

Advances in Mathematics: Scientific Journal **9** (2020), no.12, 11141–11146 ISSN: 1857-8365 (printed): 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.12.94

# VERY EXCELLENT DOMINATING WEAKLY CONNECTED SET DOMINATING SETS

#### D. ANANDHA SELVAM $^1$ AND M. DAVAMANI CHRISTOBER

ABSTRACT. A  $\gamma_{wcsd}$  set S of a connected graph G is a dominating weakly connected set dominating (wcsd) set of G with minimum cardinality [2]. A connected graph G is a very excellent wcsd if there is a  $\gamma_{wcsd}$  set S such that  $\forall u \in V - S$  there exists a vertex  $v \in S \ni S - \{v\} \cup \{u\}$  is a  $\gamma_{wcsd}$  set of G [3] and S is called very excellent wcsd set of G. In this paper we have obtained a very excellent wcsd graphs from a very excellent wcsd graphs with  $\gamma_{wcsd}$  level vertex [3] and also we have obtained the union of very excellent wcsd graph is again a very excellent wcsd graph under certain conditions.

## 1. INTRODUCTION

Sampath Kumar and Pushpa Latha have defined set domination in graphs. Hedetniemi et all have defined weakly connected domination in graphs [2,8]. We define the concept of weakly connected set dominating sets (wcs), Dominating weakly connected set dominating sets (wcsd) and elucidate some results in our earlier paper [2]. We extend these to new class of very excellent wcsd- graphs [3].

## 2. Preliminaries

**Definition 2.1.** Let G be a connected graph. A sub set S of V is a set dominating set if  $\forall T \subseteq V - S$  there exists  $R \subseteq S$  such that  $\prec T \cup R \succ$  is connected [1].

<sup>1</sup>corresponding author

<sup>2020</sup> Mathematics Subject Classification. 97K30, 05C76, 05C69.

*Key words and phrases.*  $\gamma_{wcsd}$  sets, very excellent wcsd graphs.

**Definition 2.2.** Let G be a connected graph. A sub set S of V is a weakly connected set if the sub graph  $\prec S \succ_w$  whose vertex set is N[S] and whose edge set consists of those edges in E(G) with at least one vertex and possibly both in S is connected [4].

**Definition 2.3.** Let G be a connected graph. A sub set S of V is a weakly connected set dominating (wcs) set if  $\forall T \subseteq V - S$  there exists  $R \subseteq S$  such that  $\prec T \cup R \succ$  is weakly connected. A dominating weakly connected set dominating set is wcsd set [2] and its minimal cardinality is  $\gamma_{wcsd}(G)$ 

**Definition 2.4.** A connected graph G is a  $\gamma_{wcsd}$ -excellent if each vertex u of G is in some  $\gamma_{wcsd}$  set of G. [3]

**Definition 2.5.** A connected graph G is a  $\gamma_{wcsd}$ -flexible if to each vertex u of G, there is a  $\gamma_{wcsd}$  set not containing u. [3]

**Definition 2.6.** A vertex u in V(G) is called  $\gamma_{wcsd}$  level vertex [3] of G if  $\gamma_{wcsd}(G-u) = \gamma_{wcsd}(G)$ .

**Definition 2.7.** A vertex u in V(G) is called  $\gamma_{wcsd}$  non level vertex [3] of G if  $\gamma_{wcsd}$   $(G - u) = \gamma_{wcsd} (G) - 1$ .

## 3. Class of Very Excellent wcsd Graphs

**Theorem 3.1.** If G is a very excellent wcsd graphs and u is level vertex of G, then the graph H obtained from G by attaching a path  $P_3$  at 'u' is also very excellent wcsdgraph.

*Proof.* Let G be a very excellent wcsd graph. Then G has a very excellent  $\gamma_{wcsd}$  set S.

Let u be a  $\gamma_{wcsd}$  level vertex of G. Then  $\gamma_{wcsd} (G - u) = \gamma_{wcsd} (G)$ .

Let *H* be a graph obtained by attached a path  $P_3 = w_1 w_2 w_3$  at *u* of *G*. Since *S* is  $\gamma_{wcsd}$  set of *G*,  $S_H = S \cup \{w_2\}$  is a *wcsd* set of *H*, we have

(3.1) 
$$\gamma_{wcsd}(H) \le \gamma_{wcsd}(G) + 1.$$

Then  $S_H \cap \{w_1, w_2, w_3\} \neq \phi$  and  $S_H \cap V(G)$  is a  $\gamma_{wcsd}$  set of G. Also, u is a  $\gamma_{wcsd}$  level vertex of G. Then,

$$\gamma_{wcsd}\left(H\right) - 1 = \left|S_H \cap V(G)\right| \ge \gamma_{wcsd}\left(G\right),$$

and this implies

(3.2) Implies 
$$\gamma_{wcsd}(H) \ge \gamma_{wcsd}(G) + 1$$

Therefore  $\gamma_{wcsd}(H) = \gamma_{wcsd}(G) + 1$  by (3.1) and (3.2).

