Shannon 1. Let us consider a without memory stationary source, the
average length n of coded words mi is limited by the entropy value of the source S,

n =
N∑
i=1

lip (si) ≥
N∑
i=1

p (si) log2 [p (si)] .

It is also possible to find a decipherable code such that H (S) ≤ n < H (S) + 1. The
average length of a symbol is given by the formula α =

∑N
i=1 pili (bits/symbol).

3. APPLICATION OF THE SPECIAL POLYNOMIAL TO THE ENCODING

3.1. Construction of the code: Principle basis.
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Let’s consider a source S defined by its alphabet A = {s1, s2, . . . , sN} of N
symbols and, its emission characteristics are given by a probability law P :=

{p (s1) , p (s2) , . . . , p (sN)}.
Every symbol of the source will be emitted at the instants t1, . . . , tn correspond-

ing to its rank in the message. The total number of coefficients of the special poly-
nomial pk must be equal to the total number of symbols in the alphabet N−area
and its degree is k = N =

[
d+1
2

]
, k integer, k ≥ 1. We identify every coefficient of

pk for each symbole of the alphabet A of the most great coefficient to the first rank
in the alphabet of the source, the next is second rank, and so on, that is the coeffi-
cients by decreasing greatness order and the symbols by increasing classification.

We use 137 characters composed of letters and symbols which appear in the
keyboard of a ”standard” computer and the 4 length figure of the genetic code.
For each character, we associate a number between 0 and 137.
Since 43 = 64 < 137 ≤ 254 = 44, then we can do the coding at least on 4 bits. Since
we adopt a code, let’s say entropicogenetic of variable length strictly superior than
the length of the genetic code which equals to 4 in conformity with the conception
of any code of variable length using the representation in the form of tree.

3.2. Method: Algorithm of dynamic progression.
The algorithm consists of the following steps:

Step 1:

(i) Write and number the alphabet constituating the message by order in the
source, including the punctuations and the white space, which are denoted
by A in this set. The ponctuations and the space don’t appear in A but have
of number according to their classification.

(ii) Write the corresponding polynomial pk the degree k of which is equal to
N (number of alphabets) and identify to A,

pk (n) =
k−1∑
i=0

(
nk−i

k, i

)
=

(
nk

k, 0

)
+

(
nk−1

k, 1

)
+ · · ·+

(
n

k, k − 1

)
,

((
k,0

)
,
(
k,1

)
, . . . ,

(
k,k−1

))
= (s1, s2, . . . , sN).

(iii) Define the first application: ϕ1 : A −→ C1 such that ϕ1 (si) = Ck,j, with
A := {s1, . . . , sN},
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C1 = {ck,0, . . . , ck,k−1}, i ∈ [1, N ] , j ∈ [0, k − 1]. In other words,
ϕ1 (s1) = Ck,0

ϕ1 (s2) = Ck,1

...
ϕ1 (sN) = Ck,k−1

.

Step 2:
Let us denote by ϕ2 the 2rd application, o the order of the alphabet (from 101 and
r the rank or classification in the source), C2 = {sior : i ∈ [1, N ] , o ≥ 101, r ≥ 1}.
The application ϕ2 is then defined by ϕ2 : C1 −→ C2 such that ϕ2 (Ck,j) = sior, that
is 

ϕ2 (Ck,0) = s1o1
ϕ2 (Ck,1) = s1o2
...
ϕ2 (Ck,k−1) = sNoN

.

Step 3:
Let us define the 3rd application. Let be ϕ3 : C2 −→ C3 such that sior converted in
basis 4. We denote sior4 the number sior in basis 4, then C2 := {sior4 : i ∈ [1, n] , o ≥
101, r ≥ 1}. In other words, ϕ3 : C2 −→ C3 such that ϕ3 (sior) = sior4:

ϕ3 (s1o1) = s1o14
ϕ3 (s1o2) = s1o24
...
ϕ3 (sNoN) = sNoN4

.

