ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.12, 11127–11132 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.92

H-E SUPER MAGIC HAMILTON DECOMPOSITION OF GRAPHS

J. REMYA¹ AND M. SUDHA

ABSTRACT. A Hamilton decomposition of G is a partition of its edge set into disjoint Hamilton cycles. A Hamilton cycle in a graph G is a cycle passing through every vertex of G. The graph G is said to be H - E Super Magic Hamilton Decomposition if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, p+q\}$ such that for every copy H in the decomposition $\sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)$ is constant with each subgraph is hamiltonian. Also $f(E(G)) = 1, 2, \ldots, q$. In this paper we prove that the anti prism graph A_n and Harary graph $H_{k,n}$ are H - E Super Magic Hamilton decomposable graph.

1. INTRODUCTION

We consider regular graphs. The vertex and edge sets of a graph G are denoted by V(G) and E(G) respectively. A graph labeling is an assignment of integers to the edges or vertices or both, depend upon certain conditions.E- super magic decomposition of even regular graph have been explained [11]. Also the graph Gconfesses an (H_1, H_2, \ldots, H_n) covering if a covering of G is a family of subgraphs H_1, H_2, \ldots, H_n such that every edge of E(G) belongs to at least one of the subgraphs $H_i, 1 \le i \le n$. G confesses an H-covering, if every H_i is isomorphic to a given graph H, A family of subgraphs H_1, H_2, \ldots, H_n of G is a H- decomposition of G if all the subgraphs are isomorphic to a graph $H, E(H_i) \cap (H_j) = \oslash$ where $i \ne j$

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C78, 05C70.

Key words and phrases. H labeling of graph, H - E Super Magic Hamilton Decomposition, *H* Decomposition, anti prism graph and Harary graph.

J. REMYA AND M. SUDHA

and $E(G) = \bigcup_{i=1}^{n} E(H_i)$. In this case, we write $G = H_1 \oplus H_2 \oplus \cdots \oplus H_n$ and G is said to be H-decomposable. Various types of decomposition of graphs have been studied in literature by imposing suitabe conditions on the subgraphs H_i . Geometric decomposition of graphs for various standard graphs have been explained in[9].In this paper we introduce the concept H - E Super Magic Hamilton Decomposition. The graph G is said to be H - E Super Magic Hamilton Decomposition if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \dots, p+q\}$ such that for every copy H in the decomposition $\sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)$ is constant with each subgraph is hamiltonian. Also f(E(G)) = 1, 2, ..., q. If f(V(G)) = 1, 2, ..., p then the decomposition is said to be H - V Super Magic Hamilton Decomposition. In 1960 [1] W.S. And rews explained about Magic Squares with magic number [$MN]\,\frac{n(n^2+1)}{2}$ for square of n sides.Guterrez and Llado [2] in 2005 first described H-super magic labeling .For basic definition and notation we follow [3]. Hamilton decompositon of complete graph have been proved by Hilton[4]. Inayah et al. [5] studied various types of labeling along with path decomposition. In 2016 Jude and Swathi [6] studied Hamilton decomposition of Harary graph. In 2012 Marimuthu and Balakrishnan [7] proved that if a graph G of odd order can be decomposed into two Hamilton cycles, then G is an E-super vertex magic graph. Petersen [8] studied even regular graph has a 2k-factor. In 2020 Remya and Sudha [10] described star decomposition of graphs with cordial labeling. In this paper we prove that certain regular graphs are decomposed into hamilton cycles with magic constant.

Definition 1.1. The anti prism graph A_n for $n \ge 3$ is defined as a 4-regular graph with 2n vertices and 4n edges. It consists of outer and inner C_n , while the two cycles connected by edges v_iu_i and $v_iu_{1+i(modn)}$ for i = 1, 2, 3, ..., n.

Lemma 1.1. [11] Let G be a m-factor decomposable graph and let g be a bijection from E(G) onto $\{1, 2, 3, ..., q\}$. Then g can be extended to an m-factor-E-super magic labeling of G if and only if $k_e = \sum_{e \in E(G)} g(e)$ is constant for every m-factor G' in the decomposition of G.

2. MAIN RESULTS

Theorem 2.1. The anti prism graph A_n is hamiltonian decomposable graph of length 2n with magic constant $4n^2 + n$, when $n \ge 10$ is a positive integer.

Proof. Let G = (V, E) be the graph A_n . The order and size of this graph are 2n and 4n respectively.(ie)|V(G)| = 2n and |E(G)| = 4n.Let $\{v_1, v_2, \ldots, v_n\}$ be the set of vertices of the outer cycle and $\{u_1, u_2, \ldots, u_n\}$ be the set of vertices of the inner cycle.Let $\{v_i u_i\} \cup \{v_i u_{i+1(modn)}\}$ be the set of edges.