Let  $S_{VG}$  be a very excellent  $\gamma_{wcsd}$  set of G.

**Claim:**  $S_{VH} = S_{VG} \cup \{w_2\}$  is a very excellent  $\gamma_{wcsd}$  set of H.

Since  $S_{VG}$  is a very excellent  $\gamma_{wcsd}$  set of G,  $\forall u \in V(G) - S_{VG}$ ,  $\exists v \in S_{VG}$ , such that

(3.3) 
$$S_{VG} - \{v\} \cup \{u\}$$
 is a  $\gamma_{wcsd}$  set of  $G$ .

Also,

(3.4) 
$$S_{VG} - \{w_2\} \cup \{w_1\}$$
 and  $S_{VG} - \{w_2\} \cup \{w_3\}$  are  $\gamma_{wcsd}$  set of  $G$ .

By (3.3) and (3.4),  $\forall u \in V(G) - S_{VH}$ ,  $\exists v \in S_{VH}$ , such that  $S_{VH} - \{v\} \cup \{u\}$  is a  $\gamma_{wcsd}$  set of H. This implies that  $S_{VH}$  be a very excellent  $\gamma_{wcsd}$  set of H. Thus H is a very excellent graph.

**Theorem 3.2.** A graph H is obtained from G by a path  $P_3$  at a vertex of G is wcsd very excellent if and only if G is wcsd very excellent and there exist a very excellent  $\gamma_{wcsd}$  set S of G such that  $u \in S$  and  $S - \{u\}$  is a  $\gamma_{wcsd}$  set of G - u.

*Proof.* Let *G* be the graph with vertex *u*. *H* is obtained from *G* by attaching a path  $P_3 = w_3 w_2 w_1$  at a vertex *u*.

Assume that *H* is a very excellent graph. Let  $S_H$  be very excellent  $\gamma_{wcsd}$  set of *H*. If  $w_1 \in S_H$ ,  $w_2 \notin S_H$ , then there exist  $x \in S_H$  such that  $S_H - x \cup \{w_2\}$  is a  $\gamma_{wcsd}$  set of *H*.

If  $w_2 \in S_H$ ,  $w_1 \notin S_H$ , then there exist  $y \in S_H$  such that  $S_H - y \cup \{w_1\}$  is a  $\gamma_{wcsd}$  set of H.

Therefore there is no  $\gamma_{wcsd}$  set of H which contains both  $w_1$  and  $w_2$ . This implies  $x = w_1$  and  $y = w_2$ .

In order to dominate the vertex  $w_3$ , we realize that  $S_H - w_2 \cup \{w_1\}$  contains either  $w_3$  or u, and so  $S_H \cap \{u, w_3\} \neq \phi$ .

If  $u \in S_H$ , let  $S = S_H$ , and if  $w_3 \in S_H$  let  $S = S_H - w_3 \cup \{u\}$ , then S is a very excellent  $\gamma_{wcsd}$  set of H containing both u and  $w_2$ .

Let  $S_0 = S - w_2$ . Then  $S_0 - w_2$  is a  $\gamma_{wcsd}$  set of G. Given any vertex  $v \in V(G)$  such that  $v \in S_0$ , then  $v \in S$ . Further, there exist  $z_1 \in S$  such that  $S - z_1 \cup \{v\}$  is a  $\gamma_{wcsd}$  set of H.

By our choice of  $S \ z_1 \neq w_2$ ,  $z_1 \in S_0$  implies  $S_0 - z_1 \cup \{v\}$  is a  $\gamma_{wcsd}$  set of G, that  $S_0$  is a very excellent  $\gamma_{wcsd}$  set of G, and that G is a very excellent graph. As  $w_3 \notin S_1$ ,  $\exists z_2 \in S$  such that  $S - z_2 \cup \{w_3\}$  is a  $\gamma_{wcsd}$  set of H.