Step 4:
The 4th application ϕ4 is defined as follow: ϕ4 : C3 −→ C4 where C4 = {(sior4)
converted in DNA} according to the below table.

TABLE 2. correlation table

Number 0 1 2 3
ADN A C G T

Source: Author
We denote (sior4a) = (sior4) converted in DNA according to the above table.
ϕ4 : C3 −→ C4 such that ϕ4 (sior4) = sior4a.
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Step 5:
The last application is such that ϕ5 : C4 −→ C5. By transcription and transla-
tion following the rules of the genetic code (decoding of an DNA to produce an
RNA and endecoding of an RNA messager to produce a protein). We denote
(sior4a)t−m ∈ C5 converted in RNAt → RNAm according to the complementarity
table.

TABLE 3. Translation and transcription

DNA A C G T
RNAt U G C A
RNAm A C G U

Source: [16]

Remark 3.1. The numbers or orders of characters or symbols start from the figure
101 to avoid the restriction of the message length.

3.3. Reminder.

Definition 3.1. [1] Let Φ : {0, 1}k −→ {0, 1}n be an application. A code is an
injective application, that is all element of the arrival set has at most an antecedent
in the departure set. Φ is a binary code with length n and of dimension k .

Definition 3.2. [14] A code is said prefixe if none of the code word start by another
code word.

Proposition 3.1. The application ϕ1 : A −→ C1 is a code such that ϕ1 (si) = ck,j

where A = {s1, . . . , sN}, C1 = {ck,0, . . . , ck,j, . . . , ck,k−1 with i ∈ [1, . . . , N ] , j ∈
[0, . . . , k − 1] with j = i− 1.

Proof. Let N be the number of symbols of the alphabet A, C1 the set of coefficients
of pk, card (C1) = deg (pk (n)) = N . For all symbol of the source is associated one
and only one coefficient of pk, its image. So ϕ1 is a bijective application from the
departure set A to the arrival set C1, ϕ1 is then injective hence ϕ1 is a code. �

Similarly for the applications ϕ2, ϕ3, ϕ4 and ϕ5. Since the composed of bijective
applications is a bijection then the composed of codes form a code.
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Proposition 3.2. The entropicogenetic encoding allows us to have a prefixe code.

Proof. This is immediate using the previous Definition 3.2. �

In a code with variable length (VLC) cf. [6], we can do a compression without
loss [10] if the code is prefixe and the symbols aren’t equiprobables.

In a compression system without loss cf. [14], the decodor is capable of rebuild-
ing exactly the source datas (case of prefixe code).

An another method of compression: the method of compression RLE see [17],
[7] used by many formats (BMP, PCX, TIF) in which the basis principle consists to
code a first element giving the number of repetition of a value then completing it
by the value to be repeated. In fact the compression RLE allows us to compress
when this is necessary and to leave the chain as it is when the compression induces
a waste (gain of negative decompression). If three elements or plus are repeated
consecutively then the method RLE is used. For example: Chain AAAAAHHHHH-
HHHHHHHHH, compressed, composed by two different lettres gives 5A14H. The
compression gain is then 19−5

19
= 73, 7%.

Proposition 3.3. In the entropicogenetic code we can do a compression without
loss,for all pk, k ≥ 1 integer.

Proof. Since the entropicogenetic code is a prefixe code and if in addition the sym-
bols aren’t equiprobable then we can do a compression without loss according
to [6]. �

Definition 3.3. [3,4] A code is said to be a unique endecoding if its associated coding
is injective.

Lemma 3.1. The entropicogenetic code is of unique decoding.

Proof. This is immediate according to the extension of the previous Proposition
3.1. �

Theorem 3.1. [15] The lengths of code-words of a codeN−area only decodable must
satisfy the inequality of Kraft.

Theorem 3.2. The entropicogenetic encoding allows to have a more high-performance
code than an only decodable code. Besides, all entropicogenetic code is effective.