Construct a mapping $f : E(G) \rightarrow \{1, 2, \dots, 4n\}$ by

$$f(v_{i}u_{i}) = i; 2 \leq i \leq n - 1,$$

$$f(v_{i}u_{i+1}) = 4n - i; 1 \leq i \leq n - 1,$$

$$f(v_{i}v_{i+1}) = 2n + i; 1 \leq i \leq n - 2,$$

$$f(u_{i}u_{i+1}) = n + i; 1 \leq i \leq n - 1,$$

$$f(v_{1}v_{n}) = 4n,$$

$$f(v_{1}v_{n}) = 4n,$$

$$f(v_{n}v_{n-1}) = 3n,$$

$$f(u_{1}u_{n}) = 1,$$

$$f(u_{1}v_{1}) = 2n,$$

$$f(u_{1}v_{n}) = 3n - 1,$$

$$f(u_{1}v_{n}) = n.$$

The Hamilton decomposition of antiprism graph of length 2n are $\{v_1u_2, u_2v_2, v_2u_3, u_3v_3, v_3u_4, u_4v_4, v_4u_5, \ldots, v_{n-1}u_n, u_nu_1, u_1v_n, v_nv_1\}, \{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_6, \ldots, v_{n-1}v_n, v_nu_n, u_nu_{n-1}, \ldots, u_2u_1, u_1v_1\}$ and

$$\sum_{e \in E(H_1)} f(e) = [1 + 2 + 3 + \dots + n] + [(4n - 1) + (4n - 2) + (4n - 3) + \dots + (4n - (n - 1))] + 4n = 4n^2 + n.$$

Also $\sum_{e \in E(H_2)} f(e) = 4n^2 + n.$

Theorem 2.2. If k, n are positive integer such that n > k, then Harary graph $H_{k,n}$ have a hamiltonian decomposition graph of length n with magic constant $\frac{kn^2+2n}{4}$.

Proof. Let G = (V, E) be the graph $H_{k,n}$. The order and size of this graph are n and $\frac{kn}{2}$, respectively. G can be decomposed into Hamiltonian cycles say $H_1 \oplus H_2 \oplus H_3 \oplus \ldots \oplus H_{\frac{k}{2}}$ each cycles of length n. Put k = r. Procedure for $\frac{k}{2}$ Hamilton Decomposition of $H_{k,n}$ is done by [6].

Case (i) When r and n are positive even integers. The edge of the graph can be labeled as shown in Table 1.

J. REMYA AND M. SUDHA

H_1	H_2	H_3	•••	$H_{\frac{k}{2}-1}$	$H_{\frac{k}{2}}$
1	2	3	•••	$\frac{k}{2} - 1$	$\frac{k}{2}$
k	k-1	k-2	• • •	$\frac{k}{2} + 2$	$\frac{k}{2} + 1$
k+1	k+2	k+3	•••	$\frac{3k}{2} - 1$	$\frac{3k}{2}$
2k	2k - 1	2k - 2	•••	$\frac{3k}{2} + 2$	$\frac{3k}{2} + 1$
•	:	•	:	:	:
$\frac{k}{2}\left(n-2\right)$	$\frac{k}{2}\left(n-2\right)-1$	$\frac{k}{2}\left(n-2\right)-2$	•••	$\frac{k}{2}\left(n-3\right)+2$	$\frac{k}{2}\left(n-3\right)+1$
$\frac{k}{2}\left(n-2\right)+1$	$\frac{k}{2}(n-2)+2$	$\frac{k}{2}\left(n-2\right)+3$	• • •	$\frac{k}{2}\left(n-1\right)-1$	$\frac{k}{2}\left(n-1\right)$
$\frac{kn}{2}$	$\frac{kn}{2} - 1$	$\frac{kn}{2} - 2$	•••	$\frac{k}{2}\left(n-1\right)+2$	$\frac{k}{2}\left(n-1\right)+1$

TABLE 1. The edge label of $H_{k,n}$ if r and n are positive even integers.

The sum of the edge labels for the Hamiltonian cycles are

$$\sum_{e \in E(H_1)} f(e) = 1 + k + k + 1 + 2k + \dots + \frac{k}{2}(n-2) + \frac{k}{2}(n-2) + 1 + \frac{kn}{2}$$
$$= \frac{kn^2 + 2n}{4}.$$

In similar way, we calculate the magic constant for each decomposition $H_2, H_3, H_4, \dots, H_{\frac{k}{2}}$ as $\frac{kn^2+2n}{4}$.

Case (ii) When *r* is even and *n* is an odd integer with $r \neq 0 \pmod{4}$. The edge of the graph can be labeled as shown in Table 2.

TABLE 2. The edge label of $H_{k,n}$ if r is even and n is an odd integer with $r \neq 0 \pmod{4}$.