By our choice of  $S \ z_2 \neq w_2$ , as  $\gamma_{wcsd}$  set of H does not contain all 3 vertices  $w_3$ ,  $w_2$  and u, he have that  $z_2 = u$ , and  $S - \{u\} \cup \{w_3\}$  is a  $\gamma_{wcsd}$  set of H. From here,  $S_0 - u = S - \{u, w_2\} \cup \{w_3\}$  a minimal wcsd set of G - u, and  $S_0 - u$  is a  $\gamma_{wcsd}$  set of G - u.

Conversely, assume that G is a very excellent graph. Then, S is very excellent  $\gamma_{wcsd}$  set of G such that  $u \in S$ , and S - u is a  $\gamma_{wcsd}$  set of G - u. Thus,  $S \cup \{w_2\}$  is very excellent  $\gamma_{wcsd}$  set of H.

**Theorem 3.3.** Let  $G_1$ ,  $G_2$  be  $\gamma_{wcsd}$  very excellent graphs, and let  $u_1$ ,  $u_2$  be  $\gamma_{wcsd}$  level vertices of  $G_1$  and  $G_2$  respectively. Then, the graph H obtained from  $G_1 \cup G_2$  by joining the vertices  $u_1$ ,  $u_2$  by an edge is  $\gamma_{wcsd}$  very excellent.

*Proof.* Let  $G_1$ ,  $G_2$  be  $\gamma_{wcsd}$  very excellent graphs, and let  $S_1$  and  $S_2$  be very excellent  $\gamma_{wcsd}$  sets of  $G_1$  and  $G_2$ , respectively.

Also, let  $u_1$ ,  $u_2$  be  $\gamma_{wcsd}$  level vertex of  $G_1$  and  $G_2$ , respectively. Then,

(3.5) 
$$\gamma_{wcsd} (G_1) = \gamma_{wcsd} (G_1 - u_1)$$
 and  $\gamma_{wcsd} (G_2) = \gamma_{wcsd} (G_2 - u_2).$ 

Let  $S_H$  be  $\gamma_{wcsd}$  set of H. Then  $S_H \cap V(G_1)$  is a  $\gamma_{wcsd}$  set of  $G_1 - u_1$  and  $S_H \cap V(G_2)$  is a  $\gamma_{wcsd}$  set of  $G_2 - u_2$ . Therefore,

(3.6) 
$$|S_H| \ge \gamma_{wcsd} (G_1 - u_1) \text{ and } \gamma_{wcsd} (G_2 - u_2),$$
  
 $|S_H| \ge \gamma_{wcsd} (G_1) + \gamma_{wcsd} (G_2) \text{ [by (3.5) and (3.6)]}$   
 $|S_H| \ge |S_1| + |S_2|$   
 $|S_H| = |S_1| + |S_2| \text{ and } S_H = S_1 \cup S_2.$ 

**Claim:**  $S_H$  is a  $\gamma_{wcsd}$  very excellent set of H.

Let  $w \in V(H) - S_H$ . Then,  $w \notin S_1 \cup S_2$ ,  $w \notin S_1$  and  $w \notin S_2$ . Since  $S_1$  is a very excellent  $\gamma_{wcsd}$  set of  $G_1$ ,  $\exists x \in S_1$  such that  $S_1 - x \cup \{w\}$  is a  $\gamma_{wcsd}$  set of  $G_1$ . Therefore,  $S_1 - x \cup \{w\} \cup S_2$  is  $\gamma_{wcsd}$  set of H and  $S_1 \cup S_2 - x \cup \{w\}$  is a  $\gamma_{wcsd}$  set of

11144

*H*. Thus,  $S_1 \cup S_2$  is a very excellent  $\gamma_{wcsd}$  set of *H*, and further, *H* is a very excellent  $\gamma_{wcsd}$  graph.

**Theorem 3.4.** Let  $G_1$  and  $G_2$  be wcsd very excellent graphs. Let  $u_1 \in G_1$  and  $u_2 \in G_2$ such that there exist a  $\gamma_{wcsd}$  very excellent sets  $S_1$  of  $G_1$  and  $S_2$  of  $G_2$  so that  $u_1 \in S_1$ and  $u_2 \in S_2$  and are  $S_1 - u_1$  and  $S_2 - u_2$  wcsd sets of  $G_1 - u_1$  and  $G_2 - u_2$ . If the graph H obtained from  $G_1 \cup G_2$  by identifying the vertices  $u_1$  and  $u_2$  then H is wcsdvery excellent graph.