Proof. According to the Proposition 3.2 the entropicogenetic code is prefixe code,
that is an instantaneous code so all is also high-performance in length. But the



11118 H. S. G. RAVELONIRINA, J. J. RAKOTO, AND H. M. RAZAKASOA

Lemma 3.1 ensures us the difference with the only encodable code [24]. Let S
be a source of a quaternary code of length L, H (S) its entropy. The codes are of
variable length. By the theorem of Shannon’s encoding we can determine what’s
the number of bits of the information used in order for the code to be effective,
L ≥ H(S)

log4 N
where N points out the number of the alphabet symbols of the source,

that is, the source length of this encoding must be superior or equal to the division
between the value of the source entropy and the log4N . �

Theorem 3.3. [21] In order to have a coding without error, a source S must be coded
in average with at least H (S) bits, that is, L ≥ H (S).

Theorem 3.4. The entropicogenetic encoding is a coding without error.

Proof. We just need to use the theorem 3.2 and the theorem 3.3. �

Proposition 3.4. In the entropicogenetic code, the probabilities of apparition of sym-
bols are not always equiprobable.

Proof. We suppose that in a message of the source S, there are symbols having
different frequencies. In other words, there is one or several repetitions of sym-
bols. Then the most frequent symbols have higher probability than the ones less
frequent.

In fact, the symbols don’t always have the same probabilities of apparition. In
the opposite case then, there is an equiprobability, that is, all symbols have the
same frequency of apparition [19]. �

Corollary 3.1. Let S be a source such that S = {s1, . . . , sN} with p (si) the probabil-
ity of apparition of the symbol si, and li the length of the code ci where i = 1, . . . , N .
In the entropicogenetic code if there exists j 6= i and p (si) > p (sj) then li > lj. In
addition, if we have p (si) = p (sj) then li = lj.

Proof. This is from the previous proposition 3.4. �

Example 2. To illustrate the coding algorithm, we will code the following sentence:
"virer à droite".
Step 1: By order of apparition in the message, the source S consists ofN = 8 symbols =

k = deg◦pk (n) in which the corresponding alphabet A is that A = {v, i, r, e, , d, o, t}.
The total number of characters emanating from the source S is equal to 12. The fol-
lowing table gives the letters of the alphabet A, the frequence for each symbol and the
probability of its apparition.
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TABLE 4. Probability of occurrence for each symbol

Symbols Number of times Probability
v 1 1/12

i 2 2/12

r 3 3/12

e 2 2/12

à 1 1/12

d 1 1/12

o 1 1/12

t 1 1/12

Source: Author
Let us write the polynomial pk (n) associated to the previous symbols of the mes-

sage: k = 8 = d+1
12

this gives d = 15 then pk (n) = 15n8 +14n7 +13n6 +12n5 +11n4 +

10n3 + 9n2 + 8n.
The first application is given ϕ1 : A −→ C1 where C1 = {15, 14, 13, 12, 11, 10, 9, 8}

ϕ1 (v) = 15

ϕ1 (i) = 14

ϕ1 (r) = 13

ϕ1 (e) = 12

ϕ1 (à) = 11

ϕ1 (d) = 10

ϕ1 (o) = 9

ϕ1 (t) = 8

We will get the successive applications of steps 2, 3, 4 and 5.
Step 2: We have the 2nd application ϕ2 : C1 −→ C2

ϕ2 (15) = 17701

ϕ2 (14) = 1330212

ϕ2 (13) = 163030510

ϕ2 (12) = 1190414

ϕ2 (11) = 10307

ϕ2 (10) = 11709

ϕ2 (9) = 15111

ϕ2 (8) = 16713
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Step 3: We obtain the 3rd application ϕ3 : C2 −→ C3 (conversion in basis 4)