H_1	H_2	H_3		$H_{k/2-1}$	$H_{k/2}$
		$\frac{k}{2} \times \frac{k}{2}$			
$\frac{k^2}{4} + 1$	$\frac{k^2}{4} + 2$	$\frac{k^2}{4} + 3$		$\frac{k^2}{4} + \frac{k}{2} - 1$	$\frac{k^2}{4} + \frac{k}{2}$
$\frac{k^2}{4} + k$	$\frac{k^2}{4} + k - 1$	$\frac{k^2}{4} + k - 2$		$\frac{k^2}{4} + \frac{k}{2} + 2$	$\frac{k^2}{4} + \frac{k}{2} + 1$
$\frac{k^2}{4} + k + 1$	$\frac{k^2}{4} + k + 2$	$\frac{k^2}{4} + k + 3$		$\frac{k^2}{4} + \frac{3k}{2} - 1$	$\frac{k^2}{4} + \frac{3k}{2}$
:	:	:	:	:	:
$\frac{k^2}{4} + (n - \frac{k}{2} - 2)\frac{k}{2} + 1$	$\frac{k^2}{4} + (n - \frac{k}{2} - 2)\frac{k}{2} + 2$	$\frac{k^2}{4} + (n - \frac{k}{2} - 2)\frac{k}{2} + 3$		$\frac{k^2}{4} + (n - \frac{k}{2} - 1)\frac{k}{2} - 1$	$\frac{k^2}{4} + (n - \frac{k}{2} - 1)\frac{k}{2}$
$\frac{k^2}{4} + \left(n - \frac{k}{2}\right)\frac{k}{2}$	$\frac{k^2}{4} + \left(n - \frac{k}{2}\right)\frac{k}{2} - 1$	$\frac{k^2}{4} + \left(n - \frac{k}{2}\right)\frac{k}{2} - 2$		$\frac{k^2}{4} + \left(n - \frac{k}{2} - 1\right)\frac{k}{2} + 2$	$\frac{k^2}{4} + \left(n - \frac{k}{2} - 1\right)\frac{k}{2} + 1$

The sum of the edge labels for the Hamiltonian cycles are

$$\sum_{e \in E(H_1)} f(e) = MN + \frac{k^2}{4} + 1 + \frac{k^2}{4} + k + \frac{k^2}{4} + k + 1 + \dots + \frac{k^2}{4}$$
$$+ (n - \frac{k}{2} - 2)\frac{k}{2} + 1 + \frac{k^2}{4} + (n - \frac{k}{2})\frac{k}{2}$$
$$= \frac{k^3}{16} + \frac{k}{4} + \frac{k^2n}{4} - \frac{k^3}{8} + 2k\left[\frac{\left(\frac{2n-k-4}{4}\right)\left(\frac{2n-k-4+4}{4}\right)}{2}\right]$$
$$+ \frac{2n-k}{4} + \frac{nk}{2} - \frac{k^2}{4} = \frac{kn^2 + 2n}{4}$$

In similar way, we calculate the magic constant for each decomposition $H_2, H_3, H_4, \dots, H_{\frac{k}{2}}$ as $\frac{kn^2+2n}{4}$.

REFERENCES

- [1] W. S. ANDREWS: Magic Squares and Cubes, Dover, 1960.
- [2] A. GUTERREZ, A. LLADO: *Magic coverings*, J. Combin. Math. Combin. Comput., 55 (2005), 43-56.
- [3] F. HARARY: Graph Theory, Addison-Wesley, Reading, Mass., 1969.
- [4] A. J. W. HILTON: *Hamilton Decompositions of Complete Graphs*, Journal of Combinatorial Theory, **36** (1984), 125-134.
- [5] N. INAYAH, A. LLADO, J. MORAGAS: Magic and antimagic H-decompositions, Discrete Math., 312 (2012), 1367-1371.
- [6] J. A. CYNTHIA, N. R. SWATHI: Hamilton Decomposition of Harary Graphs, International Journal of Mathematics Trends and Technology, 34(2) (2016), 59-63.
- [7] G. MARIMUTHU, M. BALAKRISHNAN: *E-Super vertex magic labelings of graphs*, Discrete Appl. Math., **160** (2012), 1766-1774.
- [8] J. PETERSEN: Die Theorie der regularen Graphen, Acta Math., 15 (1891), 193-220.
- [9] J. REMYA, M.SUDHA: Geometric decomposition of graph with various common ratio, Advances in Mathematics: Scientific Journal, **9**(7) (2020), 5225-5229.
- [10] J. REMYA, M.SUDHA: Note on H- totally magic cordial decomposition of graphs, Journal of Xi'an University of Architecture and Technology. 12(5) (2020), 3138-3141.
- [11] S. P. SUBBIAH, J. PANDIMADEVI: *H-E-Super magic decomposition of graphs*, Electronic Journal of Graph Theory and Applications, 2(2) (2014), 115-128.

J. REMYA AND M. SUDHA

DEPARTMENT OF MATHEMATICS NOORUL ISLAM CENTRE FOR HIGHER EDUCATION KUMARACOIL, TAMILNADU, INDIA, 629175 *Email address*: remyajohnvincent@gmail.com

DEPARTMENT OF MATHEMATICS NOORUL ISLAM CENTRE FOR HIGHER EDUCATION KUMARACOIL, TAMILNADU, INDIA, 629175 *Email address*: sudha.jeyakumarae@gmail.com