*Proof.* Let  $G_1$  and  $G_2$  be wcsd very excellent graphs, and  $S_1$  and  $S_2$  be  $\gamma_{wcsd}$  set of  $G_1$  and  $G_2$ , respectively.

Also, let  $u_1 \in S_1$  and  $u_2 \in S_2$  be such that  $S_1 - u_1$  and  $S_2 - u_2$  is a *wcsd* of  $G_1 - u_1$  and  $G_2 - u_2$ , respectively.

Then, H is obtained from  $G_1 \cup G_2$  by identifying the vertices  $u_1$  and  $u_2$  and let the vertex be 'u'. Any  $A_1 \subseteq V(G_1) - u_1$  and  $A_2 \subseteq V(G_2) - u_2$  west sets of  $G_1 - N(u_1)$  and  $G_2 - N(u_2)$ . Then is  $A_1 \cup \{u_1\}$  and  $A_2 \cup \{u_2\}$  west set of  $G_1$  and  $G_2$ , respectively.

Hence  $|A_1| \ge \gamma_{wcsd}(G_1) - 1$  and  $|A_2| \ge \gamma_{wcsd}(G_2) - 1$ . For any wcsd set D of H,

 $G_1 \cap D$  is west of  $G_1$  and  $G_1 - N(u_1)$ ,

 $G_2 \cap D$  is west of  $G_2$  and  $G_2 - N(u_2)$ .

So for any wcsd set D of H,

$$|D| \ge \gamma_{wcsd}(G_1) + (\gamma_{wcsd}(G_2) - 1),$$
  

$$|D| \ge \gamma_{wcsd}(G_2) + (\gamma_{wcsd}(G_1) - 1), \text{ and}$$
  

$$\gamma_{wcsd}(H) \ge \gamma_{wcsd}(G_1) + \gamma_{wcsd}(G_2) - 1.$$

Since  $S_1$  and  $S_2$  are  $\gamma_{wcsd}$  set of  $G_1$  and  $G_2$  respectively,  $S_1 \cup S_2$  is a  $\gamma_{wcsd}$  set of H.

**Claim:**  $S_1 \cup S_2$  wesd excellent set of H.

For any vertex  $v \in H$  and  $v \notin S_1 \cup S_2$ ,  $v \neq u$ . If  $v \in G_1$ , then there exists  $w_1 \in S_1$ such that  $S_1 - \{w_1\} \cup \{v\}$  is a  $\gamma_{wcsd}$  set of  $G_1$ . If  $v \in G_2$ , then there exists  $w_2 \in S_2$ such that  $S_2 - \{w_2\} \cup \{v\}$  is a  $\gamma_{wcsd}$  set of  $G_2$ .

So,  $S_1 - \{w_1\} \cup S_2 - \{w_2\} \cup \{v\} = S_1 \cup S_2 \cup \{v\} - \{w_1, w_2\}$  is a set of H which contains v. Then  $S_1 \cup S_2 \cup \{v\} - \{w_1, w_2\}$  is a *wcsd* very excellent set of H, implying that H is a *wcsd* very excellent graph.  $\Box$ 

#### D. A. SELVAM AND M. D. CHRISTOBER

## 4. CONCLUSION

This paper has attempted to establish new class very excellent graphs with respect to the parameter dominating weakly connected set domination and enabled to study various properties of such graphs. The future scope of study is to make new class of very excellent graphs with respect to the parameter weakly connected point set domination.

## REFERENCES

- [1] E. S. KUMAR, L. PUSHPALATHA: Set Domination in Graphs, Journal of Graph Theory, **18**(5) (1994), 489 495.
- [2] D. ANANDHA SELVAM, M. DAVAMANI CHRISTOBER: Dominating weakly connected set dominating bridge independent graphs, Malaya Journal of Matematik, **S**(1) (2019), 4-6.
- [3] D. A. SELVAM, M. D. CHRISTOBER: A Study on Just Excellent and Very Excellent weakly connected Set Domination, Mathematical Sciences International Research Journal, 3(2) (2014), 800-802.
- [4] J. E. DUNBAR, J. W. GROSSMAN, J. H. HATTIGH, S. T. HEDETNIEMI, A. A. MCRAE: On *Weakly Connected Domination in Graphs*, Discrete Mathematics bf167/168 (1997), 261-269.

DEPARTMENT OF MATHEMATICS THE AMERICAN COLLEGE MADURAI, TAMIL NADU, INDIA Email address: anubenny9572@gmail.com

DEPARTMENT OF MATHEMATICS THE AMERICAN COLLEGE MADURAI, TAMIL NADU, INDIA

11146