ϕ3 (17601) = 10110211

ϕ3 (1320212) = 11010300210

ϕ3 (162030510) = 21231322113232

ϕ3 (1190414) = 10202220032

ϕ3 (10307) = 2201003

ϕ3 (11709) = 2312331

ϕ3 (15011) = 3230013

ϕ3 (16613) = 10011021

Step 4:We have the 4th application ϕ4 : C3 −→ C4 (conversion in DNA according to
the table 2) 

ϕ4 (10103001) = CACCAGCC

ϕ4 (11002110110) = CCACATAAGCA

ϕ4 (21222012032232) = GCGTCTGGCCTGTG

ϕ4 (10202220032) = CAGAGGGAATG

ϕ4 (2201003) = GGACAAT

ϕ4 (2312331) = GTCGTTC

ϕ4 (3222203) = TGTAACT

ϕ4 (10003211) = CAACCAGC

Step 5:We get the 5th application ϕ5 : C4 −→ C5 (conversion in RNAt then RNAm)

ϕ5 (CACATAAC) = CACCAGCC

ϕ5 (CCAAGCCACCA) = CCACAUAAGCA

ϕ5 (GCGGGACGATGGTG) = GCGUCUGGCCUGUG

ϕ5 (CAGAGGGAATG) = CAGAGGGAAUG

ϕ5 (GGACAAT ) = GGACAAU

ϕ5 (GTCGTTC) = GUCGUUC

ϕ5 (TGGGGAT ) = UGUAACU

ϕ5 (CAAATGCC) = CAACCAGC

Finaly, we get the entropicogenetic code of symbols emanating from the alpha-
bet A of the source S. Let us calculate the entropy of the source S. First, the
average length of a symbol L =

∑8
i=1 pili = 10, 166 bits by symbol. Next the en-

tropy of the source H (S) = −
∑8

i=1 pi log4 pi = 1, 42. Since 10, 16 > 1, 42 then the
inequality in the basic therem of Shannon is verified. There are more compression:
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8 symbols of the alphabet A with less 2 bits, that is for coding 42 = 16 different
messages, we use 2 bits (in basis 4). In addition, the Kraft inequality is also veri-
fied. Moreover the code is optimal because the two less frequent symbols have the
same length, that is, p (i) = p (e) = 2

12
then li = le. Apart from that we notice that

none of the word of this code start by another code-word so it is a prefixe code,
that is instantaneous code, consequently this is an high-performance code. Then
this is immediate to verify that this code is also effective. Finally, by applying the
first theorem of Shannon, we find that L ≥ H (S) therefore the coding is without
error, hence the authenticity of this coding.

3.4. Application. For the application of the entropicogenetic encoding and de-
coding we have created a software. We would like to invite our readers to consult
the librairy mentioned in the annex.

4. DISCUSSION AND CONCLUSION

The coding that we have just proposed is a combination of entropy and genetic
encoding, that we call ”entropicogenetic coding”. Entropic encoding because this
is prefix code based on the theory of Shannon, the average information of symbols
of the source, that is the entropy of the source and, genetic encoding since we use
the genetic alphabet then the genetic code of length 4.

We use an algebraic approach: We use a special polynomial pk (n) =
∑k−1

i=0 ck,in
k−i

with degree equal to the number of elements of the alphabet derived from the
source, that is deg [pk (n)] = card (A) where A points out the alphabet of the source
S; the algebraic property of the function ϕi, i ∈ [1, 5] (bijectively and composition
of bijections). The algorithm of coding is done in five (5) steps: from alphabet
N−area of A = {s1, . . . , sN} to a quaternary alphabet C5 = {A,C,G, U} alphabet
of the genetic code. We have had a code verifying the fundamental theorem of
Shannon and the inequality of Kraft.

This is a prefix, optimal, effective and high-performance code with a compres-
sion without loss and authentic. This essentially depends on the source of the
message to be transmitted. An encoding and decoding software have been created
for the application (see library in annex). For this, we would like to bring in the
future some improvements: First, we will reduce as much as possible the number
of process steps of encoding (number of applications), that is we will simplify the
encoding algorithm. Then we will make sure that there is not limit in alphabet of
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any nationalities (for example: Chinese, Greek,...), then we will create a software
adapted to the change of characters and outside of the computer keyboard which
will be used in numerical world in accordance with the current development of
technology.

APPENDIX A. IMPLEMENTATION OF THE CODING METHOD [11, 12]

In order to be able to exploit and use our method in different applications,
we have created a library coded in JAVA in C# because of that these program
languages are very strong, very used and widespread in the technology fields.
These libraries use the ”BigInteger” class and the librairy ”gwt-math” for JAVA [11]
and ”numerics” for C# [12] that allows us to represent the integers without any
size limitations. We can then store and calculate the very big numbers during
the treatment of message. The calculations then are not limited to the character
numbers of the message, which makes it easier for the librairy to encode even
those very long message. All of that is explained in the section below.

APPENDIX B. DESCRIPTION OF FUNCTIONALITIES OF THE LIBRARY

Our librairy contains different functions that we can use during its use. We will
see the description of these functionalities and the constructors in the next pages.

TABLE 5. Summary of the constructor

Constructors
Constructor and description
Entropic Codage()
Build a new codor-decodor.

Entropic Codage(String mes)
Create a codor whose message to be encrypted is the message "mes".

Table 6: Summary of the method

Modificator and Type Method and description
public String encodageSymetrique(String sms)

Send back the encrypted message associated to the
message "sms"
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public String decodageSymetrique (String sms)
send back the initial message associated to the
encrypted "sms".

public String encodageAsymetrique(String sms)
Send back the encrypted message associated
to the message "sms" and secured by a private key.

public String getClePriveAsymetrique()
Send back the private key for an asymetric encryption.

public String decodageASymetrique(String sms, String cle)
Send back the initial message associated to the encrypted
message "sms" by means of the private key "cle".

public void rootCryptage()
Send back the encrypting steps.

public void rootDecryptage()
Send back the decrypting steps.

APPENDIX C. CHARACTER LIST WITH THEIR NUMBER

The table below shows the list of characters appearing in the keyboard of now-
days’s computer with their respective corresponding numbers used during the en-
cryption.

TABLE 7. list of characters

101 a 102 A 103 à 104 À 105 â 106 Â 107 ä 108 Ä 109 ã 110 Ã
111 b 112 B 113 c 114 C 115 ç 116 Ç 117 d 118 D 119 e 120 E
121 é 122 É 123 è 124 È 125 ê 126 Ê 127 f 128 F 129 g 130 G
131 h 132 H 133 i 134 I 135 î 136 Î 137 ï 138 Ï 139 j 140 J
141 k 142 K 143 l 144 L 145 m 146 M 147 n 148 N 149 ñ 150 Ñ
151 o 152 O 153 ò 154 Ò 155 ô 156 Ô 157 õ 158 Õ 159 p 160 P
161 q 162 Q 163 r 164 R 165 s 166 S 167 t 168 T 169 u 170 U
171 ù 172 Ù 173 û 174 Û 175 ü 176 Ü 177 v 178 V 179 w 180 W
181 x 182 X 183 y 184 Y 185 ÿ 186 Ÿ 187 z 188 Z 189 & 190 "
191 # 192 ’ 193 { 194 ( 195 [ 196 - 197 | 198 ◦ 199 + 200 _
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201 \ 202 @ 203 ) 204 ] 205 = 206 } 207 £ 208 $ 209 ¤ 210µ
211 * 212 % 213 ? 214 , 215 . 216 ; 217 : 218 / 219 § 220 !
221 2 222 1 223 2 224 3 225 4 226 5 227 6 228 7 229 8 230 9
231 0 232 ^ 233 ·· 234 ‘ 235 ˜ 236 < 237 >
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